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In recent years, accumulating evidence has indicated the importance of gut microbiota

in maintaining human health. Gut dysbiosis is associated with the pathogenesis of a

number of metabolic diseases including obesity, type 2 diabetes mellitus (T2DM), non-

alcoholic fatty liver disease (NAFLD), and cardiovascular diseases (CVDs). Indeed, CVD

has become the leading cause of death worldwide, especially in developed countries. In

this review, we mainly discuss the gut microbiota-involved mechanisms of CVD focusing

on atherosclerosis and hypertension, two major risk factors for serious CVD. Then, we

briefly discuss the prospects of gut microbiota-targeted therapeutic strategies for the

treatment of CVD in the future.
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INTRODUCTION

Gut microbiota is the collection of bacteria that inhabit in the gastrointestinal tract producing
a diverse ecosystem about 1014 microorganisms (Kamada et al., 2013). The majority of the
gut microbiota is composed of five phyla, namely Bacteroidetes, Firmicutes, Actinobacteria,
Proteobacteria, and Cerrucomicrobia, in which the relative abundance of Bacteroidetes and
Firmicutes phyla is >90% (Qin et al., 2010). The homeostasis of gut microbiota is critical for
maintaining human health (Hansen et al., 2015; Kamo et al., 2017; Tang et al., 2017), with gut
dysbiosis contributing to the development of various diseases including cardiovascular disease
(CVD; Wang et al., 2011; Emoto et al., 2017), obesity (Ley et al., 2006; Henao-Mejia et al., 2012),
type 2 diabetes mellitus (T2DM; Cani et al., 2008; Khan et al., 2014; Pedersen et al., 2016), non-
alcoholic fatty liver disease (NAFLD; Mouzaki et al., 2013; Zhu et al., 2013), and even some types
of cancer (Gopalakrishnan et al., 2018; Tilg et al., 2018).

Cardiovascular disease is the leading cause of death worldwide, especially in developed
countries, and encompasses multiple disorders including atherosclerosis, hypertension, stroke, and
heart failure (Mozaffarian et al., 2016). Although genetic contributions are intimately involved,
other factors such as nutrition and gut microbiota have also been implicated as the main risk
factors for developing CVD.Wang et al. (2011) reported the gut microbiota-dependent mechanism
of CVD, highlighting the intricate relationship between gut microbiota and CVD. Recently,
gut dysbiosis has been recognized as an important factor contributing to the development of
atherosclerosis and hypertension, two major risk factors for CVD (Lau et al., 2017). Consequently,
gut microbiota-targeted therapy is a promising strategy to treat CVD (Koopen et al., 2016;
Anbazhagan et al., 2017; Santisteban et al., 2017).

In this review, we extensively retrieved the publications on the topics of gutmicrobiota andCVD
mainly published within the past 10 years through PubMed. We discuss the roles of gut microbiota
implicated in the development of CVD, especially focusing on atherosclerosis and hypertension,
and briefly summarize the recent advances of gut microbiota-targeted therapies for CVD.
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GUT MICROBIOTA AND
ATHEROSCLEROSIS

Atherosclerosis is the major risk factor for CVD, which is
characterized by accumulation of cholesterol and recruitment of
macrophages into artery walls, contributing to the formation of
atherosclerotic plaques (Gui et al., 2012). Interestingly, recent
studies have suggested that gut dysbiosis can also contribute to
the development of atherosclerosis (Drosos et al., 2015; Gregory
et al., 2015; Jie et al., 2017). Using shotgun sequencing of
the gut metagenome in patients with or without symptomatic
atherosclerosis, scientists found that the relative abundance of
Roseburia and Eubacterium was lower, while Collinsella was
higher in atherosclerosis patients compared to healthy controls
(Karlsson et al., 2012). In addition, Akkermansia muciniphila
was found to improve gut barrier functions and exert protective
effects against atherosclerosis (Li et al., 2016). Although meta-
analysis showed no significant benefit in coronary artery
disease patients treated with antibiotics (Andraws et al., 2005),
nevertheless, evidence is accumulating which indicates that gut
microbiota play a causative role in atherosclerotic by modulating
inflammation and the production of microbial metabolites
(Kasahara et al., 2017).

Gut Dysbiosis and Inflammation in
Atherosclerosis
Inflammation is commonly involved in a number of diseases
(Xu et al., 2003; Ding et al., 2010), including atherosclerosis,
which is a classical chronic inflammatory disease (Gui et al.,
2012). Gut epithelium is the first barrier of the host, which
protects against the invasion of pathogens (Desai et al., 2016).
Given its critical role in preventing the translocation of intestinal
content, mainly bacterial components, the integrity of the gut
barrier is essential for maintaining the health of the host.
Intestinal permeability is associated with reduced expression of
tight junction proteins, including zonula occludens-1 (ZO-1),
claudin-1, and occludin, and an imbalance between intestinal
epithelial cell death and regeneration (Wang H. et al., 2014;
Chen W.Y. et al., 2017). If the intestinal epithelial barrier is
impaired, the invasion of pathogen associated molecular patterns
(PAMPs) drives an immune response and results in systemic and
tissue-specific inflammation. Accordingly, impairments to the
gut barrier integrity induced by gut dysbiosis have been suggested
as risk factor for chronic inflammation in various diseases. It
is noteworthy that lipopolysaccharide (LPS) and peptidoglycan
are microbial components that are recognized as risk factors
for CVD.

Lipopolysaccharide is a cell wall component of Gram-negative
[G(–)] bacteria, which has been extensively studied as it is
one of the PAMPs involved in CVD risk. The association
between LPS and CVD was first proposed in 1999 by measuring
plasma endotoxin levels in the clinic (Wiedermann et al.,
1999). Subsequently, the relationship was gradually confirmed
by multiple experiments by different research groups (Niebauer
et al., 1999; Stoll et al., 2004; Miller et al., 2009; Mitra et al.,
2015). For example, in one study, it was concluded that the

level of circulating endotoxemia was most notable in patients
with the highest CVD burden (McIntyre et al., 2011). Cani et al.
(2007) found that gut dysbiosis suppressed the expression of tight
junction proteins, leading to an increase in intestinal permeability
and subsequently the translocation of LPS into the blood (Harris
et al., 2012). Gut dysbiosis-derived LPS may play important
roles by modulation of Toll-like receptors (TLRs) and their
downstream targets (Libby, 2002; Chacon et al., 2017). As part
of the pattern-recognition receptors family, TLRs can recognize
bacterial products and modulate the host immune system (Akira
and Takeda, 2004; Akira et al., 2006). Circulating LPS can bind
to cell-surface-receptor complexes composed of TLR4 and its co-
receptors cluster of differentiation 14 (CD14; Neves et al., 2013).
Using TLR4 and LDL receptors double knockout mice, Ding
et al. (2012) found that a TLR4 deficiency reduced atherosclerosis
without effect on inflammation (Ding et al., 2012). Consistently,
clinical investigations have revealed that upregulation of
TLRs was associated with inflammatory activation in human
atherosclerosis, and promoted the development of atherosclerosis
(Xu et al., 2001; Edfeldt et al., 2002). However, a meta-analysis
in 2012 indicated that Asp299Gly, a TLR4 polymorphism, did
not play an obvious role in the development of atherosclerosis
(Zhang et al., 2012). Moreover, the binding of LPS to TLR4
activated its downstream pathways including MYD88 and
nuclear factor kappa B (NF-κB), contributing to the increased
production of pro-inflammatory cytokines such as IL-6, IL-
1, IL-27, and tumor necrosis factor-alpha (TNF-α), leading
to an increased risk of developing CVD (Barton and Kagan,
2009; Guzzo et al., 2012). Bjorkbacka et al. (2004) showed that
a deficiency of MyD88 reduced atherosclerosis by decreasing
macrophage recruitment (Bjorkbacka et al., 2004). The main
interactions between gutmicrobiota and inflammation are shown
schematically in Figure 1.

In addition, another bacterial PAMP, peptidoglycan (PG),
was also found to be associated with CVD risk by impairing the
intestinal epithelial barrier. PG is a minor cell wall component
of [G(–)] bacteria; however, it is also a major component of
Gram-positive [G(+)] bacteria. Using metagenomic sequencing,
scientists found that patients with atherosclerosis had enrichment
of genes that encoded PG synthesis (Karlsson et al., 2012). Indeed,
pro-inflammatory bacterial PG was observed in atherosclerotic
arteries and associated with vulnerable plaques (Laman et al.,
2002). Through PG recognition, the nucleotide-binding
oligomerization domain (NOD) proteins NOD1 and NOD2
promote intracellular bacteria clearance through a program
involving NF-κB and mitogen-activated protein kinase (MAPK)
signaling pathways (Philpott et al., 2014). Studies in Nod2-
deficient mice revealed that NOD2 was a critical regulator
of intestinal bacterial immunity and helps to maintain the
integrity of the gut barrier (Kobayashi et al., 2005). In recent
years, scientists have investigated the potential role of NOD1 in
atherosclerosis using Nod1 knockout mice. Data showed that
knockout of apolipoprotein E and Nod1 in mice significantly
reduced the development of atherosclerotic lesions (Kanno
et al., 2015). Additionally, there are other PAMPs that can
promote inflammatory processes through the engagement
of host pattern recognition receptors (PRRs), such as CpG
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FIGURE 1 | Gut microbiota and LPS-induced inflammation in atherosclerosis. LPS, lipopolysaccharides; ZO-1/occludin, two tight junction proteins; CD14, the

monocyte differentiation antigen; TLR4, Toll-like receptor 4; LXR, liver X receptor; MyD88, myeloid differentiation primary response gene 88; NF-κB, nuclear factor

kappa B; IL, interleukin; TNF-α, tumor necrosis factor-alpha; PG, peptidoglycan; NODs, nucleotide-binding oligomerization domain proteins.

oligodeoxynucleotides flagellin, lipopeptides, and so on (Kholy
et al., 2015). Collectively, all of the evidence suggests that
functional changes in the gut microbiota might be involved in
the atherosclerosis risk. Although the vast majority of studies
revealed that pathogenic bacteria contributed to atherosclerosis
pathogenesis, two antibiotic trials reported controversial benefits
of antibiotic therapy in CVD (Caligiuri et al., 2001; Munford,
2016).

Gut Microbial Metabolites in
Atherosclerosis
In addition to gut dysbiosis-related inflammation, increasing
evidence has revealed that gut microbiota-derived metabolites
play essential roles in the development of CVD (Brown and
Hazen, 2015; Bergeron et al., 2016). A variety of metabolites are
derived from the gut microbiota, as well as co-metabolism of
gut microbiota such as amines methylamines, polyamines, short-
chain fatty acids (SCFAs), trimethylamine N-oxide (TMAO),
and secondary bile acids (BAs). SCFAs are a group of well-
established gut microbial metabolites that are critically involved
in metabolic diseases (Li et al., 2017). Recent advances detailing
their involvement in atherosclerosis in both human and animal
models have been extensively reviewed (Brown andHazen, 2018).
Therefore, in the current review, we mainly focused on the roles
of TMAO and secondary BAs in atherosclerosis.

TMAO and Atherosclerosis
Dietary phosphatidylcholine or L-carnitine is metabolized by
gut microbiota into trimethylamine (TMA) in the intestine

(Brown and Hazen, 2015). It is a precursor of TMAO, which
is transported to liver and oxidized by flavin monooxygenase
3 (FMO3), one member of the hepatic FMO enzymes
family, leading to the production of TMAO (Wang Z.
et al., 2014). Hepatic knockdown of FMO3 in mice using
an antisense oligonucleotide decreased circulating TMAO
levels and attenuated atherosclerosis through stimulating basal
metabolism and activating macrophage reverse cholesterol
transport (RCT; Miao et al., 2015; Shih et al., 2015; Warrier
et al., 2015). It was also found that plasma levels of
gut microbial dietary phosphatidylcholine metabolites and
TMAO that produced related molecules (L-carnitine and
γ-butyrobetaine) were associated with the risk of CVD (Koeth
et al., 2014; Chen K. et al., 2017; Guasch-Ferre et al., 2017). The
higher level of plasma TMAOwas correlated with atherosclerosis
formation and the extent of the atherosclerotic plaque area
(Wang et al., 2011). Consistently, a prospective and observational
clinical study on patients with or without chronic heart failure
has shown that plasma levels of TMAOwere positively correlated
with the risk of chronic heart failure (Troseid et al., 2015). These
findings suggest that circulating levels of TMAO are important
risk factors for the pathogenesis of CVD.

Given the roles of TMAO in the pathogenesis of CVD,
the underlying mechanisms have been extensively investigated.
To explore potential mechanisms by which TMAO might
promote atherosclerosis, a dietary choline supplement was
administered to ApoE−/− mice, in which the expression of
CD36 and steroid receptor RNA activator 1 (SR-A1), two
macrophage scavenger receptors implicated in atherosclerosis,
was measured. The results revealed elevated levels of CD36 and
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SR-A1 in the macrophages of TMAO-treated mice compared
to normal controls, and antibiotic intervention reduced the
formation of foam cells by decreasing TMA production (Wang
et al., 2011). However, no significant impact of TMAO on
foam cell formation was observed in mouse macrophages. In
contrast, TMAO can lead to atherosclerosis by suppressing
RCT and modulating the activity of cholesterol transporters
in macrophages (Koeth et al., 2013). In addition, TMAO
administration could suppress levels of liver BA synthetase
(Cyp7a1 and Cyp27a1) and BA transporters (Oatp1, Oatp4,
Mrp2, and Ntcp), leading to a disorder of BA-related pathways
and atherosclerosis (Koeth et al., 2013), suggesting that the
atherosclerotic promoting effect of TMAO is also associated
with the variation in BA metabolism. Farnesoid X receptor
(FXR) is an important nuclear receptor that controls BA
metabolism, which can also regulate the expression of hepatic
FMO3, resulting in an alteration in TMAO production (Bennett
et al., 2013). An FXR agonist inhibited the expression of
CYP7A1 and CYP8B1 in ApoE−/− mice and protected
mice against atherosclerosis (Mencarelli et al., 2009; Bennett
et al., 2013; Miyazaki-Anzai et al., 2014; Miao et al., 2015).
Recently, Ma et al. (2017) found that TMAO upregulated the
expression of vascular cell adhesion molecule-1 (VCAM-1) and
activated protein kinase C (PKC) and NF-κB, highlighting
that TMAO may speed up the development of atherosclerosis
by inducing endothelial cell dysfunction and by increasing
monocyte adhesion. Additionally, the direct exposure of platelets
to TMAO increased stimulus-dependent platelet activation by
elevating Ca2+ release from intracellular stores, contributing to
the increased risks of thrombosis and plaque instability (Zhu
et al., 2016). Generally, TMAO accelerates the development
of atherosclerosis by promoting cholesterol influx, inhibiting
cholesterol efflux, blocking the BA pathway, and/or causing
excessive activation of platelets. All of these findings confirmed
TMAO as a biomarker for CVD risk and a promoter of
atherosclerotic diseases (Senthong et al., 2016a,b; Zheng et al.,
2016). TMAO is regarded as one of the most promising
metabolites that may not only be an independent risk factor
for CVD, but also a potential therapeutic target for CVD on
the basis of a large amount of experimental and clinical data.
However, inconsistent results were also observed, especially in
large population observations (Dalmeijer et al., 2008; Nagata
et al., 2015; Meyer et al., 2016). Choline is generally regarded
as a dietary source of TMAO; however, in a cohort study,
there was no clear evidence of significant associations between
choline intake and the risk of developing CVD (Nagata et al.,
2015). Likewise, in ApoE(−/−)mice, L-carnitine administration
resulted in a significant increase in circulating TMAO levels,
which surprisingly was inversely correlated with aortic lesion
size(Collins et al., 2016). Unfortunately, several large population
studies conducted by different countries have demonstrated that
dietary choline and betaine intake was not associated with the
pathogenesis of CVD (Bidulescu et al., 2007; Dalmeijer et al.,
2008). Consequently, more studies are needed to confirm the
exact roles of TMAO in atherosclerosis, as well as the validation of
its therapeutic potential by targeting TMAO-producing bacteria
or enzymes.

Bile Acids and Atherosclerosis
Bile acids are another group of gut microbiota-derived
metabolites involved in various metabolic diseases (Kuipers
et al., 2014; Parseus et al., 2017), which are stored in the
gallbladder and released into the intestine to facilitate the
absorption of dietary lipids and fat-soluble vitamins. Primary
BAs are synthesized from cholesterol in the liver and mainly
include cholic acid (CA) and chenodeoxycholic acid (CDCA).
Primary BAs are usually metabolized into secondary BAs
including deoxycholic acid (DCA) and lithocholic acid (LCA),
hyodeoxycholic acid, and ursodeoxycholic acid through gut
microbiota-derived enzymes (Midtvedt, 1974; Russell, 2003).
Previous studies reported that germ-free mice had higher
levels of primary BAs, but non-detectable secondary BAs in
the enterohepatic system (Sayin et al., 2013). It was found
that suppression of hepatic BA biosynthesis could inhibit the
HFD-induced gut microbiome alterations, which highlights the
liver–BA–gut microbiome metabolic axis (Zheng et al., 2017).
Thus, there is a bidirectional relationship between gut microbiota
and BA metabolism (Jones et al., 2014).

Bile acids are also important signaling molecules that
modulate host metabolism and energy expenditure processes
(Dawson andKarpen, 2015; Joyce andGahan, 2017). Bile salts can
be diversified into biologically active species by gut microbiota
that can survive in the bile salt-rich microenvironment. Gut
microbiota-mediated BA metabolism in CVD has been well
reviewed recently (Brown and Hazen, 2018). Nevertheless, to
date, the role of BAs in CVD development is still poorly
understood so far. It is well recognized that BAs can promote
the development of atherosclerosis mainly through bile-salt
hydrolase (BSH) and BA receptors (Lefebvre et al., 2009; Ridlon
et al., 2016). The C24 N-acyl bond of glycine-conjugated or
taurine-conjugated bile salts can be hydrolyzed into free BAs by
BSH (Klaassen and Cui, 2015). In addition to deconjugation,
the BA pool can also be chemically diversified by bacteria-
derived 7α-dehydroxylase and 7β-dehydroxylase. The produced
secondary BAs enter the portal circulation to function as
signaling molecules with profound effects on host physiology
and pathology (Lepercq et al., 2004). Bacteria-mediated BSH
activity can affect the processes underlying the pathogenesis of
atherosclerosis by increasing cholesterol accumulation, foam cell
formation, and the size of the atherosclerotic plaque (Hansson
et al., 2006). BSH is present in a wide range of bacteria such as
Methanobrevibacter smithii, Clostridium, Enterococcus, and so on
(Jones et al., 2012a; Tremaroli and Backhed, 2012).

In addition to BA itself, BA receptors are indispensable
in mediating their biological functions. Farnesoid X-activated
receptor (FXR) is one of the most important and well-studied
BA receptors that regulates glucose and lipid metabolism by
affecting transcription of genes that are involved in primary
BA synthesis (Makishima et al., 1999; Wahlstrom et al., 2016).
The critical role of FXR in mediating cholesterol metabolism
was elucidated by using FXR−/− mice which have increased
plasma high density lipoprotein (HDL) cholesterol, non-HDL
cholesterol and triglyceride levels compared to wild-type mice
(Lambert et al., 2003). In a previous study, loss of functional FXR
in apolipoprotein E-deficient (ApoE−/−) mice, a mouse model
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of atherosclerosis, resulted in more severe lipid metabolism
defects and enhanced aortic plaque formation (Hanniman et al.,
2005). Furthermore, FXR deficiency can result in a decrease of
plasma low-density lipoprotein cholesterol and CD36 expression
in macrophages, leading to a reduced risk of atherosclerosis
in LDLR knockout (LDLR−/−) mice (Zhang et al., 2006). On
the other hand, research indicates that activation of FXR with
an agonist can protect against atherosclerosis in LDLR−/− and
ApoE−/− mice, which may be associated with suppression of
genes involved in BAs synthesis (Hartman et al., 2009). The G
protein-coupled BA receptor, also known as TGR5, is another
important host BA receptor that is responsive to BAs (Li
and Chiang, 2015). Recent investigations have indicated that
activation of TGR5 can inhibit atherosclerosis formation, an
effect associated with a reduction of macrophage inflammation
and lipid loading (Pols et al., 2011). Moreover, activation of
TGR5 also contributes to enhanced energy expenditure and
improved glycemic control (Watanabe et al., 2006). Pregnane X
receptor (PXR) is another type of nuclear hormone receptor that
regulates the expression of genes involved in the biosynthesis,
transport, and metabolism of BAs, and can also be activated by
secondary BAs such as LCA (Staudinger et al., 2001). Deletion
of PXR attenuates the development of atherosclerosis in PXR
and apoE double knockout (PXR−/− and ApoE−/−) mice, which
may be associated with the reduction of CD36 expression and
lipid uptake in macrophages (Sui et al., 2011). It has been
reported that activation of PXR by a PXR agonist increases the
levels of atherogenic lipoproteins VLDL and LDL, and that PXR
activation accelerates atherosclerosis in ApoE−/− mice (Zhou
et al., 2009). In addition, the vitamin D3 receptor (VDR) is a
sensor for bacteria-induced BA that is much more sensitive to
LCA and its metabolite (3-oxo-LCA) than other nuclear receptors
(Makishima et al., 2002). It has been found that macrophage VDR
signaling attenuates atherosclerosis in mice in part by inhibiting
the local renin-angiotensin system (Szeto et al., 2012). Finally,
sphingosine-1-phosphate receptor 2 (S1PR2) can be activated
by various conjugated BAs and then promotes atherosclerosis
by regulating macrophage retention and inflammatory cytokine
secretion (Studer et al., 2012), whereas S1PR2 knockdown
attenuates atherosclerosis in ApoE−/− mice (Skoura et al., 2011).

In summary, gut microbiota-derived secondary BAs play
important roles in the development of atherosclerosis through
themodulation of various BA receptors such as FXR, PXR, TGR5,
VDR, and S1PR2. This finding highlights the great potential for
novel atherosclerosis therapy by targeting gut microbiota (Levi,
2016). The main mechanisms associated with gut microbiota-
derived metabolites and atherosclerosis is shown schematically in
Figure 2.

GUT MICROBIOTA AND HYPERTENSION

Hypertension is another important risk for CVD that is
induced by both genetic susceptibility and environmental factors
(Townsend et al., 2016). Given the increasing recognition of the
role of gut microbiota in metabolic diseases (Karlsson et al.,
2012; Tremaroli and Backhed, 2012; Jonsson and Backhed, 2017;

Yamashiro et al., 2017), the relationship between gut microbiota
and hypertension has also been evaluated in recent years.
In 1982, it was demonstrated that antibiotic treatment could
produce a higher blood pressure, which implicated the probable
involvement of gut microbiota in regulating blood pressure
(Honour, 1982). In spontaneously hypertensive rats, Yang et al.
(2015) observed a significant decrease in microbial richness and
diversity, and an increase in the ratio of Firmicutes/Bacteroidetes.
In another study, compared with conventionally raised (CONV-
R) mice, GF mice infused with AngII showed attenuation of the
blood pressure increase in response to AngII, indicating that
gut microbiota promotes AngII-induced vascular dysfunction
and hypertension (Karbach et al., 2016). Accordingly, the
gut microbiota is probably involved in the development
of hypertension. Although the relationship and mechanism
underlying gut microbiota and hypertension have not yet been
fully elucidated, the existing evidence has highlighted the critical
roles of SCFAs and oxidized low-density lipoprotein (ox-LDL) in
hypertension.

SCFAs and Hypertension
Short-chain fatty acids (such as acetate, proprionate, and
butyrate), which are derived from dietary fiber (mainly
polysaccharides), play crucial roles in maintaining the
homeostasis of the gut microbiome and host immunity
(El Kaoutari et al., 2013; Canfora et al., 2015; Koh et al.,
2016; Miyamoto et al., 2016). Interestingly, bacteria that
metabolize polysaccharides into different types of SCFAs are
specific (Rey et al., 2010). For instance, the major acetate-
producing bacteria are Streptococcus spp., Prevotella spp.,
Bifidobacterium spp., Clostridiums pp., A. muciniphila, and so
on (Rey et al., 2010). Propionate is generated from carbohydrate
fermentation by Bacteroides spp., Salmonella spp., Dialister
spp., Veillonella spp., Roseburia inulinivorans, Coprococcus
catus, Blautia obeum, etc. (Louis and Flint, 2017), while
butyrate is derived from Lachnospiraceae, Ruminococcaceae,
and Acidaminococcaceae families (Duncan et al., 2002).
Clinical evidence has shown that the abundance of butyrate-
producing bacteria is associated with a lower blood pressure
in obese pregnant women (Gomez-Arango et al., 2016).
A recent study found that fiber and acetate supplementation
improved gut dysbiosis, associated with an increase in
Bacteroides acidifaciens, which may play a protective role in
hypertension and heart failure in hypertensive mice (Marques
et al., 2017).

The role of host G-protein-coupled receptors (GPCRs)
in the development of hypertension has been well reviewed
(Pluznick et al., 2013). To date, there are at least three GPCRs
that are regulated by SCFAs including GPR41, GPR43, and
GPR109A (Tan et al., 2017). SCFAs can stimulate host GPCRs-
regulated pathways to affect renin secretion and therefore
blood pressure (Furusawa et al., 2013; Pluznick et al., 2013).
One study has reported that GPR41 knockout mice exhibited
systolic hypertension compared with wild-type mice, and that
SCFAs lowered blood pressure by regulating endothelial GPR41
(Natarajan et al., 2016). Olfactory receptor 78 (Olfr78) is
another type of GPCR expressed in the kidney, which can
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FIGURE 2 | The main mechanisms between gut microbiota-derived metabolites and atherosclerosis. BA, bile acids; TMA, trimethylamine; FXR, farnesoid X receptor;

PXR, pregnane X receptor; FMO3, flavin monooxygenase 3; TMAO, trimethylamine N-oxide; CD36, the monocyte differentiation antigen; RCT, reverse cholesterol

transport; SR-A1, steroid receptor RNA activator 1.

also be modulated by SCFAs such as acetate and propionate
(Tan et al., 2017). In addition, both Olfr78 and GPR41 are
expressed in smooth muscle cells of small resistance blood
vessels (Pluznick et al., 2013). Propionate can induce vasodilation
and produce an acute hypotensive response in mice through
modulation of Olfr78 and GPR41 activity (Miyamoto et al.,
2016). On the other hand, it was found that stimulation of
GPR41 resulted in a reduction of the hypotensive response, and
this effect could be opposed by stimulating Olfr78 (Pluznick,
2013). Interestingly, antibiotic treatment not only altered the
composition of gut microbiota, but also increased blood pressure
in Olfr78 knockout mice (Pluznick et al., 2013). In recent
years, Reijnders et al. (2016) conducted a randomized double-
blind placebo-controlled trial, in which SCFAs and a number of
metabolic parameters were measured. The inconsistent outcome
was reported that the levels of SCFAs had no significant
effects on energy or glucose homeostasis in humans (Reijnders
et al., 2016). Overall, although all these findings revealed that
gut microbiota may play important roles in modulating the
host blood pressure through production of microbial SCFAs,
the potential for SCFAs to be a therapeutic target for CVD
needs to be confirmed by additional investigations in the
future.

Oxidized Low Density Lipoprotein
(ox-LDL) and Hypertension
Generally, the regulation of blood pressure depends on the
magnitude of blood vessel vasoconstriction and vasodilation
(Luscher and Barton, 1997). In addition to the regulation of

various receptors, gut dysbiosis also contributes to hypertension
through vasoconstriction mediated by oxidation of LDL (Packer
et al., 2014).

Dysbiosis can promote the expression of pro-inflammatory
cytokines and induce oxidative stress, which can stimulate
Ox-LDL (Chawla et al., 2011; Peluso et al., 2012). Previous
studies have shown that higher levels of oxLDL contribute to
hypertension by inhibiting the production of nitric oxide (NO)
and endothelin-1 (Subah Packer, 2007). NO is a well-established
vasodilator that is produced through oxidation of L-arginine
by NO synthase. Ox-LDL decreases the production of NO and
reduces the degree of vasodilation (Ma et al., 2006). Moreover,
endothelin-1 plays crucial roles in maintaining basic vascular
tension and cardiovascular system homeostasis. Interestingly,
the activity of endothelin-1 on blood vessels is concentration-
dependent, that is, endothelin-1 produces vasodilatory effects at
low concentrations by activating the endothelial receptor B (ETB)
and promoting NO production, but produces vasoconstriction at
high concentrations by increasing ox-LDL production in plaques
and activating the endothelial receptor A (ETA; Boulanger and
Luscher, 1990).

Although a causative relationship between gut dysbiosis and
hypertension has been acquired (Kamo et al., 2017; Santisteban
et al., 2017), the exact role of gut microbiota in mediating
hypertension still requires further extensive investigation.
The main mechanisms associated with gut microbiota and
hypertension are shown schematically in Figure 3, together
with a summary of microbial-derived metabolites and CVD
development in Table 1.
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FIGURE 3 | The main mechanisms between gut microbiota and hypertension. SCFAs, short-chain fatty acids; GPRs, G-protein-coupled receptors; Olfr78, olfactory

receptor 78; NO, nitric oxide; OxLDL, oxidized low density lipoprotein; ETA, endothelin receptor A.

GUT MICROBIOTA-TARGETED
THERAPY OF CVD

Given the contributions of gut microbiota to the development
of CVD, they have emerged as a potentially important target
for CVD therapy (Daliri et al., 2017; He and Shi, 2017).
The most frequently used approaches to manipulate the gut
microbiota include probiotic, prebiotic, natural components,
fecal transplantation, and so on.

Probiotic is a collection of bacteria with a wide range
of beneficial effects on host metabolism (Sanders, 2008;
Ettinger et al., 2014; Yoo and Kim, 2016). The widely used
probiotics are Lactobacillus, Bifidobacterium, and Satreptococcus
(Kailasapathy and Chin, 2000; Miura and Ohnishi, 2014).
In a randomized double-blind clinical trial, Fuentes et al.
(2013) found that a probiotic of Lactobacillus plantarum
CECT 7527, 7528, and 7529 reduced circulating cholesterol
levels and inhibited the formation of atherosclerotic plaques
in hyper-cholesterol patients. In another randomized control
study, subjects taking Lactobacillus reuteri NCIMB 30242

showed more significant reductions of LDL-C and total
cholesterol levels compared to subjects given placebo
capsules (Jones et al., 2012b). In addition, the benefits of
probiotics of different Lactobacillus bacteria (Lactobacillus
fermentum CECT5716 (LC40), Lactobacillus coryniformis
CECT5711 (K8) and Lactobacillus gasseri CECT5714 (LC9)
in the regulation of blood pressure have been investigated in
spontaneously hypertensive rats, and it was found that long-
term administration of these probiotics could reduce systolic
blood pressure (Gomez-Guzman et al., 2015). A recent study
has reported that the probiotic L. plantarum ECGC13110402
was well tolerated and can be used as an alternative or
supplement to reduce cardiovascular risk (Costabile et al.,
2017).

Prebiotic is a class of indigestible food ingredients with
benefits via selectively stimulating the growth of “good” and
suppressing the growth of “bad” bacteria in the intestinal tract
(Gibson and Roberfroid, 1995). Prebiotic can usually cause
specific changes in the composition of gut microbiota and exert
beneficial effects on host metabolism. Recent investigations have
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TABLE 1 | Gut microbial-derived metabolites and CVD.

Metabolite Experimental models Main observations References

TMAO FMO3 knockdown mice The TMAO-generating enzyme FMO3 is a central regulator of

cholesterol balance

Warrier et al., 2015

Western diet (WD)-induced

obese mice

Consumption of a WD increases circulating TMAO levels, which

contributes to cardiac dysfunction

Chen K. et al., 2017

C57BL/6 mice TMAO promotes pathological process of atherosclerosis by impairing

endothelial self-repair capacity and enhancing monocyte adhesion

Ma et al., 2017

Apoe−/− female mice Gut microbial metabolite γ-butyrobetaine is converted into TMA and

TMAO, and accelerates atherosclerosis

Koeth et al., 2014

Apoe−/− mice Dietary choline or TMAO supplementation enhances atherosclerotic

lesion development

Wang et al., 2011

Apoe−/− mice Dietary L-carnitine supplementation alters gut microbial composition,

enhances production of TMA/TMAO, and increases atherosclerosis

Koeth et al., 2013

Germ-free mice Gut microbial metabolite TMAO enhances platelet hyperreactivity and

thrombosis risk

Zhu et al., 2016

ApoE(−/−) mice L-carnitine intake and high plasma TMAO levels correlate with low aortic

lesions

Collins et al., 2016

155 patients with chronic heart

failure

TMAO is associated with survival of patients with chronic heart failure Troseid et al., 2015

817 participants (young adults) TMAO may not significantly contribute to early atherosclerotic disease

risk

Meyer et al., 2016

7447 participants (aged 55–80

years)

Plasma metabolites from choline pathway are associated with an

increased risk of CVD

Guasch-Ferre et al., 2017

4007 participants Increased TMAO levels are associated with an increased risk of

cardiovascular

Tang et al., 2013

13,355 male and 15,724

female subjects

Choline and betaine intakes are not associated with CVD mortality risk Nagata et al., 2015

14,430 middle-aged subjects No association exists between dietary choline intake and incident

coronary heart disease

Bidulescu et al., 2007

18 healthy participants Gut microbe-generated TMAO from dietary choline is prothrombotic in

subjects

Zhu et al., 2017

Bile acids ApoE−/− and LDLR−/− mice Dual activation of the bile acid nuclear receptor FXR and

G-protein-coupled receptor TGR5 protects mice against atherosclerosis

Miyazaki-Anzai et al., 2014

Germ-free (GF) mice Gut microbiota inhibits bile acid synthesis in the liver by alleviating FXR

inhibition

Sayin et al., 2013

FXR-deficient (−/−) mouse The function of FXR is associated with the potential to be

pro-atherogenic

(Lambert et al., 2003)

FXR−/− ApoE−/− mice Loss of FXR function is associated with more extensive aortic plaque

formation in atherosclerotic disease

Hanniman et al., 2005

LDLR−/− mice FXR deficiency causes reduced atherosclerosis Zhang et al., 2006

Fxr−/− Ldlr−/− (DKO) mice Activation of FXR protects against atherosclerosis in mice Hartman et al., 2009

Ldlr(−/−)Tgr5(−/−) and

Ldlr(−/−)Tgr5(+/+) mice

TGR5 activation inhibits atherosclerosis by reducing macrophage

inflammation and lipid loading

Pols et al., 2011

PXR(−/−) apoE(−/−) mice Deficiency of PXR attenuates atherosclerosis development Sui et al., 2011

ApoE(−/−) mice Activation of PXR accelerates atherosclerosis development Zhou et al., 2009

LDLR−/− VDR−/− mice Macrophage VDR signaling inhibits atherosclerosis in part by

suppressing the local renin-angiotensin system

Szeto et al., 2012

SCFAs 205 women Blood pressure is associated with alterations in gut microbiota and

production of butyrate

Gomez-Arango et al., 2016

Hypertensive mice Acetate supplementation changes the development of hypertension

and heart failure

Marques et al., 2017

Olfr78−/− mice SCFAs produced by the gut microbiota modulate blood pressure via

Olfr78 and Gpr41

Pluznick et al., 2013

Gpr41 knockout mice Microbial SCFAs lower blood pressure via endothelial GPR41 Natarajan et al., 2016

SCFAs, short-chain fatty acids; TMAO, trimethylamine N-oxide; BAs, bile acids; Gpr41, G-protein-coupled receptor 41; Olfr78, olfactory receptor 78; FMO3, flavin

monooxygenase 3; CD36, the monocyte differentiation antigen; FXR, farnesoid X receptor; ABCA1, ATP-binding membrane cassette transporter A1; LDL-R, lipoprotein

receptor; TGR5, G-protein-coupled bile acid receptor; S1PR2, sphingosine-1-phosphate receptor-2; ApoE−/−, apolipoprotein E-deficient.

Frontiers in Pharmacology | www.frontiersin.org 8 September 2018 | Volume 9 | Article 1082

https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Ma and Li Gut Microbiota and Cardiovascular Diseases

shown that an inulin-type fructans (ITFs) supplement improved
endothelial function in ApoE−/− mice, while administration
of ITFs promoted the production of butyrate and resulted in
atheroprotective effects(Watzl et al., 2005; Catry et al., 2018).
A previous investigation reported that long-chain inulin could
inhibit the formation of atherosclerotic plaque in ApoE−/−

mice, an effect that may be associated with alterations in lipid
metabolism (Rault-Nania et al., 2006). In a randomized, single-
blind, controlled crossover clinical trial, consumption of β-glucan
altered the composition of gut microbiota, an effect associated
with a reduction of CVD risk markers. Additionally, mannan
oligosaccharide (MOS) is another type of prebiotic. In a recent
study, a MOS supplement modulated the composition of gut
microbiota, lowered plasma cholesterol levels, and improved
atherosclerotic plaques in high cholesterol diet-fed mice (Hoving
et al., 2018).

In addition to probiotic and prebiotic, some natural active
ingredients from herbs also have protective or therapeutic actions
on CVD by modulating the gut microbiota. For example,
berberine is a well-studied herbal-derived chemical with effective
activity against atherosclerosis. It was found that the anti-
atherosclerotic effect of berberine was associated with the
stimulation of Akkermansia in ApoE−/− mice (Zhu et al.,
2018). Another example is resveratrol that may have protective
effect against several cardiovascular risk factors such as hyper-
cholesterol and TMAO by modulating the gut microbiota and
expression of genes involved in maintaining the integrity of
the gut barrier (Bird et al., 2017). Moreover, resveratrol was
found to attenuate TMAO-induced atherosclerosis by decreasing
gut microbiota-mediated TMAO synthesis and increasing BA
metabolism (Chen et al., 2016).

Fecal microbiota transplantation (FMT) is a promising
method of introducing “healthy” bacteria from healthy subjects
into the gastrointestinal tract of patients with dysfunctional guts,
which has received much attention in recent years (Colman and
Rubin, 2014). In one study, the insulin sensitivity of recipients
was significantly enhanced after 6 weeks transfer of microbiota
from lean normal donors to male recipients with metabolic
syndrome. FMT increased the abundance of butyrate-producing
bacteria suggesting that FMT is a potential strategy for CVD
therapy (Vrieze et al., 2012). Nevertheless, the use of FMT is
also limited in the clinic due to the possible risk of transferring
endotoxins or infectious diseases to recipients (De Leon et al.,
2013).

Although gut microbiota-targeted therapy to treat CVD is
promising in the context of increasing positive experimental
and clinical evidence, discrepant results have also been reported
in both experimental and clinical studies. For instance,
recently, scientists evaluated the effects of probiotic intervention
on plasma TMAO levels in CKD patients, but there no
significant change was observed after 3 months supplementation

(Borges et al., 2018). Similarly, FMT from vegans resulted in a
slight alteration in the composition of the gut microbiota, but
no improvement in TMAO production or vascular inflammation
(Smits et al., 2018).

CONCLUSION

Although many types of medicines are available in the clinic
to treat CVD, currently, it is still the leading cause of death
worldwide. In recent years, increasing evidence has suggested an
important role for gut microbiota in the development of both
metabolic diseases and CVD. The findings have shed light on
the great potential of targeting the gut microbiota to aid the
elucidation of the fundamental mechanisms underlying disease
and/or to uncover novel preventative or therapeutic regimes.
Currently, most of the research efforts have focused on paid
on establishing the relationship between gut dysbiosis and the
development of CVD. Although much progress has been made,
there is some way to go before the unequivocal establishment of
gut microbiota-targeted therapy for CVD in the clinic.

Given the experimental and clinical advances with regard
to the mechanisms of gut microbiota in the pathogenesis of
CVD, there is great promise of finding new approaches to treat
CVD by using gut microbial metabolites such as SCFAs and
some types of BAs, or blocking the production of detrimental
microbial metabolites such as TMAOwith inhibitors. In addition,
methods to alter the gut microbial composition with probiotic,
prebiotic, natural components, and FMT should be further
explored. In the future well-designed large-scale clinical studies
will be needed to validate experimental and other small-scale
preliminary clinical data. The integration of omics approaches
(metabolomics, metagenomics, andmetatranscriptomics) may be
of critical significance to explore the exact roles of identified gut
bacteria in the pathogenesis of many diseases.
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