
Frontiers in Oncology | www.frontiersin.org

Edited by:
Jinming Zhang,

Chengdu University of Traditional
Chinese Medicine, China

Reviewed by:
Naresh Kumar Rajendran,

University of Rochester, United States
Mariana Tasso,

Consejo Nacional de Investigaciones
Cientı́ficas y Técnicas (CONICET),

Argentina

*Correspondence:
Gang Zhao

gzhao@jlu.edu.cn
Hongquan Yu

yhq@jlu.edu.cn

Specialty section:
This article was submitted to

Pharmacology of Anti-Cancer Drugs,
a section of the journal
Frontiers in Oncology

Received: 04 July 2021
Accepted: 12 January 2022
Published: 28 January 2022

Citation:
Wang B, Guo H, Xu H,

Chen Y, Zhao G and Yu H (2022)
The Role of Graphene Oxide

Nanocarriers in Treating Gliomas.
Front. Oncol. 12:736177.

doi: 10.3389/fonc.2022.736177

REVIEW
published: 28 January 2022

doi: 10.3389/fonc.2022.736177
The Role of Graphene Oxide
Nanocarriers in Treating Gliomas
Bin Wang1, Hanfei Guo2, Haiyang Xu1, Yong Chen1, Gang Zhao1* and Hongquan Yu1*

1 Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China, 2 Cancer Center, The First Hospital of
Jilin University, Changchun, China

Gliomas are the most common primary malignant tumors of the central nervous system,
and their conventional treatment involves maximal safe surgical resection combined with
radiotherapy and temozolomide chemotherapy; however, this treatment does not meet
the requirements of patients in terms of survival and quality of life. Graphene oxide (GO)
has excellent physical and chemical properties and plays an important role in the
treatment of gliomas mainly through four applications, viz. direct killing, drug delivery,
immunotherapy, and phototherapy. This article reviews research on GO nanocarriers in
the treatment of gliomas in recent years and also highlights new ideas for the treatment of
these tumors.
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1 INTRODUCTION

Glioma, originating from neuroectodermal cells, is the most common primary malignant tumor of
the central nervous system and is aggressive and lethal. Gliomas account for 75% of intracranial
primary malignant tumors and have a high morbidity and mortality (1, 2). Glioblastoma
multiforme (GBM) is the most common malignant type, accounting for approximately 57% of
all gliomas (3). At present, the standard treatment for GBM is simultaneous maximal safety surgical
resection and chemoradiotherapy with subsequent adjuvant chemotherapy for 6 months (4). Owing
to the invasive and temozolomide–resistant nature of GBM, the 1-year survival rate of patients with
the disease is approximately 41.4% whereas the 5-year survival rate is less than 5% (5). In recent
years, much progress has been made in the diagnosis and treatment of gliomas (6, 7). The proposal
of molecular pathology allows for a more precise diagnosis, which will enable more effective
therapeutic approaches (8). The optimization of traditional therapy includes easing the intra-
operative delineation and improving spatial and time radio exposure (9, 10). Tumor treating fields
(TTF) is a newly approved therapeutic approach in high-grade gliomas patients, which is both
effective and safe (11). In addition, new therapies such as molecular targeting and immunotherapy
have also accumulated more and more experience, but few achievements can change clinical
practice protocols or outcomes (12–14). Nanocarriers are pharmaceutically–relevant colloidal
systems with sizes in the range of 1–1000 nm. These colloidal systems are capable of treating
tumors through direct action or their ability to as drug delivery systems (15, 16). The applicability of
these nanocarriers in tumor targeting and treatment is accomplished through the following: 1)
loading anti-tumor drugs through their ability to act as drug delivery systems, 2) functional
modification of the drug-loaded nanoparticles by adding targeting ligands, and 3) using specific
physics, chemistry, or biological methods to release the drug in the appropriate amount to exert the
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desired therapeutic effect (17, 18). Graphene oxide (GO)
nanocarriers have the characteristics of easy modification and
good dispersibility and are thus postulated to become a new
nanocarrier-based therapeutic option for the management of
gliomas. Consequently, research on GO and GO nanocarriers
has gradually become a hot topic in recent years (19).
2 OVERVIEW OF GRAPHENE OXIDE
NANOCARRIERS

2.1 Graphene Oxide
Graphene is a 2-dimensional sheet of sp2-hybridized carbon with
a honeycomb-like structure (20). Graphene has a relatively
complete structure, high stability, and weak interaction with
other media, which is not conducive to its use as a drug carrier.
GO and reduced GO (rGO) are derivatives of graphene. The
surfaces of GO and rGO contain a large number of oxygen-
containing functional groups such as carboxyl, epoxy, and
hydroxyl groups, which can be chemically modified as active
sites (21). The existence of a large number of oxygen-containing
groups leads to good water solubility and dispersibility of GO
and rGO (22). The skeleton of GO and rGO is an aromatic ring
with a large specific surface area and abundant functional groups,
which can increase drug loading via p–p interactions and bind
biological macromolecules, such as proteins, nucleotide acid
fragments, and aptamers to facilitate functional modification
and target recognition (22, 23) (Table 1).

2.2 Graphene Oxide Nanocarriers
The tumor cells are growing disorderly and dense, so
conventional drug delivery systems work only on the surface of
the tumor, making it difficult to penetrate deep into the tumor
tissue (44). Molecules and nanomaterials with sizes ranging
between 10 and 100 nm can be retained in tumors because of
the abnormal blood vessels and the defective lymphatic
Frontiers in Oncology | www.frontiersin.org 2
circulation in tumor tissues. This is known as the enhanced
permeability and retention effect (EPR) (45–47). EPR provides
an option to achieve spontaneous accumulation of GO for the
passive delivery of anti-tumor drugs to tumors. However, EPR
provides less than a 2-fold concentration increase in tumor
tissues compared with non-target tissues and organs, and
sometimes the efficiency of EPR is too low to reach the drug
concentrations sufficient for curing cancer (48). There is
difficulty in translating the EPR effect from bench to bedside
because of intra- and inter-tumoral heterogeneity, heterogeneity
in nanoparticle accumulation in the different tumors, and EPR
effects differences between rodent tumors and human tumors
(49–52). The GO nanocarrier system has more advantages than
the traditional anti–tumor drug delivery system, like liposomes.
These include ① good blood compatibility and optimal
dispersibility in the liquid environment of the human body
(53); ② large specific surface area facilitating multi–functional
modification by biomolecules and small molecules, such as
proteins and single–stranded DNA bases (54); ③ single atomic
layer of thickness, and an ultra–high drug loading capacity
compared with other nanomaterials (55); ④ sustained release
and prolonged drug half-life (56); ⑤ relatively good biological
safety and acceptable toxicity (57–61). Various modification
methods have been employed to improve the solubility,
stability, and cytotoxicity of GO, while there is still a need to
further evaluate the biocompatibility and toxicity of GO
nanocarriers into the human body (57, 62).

2.3 Functional Modification of Graphene
Oxide Nanocarriers
Graphene is too stable to react with other materials, which limits
its application as a drug nanocarrier; however, GO can easily be
functionally modified (63, 64). Functional modification of the
structure and properties of GO is an effective way to improve
the utilization of graphene carriers. At present, functional
modification methods for GO are mainly divided into two
TABLE 1 | A brief summary of functional modifications of GO.

Graphene composite Modification material Observations Ref.

GO Arginine-Glycine-Aspartate (RGD) Improving tumor-targeting efficiency (24)
GO Polyethylene glycol (PEG) Improving biocompatibility and drug delivery capacity of GO (25)
GO Transferrin (Tf) Improving tumor-targeting efficiency (26)
GO Monoclonal antibody (mAb) Improving tumor-targeting efficiency (27)
GO Carboxymethyl chitosan (CMC) Improving biocompatibility and drug delivery capacity of GO (28)
GO Folic acid (FA) Improving tumor-targeting efficiency (29, 30)
GO Lactosylated chitosan oligosaccharide (LCO) Improving tumor-targeting efficiency and anti-tumor genes delivery capacity of GO (31)
GO Polyethylenimine (PEI) Improving biocompatibility and drug delivery capacity of GO (32)
GO b-Cyclodextrin (b-CD) Improving photothermal efficiency (33)
GO Iron oxide nanoparticle (IONP) Improving photothermal efficiency and MRI sensitivity (34)
GO Chlorotoxin (CTX) Improving drug delivery capacity of GO (35)
GO Chitosan (CS) Improving biocompatibility and drug delivery capacity of GO (36)
GO Poly N-vinyl caprolactam (PVCL) Improving biocompatibility and drug delivery capacity of GO (37)
GO Hyaluronic acid (HA) Improving tumor-targeting efficiency and drug delivery capacity of GO (38)
GO Pluronic F127 (PF127) Improving biocompatibility of GO (39, 40)
GO Glycyrrhetinic acid (GA) Improving tumor-targeting efficiency (41)
GO Polyetheramine (PEA) Improving biocompatibility and drug delivery capacity of GO (42)
GO Poly (acrylic acid) (PAA) Improving biocompatibility of GO (43)
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types: covalent and non-covalent modifications. Covalent
modification refers to the use of chemical reactions to modify
the oxygen-containing functional groups on the surface of GO.
The application of non-covalent bond modification is ingenious.
It uses p–p conjugation, ionic bonds, and hydrogen bonds to
modify GO. Functional modification can provide new properties
to GO and thus enhance the dissolution of GO in polar solvents
to improve its dispersibility (65).

2.3.1 Covalent Modification of Graphene
Oxide Nanocarriers
The surface of GO contains a large number of active oxygen
groups, such as hydroxyl, carboxyl, and carbonyl groups, which
can chemically react with other groups through covalent bonds
to optimize its performance by forming interactions such as ester
and amide bonds. Marcelo et al. used D–mannose to covalently
modify GO (man–GO) using mannosylated ethylenediamine,
which was found to improve the RBC toxicity and protein corona
formation of GO (66). Covalent modification of GO is important
in therapeutic pathways. Ouyang et al. covalently modified GO
with arginine–glycine–aspartic acid (RGD) and silicon
phthalocyanine (SiPc), which is a fluorescence imaging-guided
photothermal and photodynamic therapy for cancer (67). Chen
et al. further bound GO to anti-HER2 antibodies loaded with
dual-drug DOX and 9-aminoacridine, which increased
cytotoxicity against cancer cells (27). Both RGD and anti-
HER2 antibodies are one of the motifs helping improve active
tumor-targeting properties. FA also acts as a molecular
recognition motif for folate-receptor-positive cancer cells (68).
Zhuang et al. covalently linked pGO-FA to hydrophobic
paclitaxel (PTX) to overcome its water-insoluble, which
exhibited a higher efficiency in killing A2780 cells (69). Xu
et al. covalently modified GO with PEG, forming a high
potential drug delivery system in cancer therapy. PTX was
linked to GO-PEG, exhibiting great water solubility and
cancer-killing efficiency (70, 71). More et al. covalently linked
iron oxide nanoparticles (IONPs) with GO forming GOIOI,
which showed great potential in cancer metastasis (72). The
modification of the GO surface via a covalent route is strong and
not susceptible to the inconsistent external environment, which
makes the GO nanocarriers stable with biological systems in vitro
or in vivo.

2.3.2 Non–Covalent Modification of Graphene
Oxide Nanocarriers
The surface of GO has many charges, which can be functionally
modified by DNA, some small molecule drugs, or small
molecules through non-covalent bonds, such as p–p
conjugation, ionic bonds, and hydrogen bonds, making GO an
ideal nanocarrier for drug delivery. Pan et al. combined 5-FU
with Tau-GO through a non-covalent bonding mechanism to
form 5-FU–Tau-GO, which was reported to continuously release
5-FU in the acidic environment of the tumor, thus prolonging
the duration of action of 5-FU more effectively than 5-FU alone
(73). Wang et al. non-covalently modified GO with PF127 and
doxorubicin (DOX), which exhibited a high loading capacity and
Frontiers in Oncology | www.frontiersin.org 3
better biocompatibility (39). Li et al. established non-covalent
interaction between trastuzumab (TRA) and GO, enhancing
HER2-binding activity to kill osteosarcoma (74). Lin et al.
found that noncovalently combined GO with hypocrellin A
(HA) can be excited by light irradiation and cause tumor cell
death in vitro (75). Li et al. developed an anticancer drug delivery
system by the decoration of GOIOI with doxorubicin and
non-covalent PEGylation, which combined chemotherapy
with phototherapy (34). Wang et al. noncovalently loaded
DOX onto GO-chlorotoxin (CTX), and DOX showed in
pH-dependent sustained-release manner (35). However,
noncovalently modified GO may load fewer aromatic drugs
than covalently modified GO.

2.4 Biocompatibility of Graphene
Oxide Nanocarriers
The potential toxic effect of GO on living cells and organs limits
its use in cancer therapy. Clinical use of GO requires extensive
studies on its potential short- and long-term toxicity in vivo and
in vitro, mainly through cell experiments and animal models to
assess its biosafety. GO is much less toxic than graphene since the
surface of GO is rich in a large number of carboxyl, hydroxyl,
epoxy, and other active functional groups, which induces good
water-solubility and biocompatibility of GO (76, 77). Lu et al.
reported that the relative survival rate of cells was nearly 100%
even with 100mg/L of Go, indicating good biosafety levels of GO
in the cell type tested (78). Several studies have shown that
cytotoxicity of GO can decrease after modification with
biocompatible substances such as PEG, chitosan (79–81). Kai
et al. functionalized graphene with PEG, and PEGylated
graphene showed high tumor uptake in several xenograft
tumor mouse models, which denoted no obvious side effect
(82). Zhuang et al. functionalized GO with PEG, which was
stable in various biological solutions and showed no obvious
increase of apoptosis even at very high concentrations in HCT-
116 cells (83). Sowmya et al. reported that few-layer graphene
didn’t elicit cell death on primary macrophages (84). Marco et al.
investigated the effects of large and small GO on human
peripheral blood mononuclear cells (PBMCs), and there are no
significant differences in human PBMCs viability by the exposure
to both GO types (85). Sayan et al. reported that GO-PEG-DSPE
was meaningfully toxic to U251 but not toxic to normal cells,
and the differences could be due to the specific receptors on
the surface of glioma cells (86). Portioli et al. directly injected
GO in mice brains and assessed the induction of acute
neuroinflammatory and neurotoxic effects locally and distantly
from the injection site one week post-administration (87).
Compared to the liposome group, none of the GO group’s
mice induced either neuroinflammatory or neurotoxic effects,
and only moderate activation of proinflammatory makers was
induced at the molecular level in the GO group. However, GO
nanocarriers have a toxicity hazard depending on the route of
administration, the dose to be administered, the method of
synthesis of GO, and its physicochemical properties, which
needs an in-depth, thorough evaluation in different animal
models (57). Cao et al. reported that GO could be taken into
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human umbilical vein endothelial cells (HUVEC) leading to
cytotoxic effects by activation of endoplasmic reticulum (ER)
stress and pyroptosis genes (58). Inhalation, ingestion, and
dermal are the major routes of entry of GO, and intravenous
GO is distributed mainly in the lungs, liver, and spleen (57). GO
and rGO exhibit potential toxicity in non-target organs in
laboratory mammals, including liver, lung, spleen, kidney, and
reproductive organs, which need further investigation (62).
3 APPLICATION OF GRAPHENE OXIDE
NANOCARRIERS IN THE TREATMENT
OF GLIOMA

3.1 Direct Killing of Graphene Oxide
In their traditional applications and understanding, GO and rGO
are known as excellent drug nanocarriers. Slawomir et al. have
shown that both GO and rGO have a direct killing effect on
gliomas and that rGO has a stronger killing effect through
inducing apoptosis of glioma cells in vitro and in vivo (88, 89).
GO has anti-proliferative and anti-migratory effects in gliomas.
Maciej et al. postulated that the underlying mechanism of
GO is related to its effect on the expression of oxidative
phosphorylation genes in glioblastoma U87 cell line (90). In
addition, Mateusz et al. showed that GO can decrease migration
and invasiveness of gliomas by impairing extracellular adhesion
and regulating adhesion-dependent pathways, such as EGFR/
AKT/mTOR and b-catenin in two glioblastoma cell lines, U87
and U118 (91). Tian et al. showed that GO can retard migration
by direct disruption of actin filaments in vitro, which is a novel
application of GO (92). Xu et al. found that GO may damage the
integrity and function of the cell membrane in vitro and in vivo
by downregulating cytoskeleton-related genes, such as Actg2,
Tubb2a, and Neb (43). In another study, Mateusz et al.
showed that GO can inhibit the angiogenesis and tumor
microenvironment of U87 (p53 wild) but not U118 (p53
mutant) via the NF-kB pathway, indicating that the regulation
of gliomas by GO is related to the status of p53 (93).
Glioblastoma stem-like cells (GSCs) contribute to the self-
renewal and rapid growth of glioblastoma and likely drive the
onset of tumor growth, therapeutic resistance, and tumor
recurrence. Marco et al. reported that GO could induce GSCs
differentiation in vitro by inhibiting several signal transduction
pathways (WNT/b-catenin, Notch, and JAK-STAT) (94). Wang
et al. found that GO induces cell cycle arrest and differentiation
of GSCs by epigenetic regulation of GSCs, thereby inhibiting the
growth of gliomas in vitro and in vivo (95). GO exerts an anti-
glioma effect by anti-proliferation, anti-migration, anti-
angiogenesis, and anti-GSC actions; nonetheless, the exact
mechanisms still require further research. Jaroslaw et al.
revealed that rGO can promote the apoptosis of gliomas
through caspase- and mitochondrion-dependent apoptotic
pathways and has a direct killing effect on gliomas in
glioblastoma U87 cell line (96). In another study, Jaroslaw
found that rGO could reduce the expression of voltage-
Frontiers in Oncology | www.frontiersin.org 4
dependent ion channel genes and extracellular receptors in
U87 cells, and induce the damage of cell membrane and the
changes the of cell membrane potential (97). However, rGO was
shown not to specifically distribute to gliomas and rather
agglomerated after reaching the gliomas, thus affecting its anti-
tumor function. Ewa et al. used arginine (Arg) to modify rGO to
enhance its specific distribution around gliomas and avoid rGO
agglomeration in vivo with GBM tumors cultured on chicken
embryo chorioallantoic membranes. Following the modification,
rGO–Arg was found to block MDM2 expression and upregulate
NQO1 expression, thereby optimizing its effect on gliomas (98).
However, further in vivo experiments are still needed.

3.2 Graphene Oxide Nanocarriers as Drug
Delivery Systems
GO and rGO are the most commonly described drug delivery
nanocarriers having abundant oxygen-containing groups. The
ideal target agent carrier should have four characteristics:
targeting desired cells, controlled drug release, non-toxic to
normal cells, and biodegradable. For intracranial tumors, one of
the common obstacles is delivery of chemotherapy drugs to the
tumor site owing to the presence of the blood–brain barrier (BBB)
(99). GO can penetrate the BBB, and increase drug accumulation
through EPR in gliomas (46, 47, 100–102). Increasing systemic
circulation time of GO with high plasma concentration decreases
reticuloendothelial system (RES) clearance and reduces drug
accumulation in the normal organs to reduce toxicity and to
enhance the EPR effect (103). Carmustine [1,3-bis(2-chloroethyl)-
1-nitrosourea (BCNU)] is a chemotherapeutic drug commonly
used to treat glioma. GO can be modified with polyacrylic acid
(PAA) to improve its aqueous solubility and increase cell
penetration efficacy. Lu et al. found that PAA–GO covalently
combined with BCNU significantly prolonged the half–life of
BCNU and effectively increased the intracellular drug
concentration, thereby enhancing apoptosis of glioma cells in
vitro (104). Wang et al. used PF127 to modify GO to enhance its
water solubility and obtained PF127–GO–DOX, which
significantly enhanced the tumor growth inhibition of glioma
compared with pure DOX in glioblastoma U251 cell line (39).
Lucanthone (Luc), APE-1 (Apurinic endonuclease-1) inhibitor,
can reverse the glioma cell resistance to radiation and
chemotherapy in vivo and in vitro (105–107). Sayan et al.
coated GO with DSPE-PEG to load Luc, which significantly
induced the cell death in glioblastoma U251 cell line (86).
Modified GO can produce several killing effects against tumors,
and the most common combination is chemo-photothermal
therapy. Wang et al. designed a multifunctional platform based
on GO, and the platform combined chemo-photothermal
therapy, MRI targeting, and glioma targeting together, which
provided a perspective way for glioma therapy in vitro and in vivo
(108). Yang et al. modified GO with PEG and EGFR antibody to
carry epirubicin (EPI), which significantly prolonged the survival
of mice with glioma, and the treatment strategy included
chemotherapy and photothermal therapy (109). Nucleolin is
one of the major nuclear proteins, but it is overexpressed on
the membranes of glioma cells and vascular endothelial cells,
January 2022 | Volume 12 | Article 736177
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which makes it a promising target (110–113). AS1411 is a DNA
aptamer rich in guanine, which can specifically bind to Nucleolin,
and has good tumor targeting to anti-glioma (114). Du et al.
coated GO with AS1411 to load B3, a berberine derivative, and
proved the nanocarrier a promising treatment for tumors (115).

GO can also achieve targeted therapy of tumors through
appropriate modification, including molecular targeting, external
magnetic field targeting, and other targeting forms. Lactoferrin
(Lf) is an iron-transporting serum glycoprotein that binds to
receptors overexpressed on the surface of glioma cells and
vascular endothelial cells of the BBB. Song et al. established the
GO–Fe3O4–DOX delivery system and systematically evaluated
its anti-glioma effect. The system was reported to prolong the
action of DOX and increase uptake of the molecule by glioma
cells, which displayed stronger cytotoxicity against C6 glioma
cells (116). Angiopep-2 (ANG-2), a polypeptide and a specific
ligand for the low-density lipoprotein receptor-related protein-1
(LRP-1), has a strong ability to pass through the BBB and has a
high transcytosis capacity; it can act as a target to increase the
ability to deliver drugs to the brain (117). Zhao et al. modified
GO with ANG-2 and then attached DOX to the carrier system.
The resulting nanocarriers more significantly enhanced tumor
growth inhibition than DOX or DOX–GO both in vitro and in
vivo (118). The glioma cell line U87–MG with high expression
levels of EGFR on the surface is an optimized model for targeting
by cetuximab (CET), an EGFR antibody. Lu et al. attached
irinotecan (CPT-11) onto GO–CET and then added chitosan-
g-poly(N-isopropylacrylamide) (CPN), a thermosensitive gel,
and subsequently entrapped stomatin-like protein 2 (SLP2)
short hairpin RNA (shRNA). The final GO–CET–CPT11–
shRNA–CPN nanocarrier system targeted gliomas with a high
expression level of EGFR, formed a hydrogel in the tumor area,
prolonged the duration of action of CPT11, and induced cells
apoptosis both in vitro and in vivo (119). This system was found
to perform dual functions in chemotherapy and gene therapy,
thus broadening the treatment options of glioma. The glioma
surface is rich in folic acid (FA) receptors. Therefore, Wang et al.
added FA and TMZ to GO and the system showed a pH-
dependent response as well as sustained release properties after
reaching the glioma area, effectively reducing the drug dose and
prolonging its duration of action in vitro (120). Transferrin (Tf)-
mediated transport has been proven to cross the blood-brain
barrier, which makes Tf a potential molecular therapeutic target
in the treatment in the treatment of glioma (121). In addition, Tf
receptors are overexpressed on the surface of glioma cells (122).
Hence, Liu et al. used Tf as a target functional group and DOX
as a chemotherapeutic drug to construct a new type of glioma-
targeted Tf–PEG–GO–DOX nanocarrier delivery system. In vivo
experiments showed that the Tf–PEG–GO–DOX system
effectively increased the intratumoral concentration of DOX
and significantly prolonged the survival period of tumor-
bearing rats, indicating that the system could effectively
improve the efficacy of glioma treatment (123). CTX, a peptide
of scorpion venom, has high selectivity for gliomas by binding
to matrix metalloproteinase-2 (124). Consequently, Wang
et al. modified GO with CTX and loaded DOX to form
Frontiers in Oncology | www.frontiersin.org 5
CTX–GO–DOX nanocarriers, which significantly increased the
concentration of DOX in the tumor cells and ultimately
enhanced the killing effect of the drug against C6 glioma cells
in vitro (35). CTX–GO is, therefore, a promising drug delivery
system for the targeting of gliomas. GO–Fe3O4 can be used for
targeted delivery through a magnetic field; it can release the
loaded drug in this field to induce the desired therapeutic effect.
Wang et al. used GO–Fe3O4 to load TMZ and yielded the GO–
Fe3O4–TMZ system, which was controlled by an external
magnetic field and had a strong drug-loading capacity for
TMZ with a strong killing effect on C6 glioma cells in vitro
(125). External magnetic field targeting with GO can play a role
not only in targeted drug delivery but also in auxiliary imaging.
Sakine et al. modified GO with superparamagnetic iron oxide
nanoparticles (SPION) and poly(lactic-co-glycolic acid) (PLGA)
and then attached the radiosensitizing drug IUdR on it to form
IUdR–GO–SPION–PLGA. The latter system was enriched in
gliomas with the use of an external magnetic field during in vivo
experiments and reported to significantly strengthen the
apoptosis-inducing effect of IUdR during glioma radiotherapy
when monitored under MRI (126, 127). This system can increase
the therapeutic effect of IUdR, effectively reduce its dosage, and
in turn reduce its toxicity to healthy biological tissues. There
are a variety of other modified groups that are used to target
gliomas, and the effectiveness of these groups is worthy of
further exploration.

3.3 Immunotherapy of Graphene
Oxide Nanocarriers
Tumor immunotherapy is mainly based on the relationship
between the immune function of the body and the status of
tumors, and it is important to find optimized intervention
measures to regulate the body’s immune response to tumors to
achieve anti-tumor effects (128). Dendritic cells (DCs) are the most
important antigen-presenting cells known in current research to
date. Under normal circumstances, there are very small amounts of
DCs in the human body. Only once DCs can normally perform the
antigen-presenting function can the body effectively recognize the
pathogen, induce an immune response, and produce a normal
immune response (129). DCs in cancer patients are defective and
cannot present tumor antigens properly. Reactivating DCs to
initiate anti-tumor immune responses has become an important
hot spot in tumor immunotherapy in recent years. For central
nervous system tumors, activated DCs can simultaneously promote
the infiltration of lymphocytes in the tumormicroenvironment and
monitor the entire central nervous system accurately and
specifically (130). GO excels in loading and delivering antigen
(Ag). Wang et al. used the glioma peptide Ag from T98G, a human
glioma cell line, to modify GO. GO–Ag has been reported to
activate DCs in vitro, effectively inducing a specific anti-glioma
immune response, promoting the arrival of lymphocytes and
significantly upregulating the secretion of interferon-g (IFN-g)
(131). GO–Ag provides a new idea for glioma immunotherapy; it
is, therefore, important to find a safe form of Ag and also a safe
form of the composite GO-Ag for use in clinical settings. Lu et al.
developed Fe3O4 nanoparticles (FNPs)-rGO-PEG for used for
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Wang et al. Anti-Gliomas Effects of GO
MRI-guided photothermal-immunotherapy, which could activate
DCs after laser irradiation in vivo (132). Indoleamine-2,3-
dioxygenase (IDO) is an immunosuppressive enzyme capable of
inhibiting T cells, and IDO inhibitors (IDOi) boost the efficiency of
immune-based cancer therapies (133). Yang et al. established PEG-
rGO-FA-IDOi, which could directly kill tumor cells under laser
irradiation and active antitumor immune response in vivo (134).

3.4 Phototherapy of Graphene
Oxide Nanocarriers
Phototherapy includes photothermal therapy (PTT) and
photodynamic therapy (PDT). Photothermal therapy refers to
injecting materials with strong light–to–heat conversion
properties into the human body, targeting them to the tumor
tissues, and irradiating them with a light source to kill tumor cells
by converting light energy into heat (135, 136). GO is a potential
photosensitizer. It can convert light energy into heat energy under
808 nm near-infrared laser irradiation, with most biological
systems not being sensitive to light in this region. Therefore, the
use of GO for photothermal treatment can kill tumor cells
contactless and non-invasive. Furthermore, it is non-invasive
and safer than conventional treatment methods such as surgery,
chemotherapy, and radiotherapy (137, 138). Samira et al. found
that IUdR–GO–SPION–PLGA has radiosensitizing and
photothermal treatment effects on gliomas in the near–infrared
(NIR)region, significantly increasing the glioma killing effect of
IUdR in vitro (139). Li et al. coupled the targeting molecule Tf on
the surface of GO to prepare functionalized GO–Tf–FITC
microparticles, which were irradiated with infrared rays at 808
nm. Flow cytometry detected the killing effect on glioma U251
cells with GO–Tf–FITC, with the apoptosis and death indices of
the GO–Tf–FITC group being significantly higher than those of
the GO–FITC and blank control groups. Furthermore,
functionalized GO–Tf–FITC were found to have a significant
targeted photothermal killing effect on glioma U251 cells when
viewed using fluorescence imaging following fluorescence labeling
(140). Dong et al. further established GO–PEG–Tf as a drug
nanocarrier and loaded it with DOX to perform dual functions in
chemotherapy and photothermal therapy. The system showed a
great killing effect on gliomas in in vivo and in vitro experiments
(141). Omid et al. transformed rGO into reduced graphene oxide
nanomeshs (rGONMs) using TiO2, and then used RGD tomodify
GO targeting of U87–MG to establish rGONM–PEG–Cy7–RGD
(142). Owing to the strong NIR absorption ability of rGONMs,
this system can significantly improve the absorption capacity of
NIR, which enhances the photothermal therapy ability on
gliomas. Joshua et al. also established a similar model and
further proved that the system is efficient and could be used for
effective photothermal therapy using a mouse glioma model with
low-dose GO at a low laser power (143). The improvement of
photothermal therapy capabilities with GO is also an important
direction for future research.

Photodynamic therapy uses photo-biochemical processes to
convert light energy into free radicals, which then play a role in
inducing programmed cell death (136). U87–MG has been
reported to cause an overexpression of integrin avb3 protein
receptors (144). Pyropheophorbide-alpha (PPa) is a promising
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second-generation photosensitizer (145). Wei et al. prepared a
GO carrier, PPa–GO–mAb, coupled with an integrin avb3
monoclonal antibody as the targeting ligand. The experimental
results showed that this nanocarrier system could actively target
U87–MG, through gathering around the mitochondria of glioma
cells and producing free radicals to exert a killing effect under
near–infrared laser irradiation. A CCK8 cytotoxicity test
confirmed that the nanocarriers could effectively kill U87–MG
cells, and the killing effect was concentration–dependent
(146) (Table 2).
TABLE 2 | A brief summary of GO in glioma therapeutic conditions.

Type of application Graphene complex Ref.

Direct Killing GO (94)
GO/rGO (88)
rGO (89)
GO (90)
GO (91)
GO (93)
GO (95)
rGO (96)
rGO (97)
rGO-Arg (98)

Drug Delivery GO-g-Fe2O3-CisPt (147)
Tf–PEG–GO–DOX (123)
GO-Fe3O4-Lf-DOX (116)
GO-PEG-DSPE-Luc (86)
GO-Gd-Let-7g-EPI (148)
PF127-GO-DOX (39)
PAA-GO-BCNU (104)
ANG-DOX-GO (118)
CPN-GO-CET/CPT11-shRNA (119)
GO-FA-TMZ (120)
GO-Fe₃O₄-TMZ (125)

Immunotherapy GO-Ag (131)
FNPs-rGO-PEG (132)
PEG-rGO-FA-IDOi (134)

Phototherapy rGO-PEG-RGD (143)
rGONM-PEG-Cy7-RGD (142)
GO-porphyrin-RGD (149)
PPa-GO-mAb (146)
IUdR–GO–SPION–PLGA (139)
GO-Tf-FITC (140)

Drug Delivery and phototherapy rGO-BSA-DOX (138)
rGO-AuNRVe-DOX (150)
MGMSPI-PEG-IP-DOX-Fe3O4 (108)
PEG-NGO-C225/EPI (109)
AS1411-GO/B3 (115)
GO–PEG–Tf-DOX (141)
Ja
nuary 2022 | Volume 12 | Article 7
GO, Graphene oxide; rGO, reduced Graphene oxide; Arg, arginine; CisPt, Cisplatin; Tf,
Transferrin; PEG, Polyethylene glycol; DOX, doxorubicin; Lf, Lactoferrin; DSPE, 1,2-
Distearoyl-sn-glycero-3-phosphoethanolamine; Luc, Lucanthone; Gd, gadolinium; EPI,
epirubicin; PF127, Pluronic F127; PAA, polyacrylic acid; BCNU, 1,3-bis(2-chloroethyl)-1-
nitrosourea; ANG, Angiopep; CPN, chitosan-g-poly(N-isopropylacrylamide); CET,
cetuximab; CPT11, irinotecan; shRNA, short hairpin RNA; FA, Folic acid; TMZ,
Temozolomide; Ag, antigen; FNP Fe3O4, nanoparticle; IDOi, indoleamine-2,3-
dioxygenase inhibitor; RGD, arginine–glycine–aspartic acid; rGONM, reduced graphene
oxide nanomesh; Cy7, cyanine 7; PPa, Pyropheophorbide-alpha; mAb, monoclonal
antibody; IUdR, 5-iodo-2-deoxyuridine; SPION superparamagnetic iron oxide
nanoparticle; PLGA, poly(lactic-co-glycolic acid); FITC, Fluorescein isothiocyanate; BSA,
bovine serum albumin; AuNRVe, ultrasmall plasmonic gold nanorod vesicle; MGMSPI,
magnetic graphene-mesoporous silica; IP, interleukin-13-based peptide; NGO,
nanographene oxide, C225, cetuximab.
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4 CONCLUSIONS AND PERSPECTIVES

In general, GO nanocarriers are widely studied in the treatment of
gliomas because of their excellent physical and chemical properties
and have shown broad application prospects in medicine, such as
in chemotherapy, immunotherapy, and phototherapy (151, 152).
Modified GO nanocarriers have shown long drug action time,
good efficacy, low toxic and side effects, high drug loading,
acceptable biosafety, easy to achieve controlled release of drugs,
and low price, which make them promising drug carriers for
clinical applications. Zhu et al. injected docetaxel-GO-CS gel into
tumor tissues of mice in vivo, which gained a significantly longer
drug action time (153). Pei et al. confirmed that pGO-Pt-DOX
presented more therapeutic efficacy and less systemic toxicity than
free drugs in vitro and in vivo studies (154). Islami et al. achieved
controlled release of quercetin (Qu) with Qu-hyperbranched
polyglycerol (HPG)-GO, and Qu-HPG-GO revealed significant
improvement in drug loading (155). After further exploration, the
potential of GO nanocarriers in the clinical applications of gliomas
will be limitless.

At present, the use of GO as a nanocarrier is still in the
preliminary stages of research; there are still many problems to be
solved, such as the effectiveness and safety of functionally
modified GO nanocarriers in the body and their distribution in
tumor tissues. GO is more water-soluble than graphene, but it
tends to aggregate under physiological conditions, even leading
death to mice (156). The modification GO surface can
purposefully change its physical and chemical properties and
biocompatibility to improve the drug carrier efficiency (53).
Covalent modification of GO often requires multi-step chemical
reactions, which may affect the activity of biomolecules, while
non-covalent modification can avoid this deficiency, which is only
limited to chemical or biological molecules with a specific
structure (157). There is still room for improvement in the
preparation and modification of GOs, which is worthy of
further optimization research. The relationship between GO
functionalization and biological system and the mechanism of
biological clearance is yet to be completely understood. Key
theories for controlling drug release of GO nanocarrier are still
immature. The current GO nanocarriers are mainly used for drug
loading via non-covalent interactions, which makes the drug
loading amount unstable, and the drug loading stability of the
GO nanocarriers is even more debatable (158). GO could
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passively accumulate to glioma tissue due to the EPR effect (24).
Besides passive targeting such as EPR, practicing active targeting
will improve clinical practicability. Hence, its targeting still needs
to be improved and optimized. In addition, multifunctional and
multi–target modifications of GO nanocarriers to improve the
specificity of targeting gliomas and prolonging the retention time
in tumors should also be the focus of future research, such
as a combination of chemotherapy, immunotherapy, and
phototherapy (152). After the release of loaded drugs, the
elimination of GO in the body is also an issue that must be
paid attention to in cancer therapy (159). GO is mainly used to
load small molecule drugs, but not biomacromolecules such as
DNA and protein, and a number of studies on GO are carried out
in vitro for the potentially harmful effects, lacking in vivo
experimental data (119, 160). At present, many studies of GO
nanocarriers focus on classical chemotherapy drugs, anti-tumor
traditional Chinese medicine components, and gene drugs.
Further research is needed to improve the diversity of loaded
substances and explore in vivo processes (161). In conclusion,
there are still many problems in the study of GO, which requires
scientific research teams to strengthen disciplinary integration
and jointly solve the difficulties.
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