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Abstract 

In this paper, we assess the informational content of daily range, realized variance, realized 

bipower variation, two time scale realized variance, realized range and implied volatility in daily, 

weekly, biweekly and monthly out-of-sample Value-at-Risk (VaR) predictions. We use the 

recently proposed Realized GARCH model combined with the skewed student distribution for 

the innovations process and a Monte Carlo simulation approach in order to produce the multi-

period VaR estimates. The VaR forecasts are evaluated in terms of statistical and regulatory 

accuracy as well as capital efficiency. Our empirical findings, based on the S&P 500 stock index, 

indicate that almost all realized and implied volatility measures can produce statistically and 

regulatory precise VaR forecasts across forecasting horizons, with the implied volatility being 

especially accurate in monthly VaR forecasts. The daily range produces inferior forecasting 

results in terms of regulatory accuracy and Basel II compliance. However, robust realized 

volatility measures such as the adjusted realized range and the realized bipower variation, which 

are immune against microstructure noise bias and price jumps respectively, generate superior 

VaR estimates in terms of capital efficiency, as they minimize the opportunity cost of capital and 

the Basel II regulatory capital. Our results highlight the importance of robust high frequency 

intra-daily data based volatility estimators in a multi-step VaR forecasting context as they 

balance between statistical or regulatory accuracy and capital efficiency.  
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1. Introduction  

Precise assessment of financial risks plays a crucial role for the viability of the financial 

institutions and the stability of the financial system as a whole. It helps minimizing the 

probability of extensive periods of financial distress which may be triggered by the failure of 

systemically important financial institutions. Obviously, the importance of accurate risk 

measurement and assessment is augmented during highly volatile periods, such as the recent 

2007-2009 financial crisis, for which there is a widespread risk of global financial instability 

(Drakos et al., 2010).   

This study concentrates on market risk which is defined as “the risk to a financial portfolio 

from movements in market prices such as equity prices, foreign exchange rates, interest rates, 

and commodity prices” (Christoffersen, 2003). The most popular market risk management tool in 

the financial services industry is the so called Value-at-Risk (VaR), which reflects an asset’s 

market value loss not be exceeded over a specified holding period, with a specified confidence 

level (Alexander, 2008b). According to Giot and Laurent (2003b), the popularity of the VaR as a 

market risk measure can be attributed mainly to three reasons. First, VaR is relative simple to 

estimate – statistically, the α% VaR is α-th quantile of the conditional returns distribution. 

Second, VaR is easy to communicate to higher level management as it encapsulates in a single 

quantity, either percentage or nominal amount, the potential portfolio losses. Third, the 1996 

market risk amendment to the Basel Capital Accord and the Basel II regulatory framework, 

allows financial institutions to use their own internal VaR models for the calculation of market 

risk capital requirements (see also subsection 3.3) (BCBS, 1996a, 2006). Thus, the extant 

regulatory framework establishes the VaR as the benchmark method for market risk estimation.  

The recent 2007-2009 global financial crisis and its subsequent widespread consequences in 

the real economy highlighted once again the key role of financial volatility in financial assets’ 

risk management. During this turbulent period, characterized by extreme asset price movements 

and high volatility in financial markets, the majority of financial institutions failed to comply 

with the Basel Committee on Banking Supervision (BCBS) mandates regarding the accuracy of 

their VaR estimates (Campel and Chen, 2008). This example from the near past financial history 

underlines the need for accurate volatility measurement and forecasting and justifies the 
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intensive research efforts on measuring, modeling and forecasting financial volatility during the 

last three decades . 

In this study, we fill the gaps in the VaR related literature (see section 2) and we investigate 

the informational content of three alternative classes of volatility measures in terms of multi-

period VaR forecasting using the S&P 500 stock index. The three volatility classes are: (i) 

Range-based volatility estimators that employ the daily range, i.e. the difference between the 

highest and lowest logarithmic prices within the trading day, and particularly the range estimator 

of Parkison (1980). (ii) Realized volatility estimators, that utilize high frequency intra-daily 

returns. In this category we use the realized variance (Andersen and Bollerslev, 1998; Andersen 

et al., 2001a), the realized bipower variation which is robust against price jumps (Barndorff-

Nielsen and Shephard, 2004), the two time scale realized variance of Zhang et al. (2005) which 

accounts for the microstructure noise bias in the price process and the realized range of and 

Christensen and Podolskij (2007) and Martens and van Dijk (2007). (iii) Implied volatility as 

measured by the VIX implied volatility index (Giot, 2005; Giot and Laurent, 2007). Each of the 

abovementioned volatility estimators is based on different assumptions and informational sets 

and differs in terms of efficiency, consistency and probably the ability to forecast the unobserved 

volatility (Brownless and Gallo, 2010).  

Here, we differentiate from previous works (see Section 2 for the related literature) and we 

concentrate solely on the ability of the alternative volatility measures to deliver accurate and 

efficient multi-step VaR forecasts. This practical approach for the evaluation of the informational 

content of the various volatility measures requires the use of analogous evaluation metrics. Thus, 

we do not restrict ourselves to only statistical accuracy evaluation of the VaR forecasts, i.e. via 

the (un)conditional coverage tests of Christoffersen (1998), but we also use metrics that account 

for the regulatory accuracy (Lopez, 1999) and the capital efficiency (Sharma et al., 2003) of the 

VaR estimates. Finally, we also evaluate the alternative volatility measures in a real-world 

setting utilizing the formula for the market risk capital requirements prescribed by the BCBS 

(1996a, 2006). 

Modeling the alternative volatility measures is another important issue of concern. The most 

common approach is to use these volatility measures as lagged explanatory variables in a 

GARCH model (Bollerslev, 1986) i.e. a GARCH-X model (e.g. Engle, 2002; Blair et al., 2001; 

Giot, 2005; Fuertes et al., 2009; Corrado and Truong, 2007). However, the GARCH-X model 
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poses important limitations on our analysis as it can only produce day-ahead volatility or VaR 

forecasts. Therefore, we use the novel Realized GARCH model proposed by Hansen et al. 

(2011) and implemented in day-ahead VaR forecasts by Watanabe (2011), which is capable of 

generating  multi-period forecasts (see subsection 3.1). The Realized GARCH model is a relative 

simple to estimate model that has the unique feature of joint modeling of realized volatility and 

conditional volatility of returns, through a bivariate equation approach. Thus, the Realized 

GARCH model eliminates the need for the two-step procedure usually implemented in the 

realized volatility – VaR studies (Giot and Laurent, 2004; Brownless and Gallo, 2010). The 

name of the model reflects its structure, which is similar to a GARCH model, and the fact that 

incorporates realized volatility measures. Of course the model can be easily extended to allow 

for alternative volatility measures.  

Moreover, we follow Watanabe (2011) and we combine the Realized GARCH model with 

the skewed student distribution for the innovations process which captures both the fat tails and 

the asymmetry properties of the financial assets returns distribution (Fernadez and Steel, 1998; 

Lambert and Laurent, 2001). These attractive characteristics and the good empirical performance 

have popularized its use in day-ahead VaR applications (e.g. see Giot and Laurent, 2003a; Giot 

and Laurent, 2003b; Giot and Laurent, 2004 and Giot, 2005 among others). However, forecasting 

VaR at multi-period horizons is much more challenging than the day-ahead forecasts. The reason 

is that we are not aware of the analytical form of the multiple horizons returns density 

(Christoffersen, 2003). Hence, we utilize the numerical Monte Carlo simulation method in order 

to estimate the multi-period VaR forecasts (Christoffersen, 2003; Andersen et al., 2006)  

The rest of the paper is organized as follows. In Section 2 we provide the related literature, 

while in Section 3 we describe the econometric methodology and the VaR evaluation metrics 

used in this study. Section 4 presents the estimation results for the Realized GARCH model and 

the VaR forecasting evaluation results. Section 5 summarizes and concludes this paper.  

 

2. Related literature 

A plethora of volatility measures and models have been used and tested in VaR estimation 

and forecasting. The seminal Autoregressive Conditional Heteroscedasticity (ARCH) model of 

Engle (1982), which uses the past squared daily returns in order to model the conditional 
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heteroscedasticity of financial assets returns, and its numerous extensions (e.g. see “Glossary to 

ARCH (GARCH)” by Bollerslev, 2010) have been widely used in the VaR literature (e.g. see 

Brooks and Persand, 2003; Angelidis et al., 2004; Kuester et al., 2006, Drakos et al., 2010 

amongst others).  

Nonetheless, since the introduction of the ARCH-type models, many alternative volatility 

measures and models have been proposed for forecasting volatility and VaR. In particular, daily 

range volatility estimators (e.g. see Parkison, 1980; Garman and Klass, 1983; Rogers and 

Satchell, 1991) have also been employed in volatility (Chou, 2005; Li and Hong, 2011) and VaR 

(Brownless and Gallo, 2010) forecasting studies. In these studies the range-based volatility 

models outperform their GARCH counterparts. The intuition behind this result is that intraday 

price ranges contain more information than the squared returns, since the latter are computed 

from two arbitrary points in time, i.e. the closing prices (Chou et al., 2010). In Corrado and 

Truong (2007), the authors find that the daily range and the implied volatility, as measured by 

the VIX, VXO, VXN and VXD implied volatility indices, have similar volatility forecasting 

performance. Chou et al., (2010) provide a good review on range-based volatility estimators, 

models and their financial applications.  

In the seminal papers of Andersen and Bollerslev (1998), Andersen et al. (2001a), Andersen 

et al. (2001b) and Barndorff-Nielsen and Shephard (2002) the authors propose the sum of 

squared intra-daily returns, the so called realized volatility, as an efficient and consistent 

estimator of the latent volatility and they establish its asymptotic properties. The strong 

theoretical foundations combined with the availability of high frequency intra-daily data initiated 

a frenzy of research on realized volatility modeling and forecasting.  In most of the volatility 

or/and VaR forecasting empirical studies, the authors compare the ARCH-type to the realized 

volatility models, or in other words, they examine if there is incremental information in high 

frequency intra-daily returns compared to the daily squared returns. 

 In volatility forecasting studies the results are unequivocal; realized volatility models clearly 

outperform their ARCH-type counterparts (e.g. see Andersen et al., 2003; Koopman et al., 2005; 

Martens et al., 2009; Martens, 2002 amongst others). In VaR forecasting studies the results are 

somewhat mixed with some authors providing evidence in favor of the realized volatility models 

(Beltratti and Morana, 2005; Shao et al., 2009; Brownless and Gallo, 2010; Watanabe, 2011; 
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Louzis et al., 2011) and others reporting results in support of the ARCH-type models (Giot and 

Laurent, 2004; Angelidis and Degiannakis, 2008; Martens et al., 2009).  

Brownless and Gallo (2010) are the first to emphasize on the ability of alternative realized 

volatility estimators to produce accurate day-ahead VaR forecasts. Using a P-spline 

multiplicative error model (MEM) (for MEM models see Engle, 2002; Engle and Gallo, 2006), 

the authors compare the predictive ability of realized variance, realized bipower variation, two 

time scale realized variance, realized kernels (Barndorff-Nielsen et al., 2008) and daily range for 

three NYSE stocks.  Their results indicate that daily range and realized volatility estimators have 

comparable forecasting behavior with volatility estimators that are robust against microstructure 

noise performing relatively better. Moreover, Shao et al. (2009) provide evidence in favor of the 

realized range compared to the realized volatility estimators in daily VaR forecasts. Watanabe 

(2011) also report that the microstructure noise does not affect the accuracy of daily VaR 

forecasts for the S&P 500 stock index. Alternative volatility estimators have also been used in a 

volatility forecasting context. The majority of these studies favour the use of realized variation 

measures that employ absolute intraday returns and, thus, can mitigate the effect of price jumps 

(Forsberg and Ghysels, 2007; Ghysels et al., 2006; Ghysels and Sinko, 2006; Liu and Maheu, 

2009; Fuertes et al., 2009; Louzis et al., 2012).  

Another vigorously researched area in financial economics is concerned with the 

informational content of implied volatility, which is deduced from options prices (see Alexander, 

2008a). The majority of the studies in this area compare the volatility forecasts delivered by 

models utilizing implied volatility measures with the forecasts generated by models employing 

either daily range/squared returns or realized volatility estimators (e.g. see Blair et al., 2001; 

Christensen and Prabhala, 1998; Corrado and Miller, 2005; Corrado and Truong, 2007; Giot and 

Laurent, 2007 amongst others). Overall, implied volatility measures tend to outperform their 

historical volatility counterparts in terms of volatility forecasting (Poon and Granger, 2003; Giot, 

2005). However, despite its good forecasting performance, implied volatility measures have not 

been broadly examined in risk management applications. The only exception is Giot (2005) who 

is the first to investigate the predictive ability of implied volatility indices (the old VIX, VXO 

and VXD corresponding to the S&P 500, S&P 100 and Nasdaq stock indices) in daily VaR 

forecasts. His empirical analysis shows that implied volatility indices can provide accurate day-

ahead VaR forecasts when combined with the skewed student distribution.  
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Against this background, our work complements and extends previous empirical studies (e.g. 

Brownless and Gallo, 2010; Giot, 2005; Watanabe, 2011; Shao et al., 2009) for several aspects. 

First, this the first study that examines simultaneously the informational content of realized 

volatility, daily range and implied volatility measures in a VaR forecasting context. Second, with 

the exception Beltratti and Morana (2005), all other studies focus on day-ahead VaR forecasts. 

Here, we also investigate the predictive ability of the alternative volatility measures at weekly, 

biweekly and monthly horizons. Multi-step VaR estimates are quite important for both 

regulatory, as Basel II framework requires the computation of 1% VaR for a ten-days holding 

period, and internal risk management purposes. Third, we estimate the Realized GARCH using 

volatility measures other than the realized volatility. Particularly, we extend the Realized 

GARCH model in order to incorporate the realized bipower variation, the realized range, the   

daily range and the implied volatility measures. Fourth, we propose the use of a Monte Carlo 

simulation technique in conjunction with the Realized GARCH model in order to obtain the 

multiple horizon returns density. Finally, we investigate the out-of-sample VaR forecasting 

ability of the alternative volatility measures using eight years of the S&P 500 stock index which 

include the challenging 2007-2009 crisis period. The empirical results concerning this period are 

quite limited.   

 

3. Volatility measures  

In this section we briefly describe the three distinct categories of volatility measures 

employed in this study. The first category comprises the daily range volatility estimator of 

Parkison (1980) given by ( )1/ 4 log 2tRNG =  ( )2
log logt tH L− , where tH  and tL are the high 

and low daily prices respectively. Range-based volatility estimators have certain appealing 

features in real-world applications. They are simple to estimate, more efficient than the squared 

returns volatility proxy and robust against the microstructure noise bias (e.g. see Parkison, 1980; 

Garman and Class, 1980; Alizadeh et al., 2002; Shu and Zhang, 2006).1 

In the second category we examine volatility estimators that utilize ultra high frequency 

intra-daily data. The most popular estimator in this category is the realized variance (RV) 

                                                 
1 Microstructure noise may take the form of bid-ask bounce, screen fighting, price discreteness and irregular trading 
(Fuertes et al., 2009). 
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(Andersen and Bollerslev, 1998; Andersen et al., 2001a; Barndorff-Nielsen and Shephard, 2002) 

calculated as ( )∑ =
= M

j jtt rRV
1

2
, , where M  is the total number of intraday returns for each day t  

and ,t jr  is the jth intraday return of day t . Under certain semi-martingale assumptions and for 

∞→M , RV converges in probability to the quadratic variation of the price proces i.e. 

p

t tRV QV→  2 2

1
1

( ) ( )
t

t
t s t

s ds sσ κ
−

− < ≤

= + ∑∫ , where the first part of the summation is the continuous 

path component, or integrated variance ( tIV ) and the second part is the sum of squared jumps.  

The realized bipower variation (RBV) of Barndorff-Nielsen and Shephard (2004) is a robust 

estimator against price jumps and is given by ∑ += −= M

kj kjtjtt rrRBV
1 ,,)2/(π , where 1=k . The 

authors show that the RBV converges in probability to the continuous component of the 

quadratic variation of the price process, i.e. 2

1
( )

p t

t t
t

RV IV s dsσ
−

→ = ∫  and thus prove its immunity 

to price jumps. 

The two time scale realized variance (TTS-RV) estimator of Zhang et al., (2005)  utilizes 

both high and low frequency intra-daily data combined with sub-sampling in order to eliminate 

the microstructure noise bias. Their estimator is - tTTS RV = ( ),(1/ )
t

RV λλ

Λ
Λ −∑  ,( / )f f f tM M RV , 

where ( ) tRV ,λ  is the low frequency realized variance estimator for the subsample λ , given that 

the full gird of the high frequency returns is partitioned into Λ= ,...,1λ , non-overlapping sub-

grids (e.g. 5=Λ  if the low frequency is 5 minutes), tfRV ,  is the high frequency realized 

variance estimator using the full grid, ( ) Λ+Λ−= /)1( λMM f  is the average number of 

observations in the subsamples and ( )λM  is the total number of intraday observations in each 

subsample set λ . The rationale behind the TTS-RV estimator is that since the microstructure 

noise induced bias of the low frequency estimates is a function of the noise variance in the return 

processes, which is in turn consistently estimated by the high frequency realized variance 

estimator, we can use the latter in order to eliminate the low frequency estimator bias. 

The realized range (RR) of Christensen and Podolskij (2007) and Martens and van Dijk 

(2007) is the ‘realized version’ of Parkison’s range volatility estimator and is calculated as 

( ) ( )2

, ,1
1/ 4 log 2 log log

M

t t j t jj
RR h l

=
= −∑ , where jth ,  and jtl ,  are the high and low prices of the 
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jth time interval respectively. In Martens & van Dijk (2007), the authors propose the use of a 

scaling factor in order to adjust the RR estimator for the microstructure noise bias. The scaling 

factor is a ratio of the average value of daily range, tRNG , and the average value of RR and the 

adjusted RR is given by ( )66 66

1 1t t k t k tk k
RR RNG RR RR− −= =

= ∑ ∑ . Martens and van Dijk (2007) 

show that the scaled RR outperforms the TTS-RV estimator in terms of efficiency. 

Finally, in the third category, we assess the informational content of the implied volatility 

(IV) measure which is deduced from options prices. We follow Giot (2005), Giot and Laurent 

(2007) and Becker et al. (2009) and we use the VIX index, provided by the Chicago Board of 

Options Exchange (CBOE), as a model-free IV measure. The VIX index is computed from a 

number of put and call options on the S&P 500 index over a wide range of strike prices and is 

designed to provide market’s expectation for the level of the S&P 500 volatility over the next 30 

(22) calendar (trading) days(CBOE, 2003).2 Since VIX is reported in an annualized standard 

deviation form, the daily IV measure is given by tIV = ( )2
(1/ 365) tVIX (Giot, 2005; Giot and 

Laurent, 2007). 

 

4. Econometric methodology 

4.1. The Realized GARCH model 

The VaR forecasts are generated using the recently proposed Realized GARCH of Hansen et 

al. (2011). Assuming that ( )1log /t t tr P P−=  are the daily logarithmic returns, where tP  is the 

closing price of day t, the AR(1)- logarithmic Realized GARCH(1,1) is defined as: 

 

1 1t t t tr c r h zφ −= + + , with tz ~ i.i.d skst(0,1,ξ,ν) (1) 

1 1t t th h xω β γ− −= + +  (2) 

( )2

1 2 1t t t t tx h z zκ π τ τ ε= + + + − + , with tε ~ i.i.d N(0, 2

εσ ) (3) 

 

                                                 
2 We use the new VIX index of CBOE released on September 22, 2003. For technical details for the construction of 
the VIX index see CBOE White Paper (2003).  
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where tz  are distributed as a standardized skewed student (skst) distribution with 2ν >  and 

0ξ >  being the degrees of freedom and the asymmetry parameter respectively (Fernadez and 

Steel, 1998; Lambert and Laurent, 2001), log( )t th h=  and log( )t tx x=  with 

, , , - ,  or t t t t t t tx RNG RV RBV TTS RV RR IV=  being the volatility measures presented in section 2. 

The parameter 1τ  captures the asymmetric impact of negative shocks on volatility process, i.e. 

the leverage effects, and is expected to be negative, while 2τ  captures the size effects or 

volatility clustering i.e. the fact that large shocks tend to be followed by large shocks, and is 

expected to be positive. Finally, the errors in equation (3), tε , are normally distributed and  

mutually independent with tz .  

We chose to model the conditional mean in equation (1), i.e. ( )1 1 1t t tE r c rF φ− −= + , as an 

AR(1) process in order to account for any autocorrelation in the returns series while we follow 

Watanabe (2011) and we assume the skewed student distribution for the innovations distribution, 

which captures both the fat tails and the asymmetry properties of the financial assets returns 

density. Moreover, the use of the logarithms ensures the positivity of the conditional volatility 

estimates and retains the ARMA structure of the ‘GARCH equation’ or equation (2).    

Nevertheless, the key feature of the Realized GARCH model is equation (3) or ‘measurement 

equation’. It relates the volatility measures, tx , with the latent conditional variance, 

( )1t t th Var r F−= , and enables the joint modelling of volatility measures and returns, which is a 

very important aspect for empirical VaR applications. Moreover, in contrast with the GARCH-X 

model, the Realized GARCH model can produce multi-period volatility – and consequently VaR 

– forecasts via the measurement equation. For example, assume that we want to forecast the log 

conditional variance for 2t+  i.e.  2 1 1  t t th h xω β γ+ + += + + . Hence, we need a forecast for 1th +  

which is easily given by 1t t th h xω β γ+ = + +  and a forecast for 1tx +  which is given by the 

measurement equation as follows: 1tx + = 1thκ π ++ + 1 1tzτ + ( )2

2 1 1tzτ ++ − 1tε ++ =  

( )t th xκ π ω β γ+ + + + ( )2

1 1 2 1 11t t tz zτ τ ε+ + ++ − + . Finally, the measurement equation accounts for 

possible biases of the alternative volatility measures. In general, we expect that an unbiased 
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estimator of the true daily volatility will produce estimates of  κ  close to zero and of  π  close to 

one (see also the discussion in subsection 4.1). 

All three equations’ parameters are estimated simultaneously by maximizing the joint log 

likelihood of the Realized GARCH model, i.e.: 

 

( ) ( ) ( )1 1

1

log , ; log ; log , ;skst n

t t t t t t t

t

r x f r x f x x r
Τ

− −
=

= +∑θ θ θL   (4) 

( )

( ) ( ) ( )

1
1

2

2

2
2

2

1 2
                      log log 0.5log 2 log

2 2

log( ) 0.5 log exp 1 log 1
2

0.5 log(2 ) log( )

t

t

Indt

t

t

sz m
s h

ε
ε

ν ν π ν
ξ ξ

ν ξ
ν

επ σ
σ

Τ

−
=

−

⎛ ⎞+⎛ ⎞ ⎛ ⎞= Γ − Γ − − +⎡ ⎤⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎣ ⎦ +⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎧ ⎫⎡ ⎤+⎪ ⎪⎡ ⎤+ − + + +⎢ ⎥⎨ ⎬⎣ ⎦ −⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

⎡ ⎤
− + +⎢ ⎥

⎣ ⎦

∑

 

 

where ( )1 1 2, , , , , , , , , , ,c εφ ω β γ κ π τ τ σ ν ξ ′=θ  is the parameters vector, ( )1;
skst

t tf r x − θ  and 

( )1, ;n

t t tf x x r− θ  is the skst and the normal density function respectively, ( ).Γ  is the gamma 

function, 
( )

( ) ( )
1

2

2

2
1m

ν

ν

ν
ξπ

ξ
+Γ −

Γ
= −  and ( )2

2 21 1s m
ξ

ξ= + − −  are the mean and the standard 

deviation of the non-standardized skst distribution respectively and tInd  equals 1 if smzt /−≥  

and -1 otherwise.  

We maximize the log likelihood function in equation (4) using the numerical optimization 

routines of OxMetrics 6. In particular, we implement the MaxSQPF maximization routine which 

utilizes the feasible sequential quadratic programming algorithm of Lawrence and Tits (2001). 

The standard errors of the parameters estimates, i.e. θ̂ , are approximated by 

1
2

ˆ

( )ˆ( )se diag

−

=

⎡ ⎤⎛ ⎞∂⎢ ⎥≅ −⎜ ⎟⎜ ⎟′∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦θ θ

θθ
θ θ
L

, where the second derivative matrix of the log likelihood is 

also calculated numerically (Hamilton, 1994). However, note that for the case of normally 

distributed innovations, tz , Hansen et al. (2011) provide closed form solutions for the hessian 

matrix.  
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4.2. Value-at-Risk forecasting methodology 

VaR reflects the asset’s market value loss over the time horizon h, that is not expected to be 

exceeded with probability 1 α− , i.e. ( )( )1:Pr 1t t h tr VaR t h tα α+ + ≤ + = −F , where 1:t t hr + +  is the 

cumulative asset’s return over the period h and α  is the significance or coverage level. Hence, 

α% VaR is the α-th quantile of the conditional returns distribution defined as: 

( ) ( )1  t h tVaR t h t Fα α−
++ = F , where 1F −  is the returns inverse cumulative distribution function. 

Assuming that the returns process is described in equations (1)-(3), the α% next day’s ( 1=h ) 

VaR  is given by: ( ) ( ) ˆ1 ˆ, ,
ˆ ˆˆ ˆˆ1 exp skst

t t tVaR t t c r h x cα
α ν ξ

φ ω β γ+ = + + + + ,  with: 

 

( )( ){ }
( )( ){ }

2 2
ˆ,

, ,
2 2

ˆ,

ˆ ˆ ˆˆ(1/ ) / 2 1 /s  if  1/(1 )

ˆ ˆ ˆˆ(1 ) / 2 1 /s  if  1/(1 )     

st

skst

st

c m

c

c m

α ν

α ν ξ

α ν

ξ α ξ α ξ

ξ α ξ α ξ−

⎧ ⎡ ⎤+ − < +⎣ ⎦⎪
= ⎨

⎡ ⎤⎪ − − + − ≥ +⎣ ⎦⎩

 (5) 

 

where ^ denotes the maximum likelihood estimates obtained from maximizing (4) and ,

stcα ν  

denotes the quantile function of the standardized Student-t density function (see Lambert and 

Laurent, 2001 and Giot and Laurent, 2003a).  

In the absence of a closed form solution for the multi-period returns density, we rely on a 

Monte Carlo (MC) simulation approach for the multiple horizons VaR forecasts ( 1>h ). The 

process is described in the following steps (Christoferssen, 2003, Andersen et al., 2006):  

1. Set h = 1.  

2. Produce the conditional variance forecasts for ht + : ( )1 1
ˆ ˆˆ ˆexpt h t h t hh h xω β γ+ + − + −= + + . If h = 1 

these forecasts are readily available, otherwise are obtained from step 7 below. 

3. Generate ,i hα , 1,2,...,1,000i =  random draws from the uniform distribution.  

4. Replace α  with ,i hα  in equation (5) and use the estimates v̂  and ξ̂  to generate ,i hz  drawn 

from the ˆˆ(0,1, , )skst v ξ  distribution.  
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5. Create the hypothetical returns for ht +  as: , 1 1 ,
ˆˆˆ

i t h t h t h i t hr c r h zφ+ + − + += + + . 

6. Create the volatility measures forecasts for ht +  as: ( )2

, 1 , 2 ,
ˆ ˆ 1i t h t h i h i hx h z zκ π τ τ+ += + + + − .  

7. Create the conditional variance forecasts for 1++ ht  as: , 1 ,
ˆˆ ˆ

i t h t h i t hh h xω β γ+ + + += + + . These 

forecasts are inputs for the next step, i.e. step 2, while the volatility measures forecasts,  

,i t hx + , are available from the previous step. 

8. Set 1h h= +  and repeat steps 1 to 7 until h = 20.  

Thus, for each i, 1,2,...,1,000i = , we generate 20,...,2,1=h  MC simulation paths of 

hypothetical returns from which we calculate the h-day cumulative hypothetical returns as 

∑ = +++ = h

l ltihtti rr
1 ,:1, , where h = 5, 10 and 20 for the weekly, biweekly and monthly forecast 

horizons. In this way we generate a hypothetical distribution of h-day returns generated by the 

process described in equations (1)-(3). Next, we calculate the h-day VaR as: 

( ) { }{ }1,000

, 1: 1
,i t t h i

VaR t h t Quantile rα α+ + =
+ = . 

 

4.3. VaR evaluation measures  

The VaR evaluation measures implemented here build on the “failure process” described by 

the following indicator function 
( ){ }1:

a
t t h

t r VaR t h t
I I

+ + < +
= , which takes the value of 1 if 

1:t t hr + + < ( )VaR t h tα +  and zero otherwise. We expect that an accurate VaR model will generate a 

failure rate (FR) i.e. 1
ˆ /n nα = , where 1n  and n are the number of exceptions and the sample size 

respectively, close to the predetermined coverage level, α .  

Christoffersen’s (1998) unconditional coverage test examines statistically if α̂ α= . Under 

the null hypothesis of accurate unconditional coverage, i.e. ( )tE I α=  and given the assumption 

of independence between the exceptions, the likelihood ratio (LR) test is: 

 

 ucLR = ( ) ( )( )0 01 1ˆ ˆ2 log 1 / 1
n nn nα α α α− − ~ ( )2 1χ  (6) 
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The complementary conditional coverage test proposed by Christoffersen (1998) is a joint test of 

correct unconditional coverage and first order independence of the failure process against a first 

order Markov failure. The corresponding LR test is:  

 

 ccLR ( ) ( ) ( )( )00 10 001 11 1

01 01 11 11
ˆ ˆ ˆ ˆ= 2 log 1 1 / 1

n n nn n np p p p α α− − − ~ ( )2 2χ  (7) 

 

where ijp = ( )1Pr t tI i I j−= =  estimated as 
1

0
ˆ /ij ij ijj
p n n

=
= ∑ , with , 0,1i j =  and ijn  is the 

number of transitions from state i to state j. Note that, for both tests, the null hypothesis is 

rejected if the VaR model generates too many or too few exceptions while for the conditional 

coverage a VaR model may also be rejected if it generates too clustered exceptions. 

For the h-step ahead forecasts, we follow Diebold et al. (1998) and Beltratti and Morana 

(2005) and we employ a test based on Bonferroni bounds. In particular, the series of exceptions 

in multi-step forecasts are inherently correlated and thus the coverage tests cannot be applied 

directly. Hence, we subsample the full series of exceptions in order to produce identically and 

independently distributed subseries of the form { },...,,, 2111 hh III ++ , { },...,,, 2222 hh III ++ , …, 

{ },...,,, 32 hhh III . Then, the (un)conditional coverage test with size bounded by q is applied on 

each of the h subseries with size q/h i.e. we perform h tests with size q/h. A VaR model is 

rejected if it produces a p-value smaller than the q/h significance level for any of the subseries.  

The statistical accuracy of a VaR model is prerequisite for a functional risk management 

system but it does not reassure the efficiency or the regulatory accuracy of the VaR estimates. 

Hence, we also employ a complementary set of evaluation statistics that reflect both regulators 

and risk managers’ preferences.  

Specifically, adhering to the Basel Committee’s guidelines, supervisors are not only 

concerned with the number of failures of a VaR model, but also with the magnitude of these 

failures (BCBS, 1996a, 1996b). Thus, we use the regulatory loss function (RLF) of Lopez (1999) 

which considers both the number of exceptions and their magnitude and is given by: 

( ){ } ( ){ }1:

2

1:1
t t h

t t t h r VaR t h t
RLF r VaR t h t α

α

+ +
+ + < +

⎡ ⎤= + − +⎣ ⎦ I .  

In the firm loss function (FLF) the non-exception days are penalized according to the 

opportunity cost of capital held by the firm for risk management purposes: tFLF =  
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( ){ } ( ){ }1:

2

1:1
t t h

t t h r VaR t h t
r VaR t h t α

α

+ +
+ + < +

⎡ ⎤+ − +⎣ ⎦ I ( ) ( ){ }1:t t hr VaR t h t
cVaR t h t α

α

+ + > +
− + I , where c  is the 

firm’s opportunity cost of capital (Sarma et al., 2003). Thus, an otherwise accurate model 

producing a limited number of small magnitude violations may be highly inefficient as high VaR 

estimates entail additional opportunity costs.  

Finally, we adopt a real-world evaluation metric which is prescribed by the BCBS in the 

Basel II regulatory framework and it refers to the calculation of the market risk capital (MRC) 

requirements (BCBS, 2006, 718, LXXVI). The formula for the MRC requirements is a widely 

accepted method for evaluating alternative VaR models (e.g. see Ferreira and Lopez, 2005; 

Lopez, 1999; Sajjad et al., 2008 and the discussion therein) and is given by: 

 

( ) ( )600.01 0.01

1 1
max $ 10 1 , $ 10

60
t t i

k
MRC VaR t t VaR t t i− =

⎡ ⎤= + − + −⎢ ⎥⎣ ⎦
∑   (8) 

 

where ( ) ( )( )0.01 0.01

1$ 10 1 1 exp 10 1tVaR t t P VaR t t−
⎡ ⎤+ − = − + −⎣ ⎦  is the 1% VaR in dollars for a ten 

days holding period (Ferreira and Lopez, 2005), k  is a multiplier set by the BCBS’s traffic light 

system. Specifically, the value of k  is based on the number of 1% daily VaR exceptions over the 

previous 250 trading days. If the model produces 4 or less violations, then it is considered 

sufficiently accurate and the multiplier k  takes its minimum value of 3 (green zone or green 

light models). If the model generates between 5 and 9 violations over the previous trading year 

then it is placed in the yellow zone. It is also considered acceptable for regulatory purposes, with 

k  being set to 3.4, 3.5, 3.65, 3.75 or 3.85, for the corresponding exceptions in the interval [ ]5,9 . 

A red zone or red light model is one which generates 10 or more exceptions and then k  takes its 

maximum value of 4. In this case, the regulators can reject the VaR model and put a request to 

the financial institution to revise their risk management systems.  

The predictive ability of the alternative volatility measures in terms of the QLF, the FLF  and 

the MRC is also assessed via Hansen’s (2005) Superior Predictive Ability (SPA) test which 

examines whether the null hypothesis that the benchmark model is not outperformed by any of 

its competitors is rejected or not. The forecasting performance of the benchmark model, model 

0 , with respect to model k  is deduced from the loss function differential: , 0, ,t k t k tf l l= − , where 
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1...k j=  is the total number of competing counterparts. Under the null hypothesis and assuming 

stationarity for ,t kf , we expect that on average the forecasting loss function of the benchmark 

model will be smaller, or at least equal to that of model k . Thus, the null hypothesis can be 

stated as: ( )0 ,
1...

:  max    0k t k
k l

H E fμ
=

= ≤  and is tested through the following test statistic: 

( )var1...
  max k

k

n fSPA

n
n fk l

T
=

=  , where ( ) 1 ,1/ n

tk t kf n f== ∑  and ( )var kn f  is the variance of kn f . Both 

( )var kn f  and the test statistic p-values are consistently estimated via stationary bootstrapping. 

 

5. Empirical analysis 

5.1. The data set and estimation results 

The (intra-)daily data set was obtained from Tick Data and consists of previous tick 

interpolated prices for the S&P 500 stock index over an approximately thirteen year period, from 

1.1.1997 to 09.30.2009 ( 3,196T =  trading days). For all realized volatility measures we use the 

standard five minutes sampling frequency (e.g. see Andersen et al., 2001a) while for the TTS-

RV estimator we use both one (high) and five (low) minutes sampling frequencies. All realized 

volatility estimators are based on six and a half (6.5) trading hours per day, from 08:30 to 15:00, 

which are interpreted as 78 (390)M =  intraday returns for the five (one) minutes sampling 

frequency. The daily VIX index was downloaded from the CBOE site. 

Table 1 reports the daily returns and volatility measures distributional properties. The return 

series exhibits negative skewness and fat tails, as expected, justifying the use of the skst 

distribution in equation (1). The average values of all volatility measures are relatively close 

fluctuating between 1.128 and 1.623. The RBV is the least noisy estimator among realized and 

range-based volatility estimators followed by the TTS-RV and RR estimators. All volatility 

measures are in line with the lognormality assumption since their logarithms (not shown here) 

are approximately normal. Figure 1 displays the daily prices, returns and volatility measures of 

the S&P 500 index.   

    

[Insert Table 1 about here] 
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[Insert Figure 1 about here] 

 

In Table 2, we present the Realized GARCH model maximum likelihood estimation results 

for the full sample, i.e. from 1.1.1997 to 09.30.2009. Overall, almost all coefficients estimates 

are statistically significant and their sign and magnitude are in accordance with the theoretical 

assumptions and the previously reported estimation results of Hansen et al. (2011) and Watanabe 

(2011).  Starting form the conditional mean specification, we see that the autoregressive 

parameter, 1φ̂ ,  is negative and statistically significant implying a negative autocorrelation in the 

returns series. The skst distribution parameters estimates ˆˆ( , )ν ξ  indicate fat tails and negative 

skewness ( ˆ 1ξ < ) for the z’s density, while their estimates do not change significantly with use of 

alternative volatility measures. The estimates of 1τ  and 2τ  in the measurement equation align 

with the theory of leverage effects and volatility clustering.  

Nonetheless, the most interesting results emerge from the estimation of  κ  and π  parameters 

in the measurement equation. Specifically, across volatility measures the estimates of  π  are 

close to 1, ˆ 1π ≈ , which is an expected result since all volatility measures are ‘roughly’ 

proportional to the unobserved conditional variance (Hansen et al., 2011). However, for all 

realized and range-based volatility measures the estimates of κ  are much lower than zero 

indicating that volatility estimators that utilize intraday data are biased. This result can be simply 

explained from the fact that these measures are computed employing only the 6.5 active trading 

hours (08:30-15:00 in our case) of day t, whereas the conditional variance, th , refers to a 24 

hours time period which spans from the closing time (15:00) of day 1t −  to the closing time 

(15:00) of day t, since daily returns, tr ,  are calculated using close-to-close prices (see Hansen et 

al., 2011 for a related discussion). Moreover, the RNG and the RBV estimators have the lowest 

estimates of κ . One possible explanation is that the theoretical foundation of Parkison’s RNG 

estimator is based on the restrictive assumption of zero drift geometric Brownian motion which 

may result in biased estimates in real-world settings. Indeed, the authors in Alizadeh et al. 

(2002), Brand and Diebold (2003) and Shu and Zang (2006), based on simulation results, find 

evidence of downward bias for the RNG estimator. Furthermore, the RBV estimator is robust 

against jumps implying that on average is lower or equal to the quadratic variation of the price 
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process as estimated by the RV (see section 3). Consequently, the κ  estimates for the RBV are 

expected to be lower compared to those of the RV estimator. On the contrary, when we use the 

IV as a volatility proxy the estimation of κ  is very close to zero ( ˆ 0.052κ = ) and marginally 

statistically significant at a 10% significance level. This evidence indicates that the IV is almost 

an unbiased estimator of the daily conditional volatility. From the GARCH equation results it is 

also obvious that the IV measure has the greatest impact on future volatility ( ˆ 0.862γ = ) 

compared to its realized/range counterparts while the persistence is also high with the persistence 

parameter being approximately 0.97 across volatility measures and very close to the estimation 

results reported by Hansen et al. (2011).   

In Figure 2, we illustrate the Monte Carlo simulated returns using the RR volatility estimator 

for the last day of our sample i.e. 09/30/2009. The graph compares the simulated returns with the 

normal density of equal variance. For all four forecasting horizons the simulated returns are 

negatively skewed and possess fat tails relative to the normal density implying the 

inappropriateness of Gaussian assumption for the VaR applications.  

 

[Insert Table 2 about here] 

 

[Insert Figure 2 about here] 

 

5.2. VaR forecasting evaluation results 

We use a rolling window of approximately five years or 1,250 trading days in order to 

produce the out-of-sample VaR forecasts from 12.20.2000 to 09.30.2009.3 Table 3 presents the 

FR and the p-values for the (un)conditional coverage tests for a 5% and 1% coverage level. We 

follow Beltratti and Morana (2005) and we report the lowest p-value obtained by the h 

(un)conditional coverage tests performed for each of the h subseries of exceptions. We reject the 

null hypothesis at a 0.05 significance level if the tests produce a p-value lower than 0.05/h. For 

instance, for the monthly forecasts, i.e. for h = 20, the null hypothesis of correct (un)conditional 

coverage is rejected if the LR test generates p-value lower than 0.0025.  

                                                 
3 For this period we generate 1,946 daily, 1,941 weekly, 1936 biweekly and 1926 monthly out-of-sample VaR 
forecasts. 
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The most striking feature of Table 3 is that all volatility measures, with the exception of the 

RNG for the 5% day-ahead VaR, can produce VaR forecasts with correct (un)conditional 

coverage at a 5% significance level, across forecasting horizons and quantiles. This implies that a 

risk manager will be indifferent, in terms of statistical accuracy, among the volatility measures 

examined here. However, a closer examination of the results reveals some interesting points. 

First, for the one and ten day(s)-ahead VaR forecasts and for the 1% quantile, which bear the 

greatest practical interest (see in the subsection 3.3 the BCBS mandates for the MRC 

requirements), the TTS-RV, RBV and IV (only for the one day ahead horizon) are the best 

performers. The IV measure tends to be over-conservative when we examine the ten days ahead 

predictions. Moreover, the results for the one day-ahead forecasts are in line with the findings of 

Giot (2005) and Brownless and Gallo (2010) who report good day-ahead VaR performance using 

either range/realized or implied volatility estimators. Second, the IV is the overall best 

performing volatility measure, as it ranks first in sixteen out of the twenty four cases across 

forecasting horizons, quantiles and evaluation metrics. In addition, the IV measure forecasting 

performance improves, on average, as the forecasting horizon increases, with monthly FRs 

produced by the IV model being much closer to the predetermined coverage level than those 

produced by its counterparts. Although this is an expected result, as the VIX index is computed 

in order to deliver market’s volatility prospects over the subsequent trading month, it is a unique 

empirical finding in market risk literature. Finally, RNG and RR seem to be the weaker 

performers especially in longer-term forecasting horizons.  

 

[Insert Table 3 about here] 

 

Table 4 summarizes the results for the average RLF which takes into account both the 

number and the magnitude of the VaR failures. We also report the SPA test results in order to 

discern which of the models cannot be outperformed by its counterparts in terms of the RLF 

metric. The empirical findings are in alignment with the ones presented in Table 3. In particular, 

the RNG volatility estimator has the poorest performance as it generates the highest average RLF 

across almost all forecasting horizons and quantiles. As a consequence the null hypothesis of the 

SPA test is rejected at a 5% significance level across all (monthly) forecasting horizons for the 
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5% (1%) quantile.4 On the other hand, IV model seems to have an adequate performance across 

forecasting horizons as it does not reject the SPA test hypothesis, but for the 5% day-ahead VaR 

predictions. The IV is again the best performing measure for the longest (monthly) forecasting 

horizon since it minimizes the RLF for both coverage levels. With the exception of the RR and 

the RBV for the 5% bi-weekly and monthly VaR forecasts respectively, in all other cases the 

realized volatility measures behave quite well as they are not outperformed by any of their 

counterparts. Nonetheless, the RV model has the most consistent behaviour as it ranks first for 

the one, five and ten-days ahead forecasts irrespective of the quantile used.           

 

[Insert Table 4 about here] 

 

The picture is different regarding the efficiency of the VaR forecasts as measured by the 

average FLF. The empirical findings, presented in Table 5, suggest that when we account for the 

opportunity cost of capital, the IV and the RV measures are the worst performers. They generate 

the overall highest average FLF and reject the SPA test hypothesis irrespective of the horizon 

examined, with the only exception being the 5% day-ahead and monthly VaR forecasts for the 

IV and the RV measure respectively. On the contrary, RNG, TTS-RV, RBV and RR models 

produce the most efficient weekly, biweekly and monthly VaR forecasts as they are not 

outperformed by any other volatility measure according to the SPA test results (the only 

exception is the RR model for the 5% biweekly VaR forecasts). For the 5% and 1% day-ahead 

VaR forecasts RR and RNG respectively are the only historical volatility measures that do not 

reject the null hypothesis of the SPA test. A possible explanation is that these volatility 

estimators are robust against either the microstructure noise bias or the price jumps and thus, 

they can mitigate extreme or noisy price movements. Consequently, the models incorporating 

these volatility measures produce moderate VaR estimates that help minimize the opportunity 

cost of capital.  

 

[Insert Table 5 about here] 

 

                                                 
4 In the spirit of Sarma et al. (2003) for the 5% quantile we do not include the RNG model in the SPA test as it does 
not pass the unconditional coverage tests (see Table 3) 
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The results for the MRC requirements, presented in Table 6, confirm the aforementioned 

findings. The RNG volatility estimator is the worst performer in terms of regulatory accuracy as 

it is the only volatility measure that produces red light days. All other volatility proxies comply 

with the regulators accuracy rules. In terms of efficiency, the RR and RBV volatility measures 

generate the lowest regulatory capital with the other two realized volatility estimators lagging 

closely behind. The highest regulatory capital is generated by the IV measure indicating its 

relative inefficiency. The SPA test results also confirm these findings. Figure 3 shows the market 

risk capital requirements estimates for the six alternative volatility measures. The graph reveals 

that the capital requirements increase considerably during the 2007-2009 crisis and that the IV 

measure generates the highest regulatory capital reserves especially from 2003 to 2007 and after 

the end of 2009. 

 

[Insert Table 6 about here] 

 

[Insert Figure 3 about here] 

 

Table 7 summarizes the average performance of the alternative volatility measures across 

forecasting horizons and quantiles. Overall, the best performing volatility measures are the RR 

and the RBV as they manage to combine statistical accuracy, regulatory compliance and capital 

efficiency, while the TTS-RV is also a good alternate. The IV measure behaves very well in 

terms of accuracy (both statistical and regulatory), especially in long term forecasts, but it tends 

to produce inefficient VaR estimates. The RV measure has similar behavior with the IV measure, 

while the RNG volatility estimator demonstrates inferior forecasting performance.  

 

[Insert Table 7 about here] 

 

6. Conclusions 

We complement and extend the previous VaR literature by examining the informational 

content of daily range, realized variance, realized bipower variation, two time scale realized 

variance, realized range and implied volatility in a multi-step VaR forecasting context. In our 
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analysis we use the recently proposed Realized GARCH model of Hansen et al. (2011) which 

allows for the joint modelling of alternative volatility measures and returns. The Realized 

GARCH model is combined with the skewed student distribution, which captures the fat tails 

and the asymmetry of returns distribution, and a Monte Carlo simulation methodology for the 

multi-step VaR forecasts.  

Based on the S&P 500 stock index and on an approximately eight years of out-of-sample 

forecasts, including the turbulent period 2007-2009, we find that almost all volatility measures 

can produce statistically accurate multi-step VaR forecasts. The only exception is the daily range 

for the 5% day-ahead VaR forecasts. Our empirical findings are in accordance with Giot (2005) 

and indicate that the implied volatility measure is a good alternative volatility estimator for 

market risk applications, especially for longer term (monthly) VaR predictions.  

The results for a loss function that reflects regulators’ preferences are in alignment with the 

statistical accuracy results. However, when we employ a loss function that considers the 

opportunity cost of capital the results are slightly different. Now, daily range and high frequency 

data volatility estimators that are robust against either the microstructure noise bias or the price 

jumps generate the most efficient VaR estimates that minimize the opportunity cost of capital.  

A real-world application based on Basel II regulatory framework confirms the above 

mentioned findings. In particular, all volatility measures, except for the daily range, comply with 

the regulators’ mandates regarding the number of exceptions during the previous trading year. 

Moreover, the adjusted realized range (Martens and van Dijk, 2007) and the realized bipower 

variation (Barndorff-Nielsen and Shephard, 2004), which are robust against microstructure noise 

and price jumps respectively, minimize the market risk capital requirements and thus, the 

released idle capital can be used in more efficient and productive ways.  

Therefore, a risk manager or a regulator who emphasizes on statistical and regulatory 

precision of the VaR estimates will be indifferent among the realized or the implied volatility 

measures examined here and perhaps he will choose the implied volatility for the monthly 

forecasting horizons. Nonetheless, a risk manager who is more concerned with efficiency issues, 

without disregarding the importance of statistical accuracy and regulatory compliance, he will 

concentrate on realized range and realized bipower variation measures.  

Our empirical results give evidence in favour of robust high frequency intra-daily data 

volatility estimators since they balance between statistical or regulatory accuracy and capital 
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efficiency. However, further research is required in order to gain more insights on the 

informational content of alternative volatility measures in multi-period VaR forecasting using 

other stock indices or asset classes such as stocks, bonds, currencies or commodities. 
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Table 1 Distributional properties of daily returns and alternative volatility measures of the S&P 500 stock index 

 Mean St.Dev Skewness Kurtosis Max Min 

Daily returns (%) 0.011 1.344 -0.089 6.770 10.714 -9.789 

RNG 1.277 2.769 8.153 88.455 42.807 0.021 

RV 1.335 2.718 10.857 208.011 75.364 0.053 

RBV 1.128 2.288 9.337 133.231 51.707 0.047 

TTS-RV 1.181 2.531 14.940 396.058 84.474 0.049 

RR 1.286 2.612 11.394 215.305 71.759 0.058 

IV 1.623 1.619 4.160 25.068 17.913 0.268 

Notes: RNG is the daily range, RV is the realized variance, TTS-RV is the two time scale realized variance, RBV is 
the realized bipower variation, RR is the realized range and IV is VIX implied volatility index. 
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Table 2 Maximum likelihood estimation results for the AR(1)- log Realized GARCH(1,1) model

 RNG RV RBV TTS-RV RR IV 
c  0.004 

(0.251) 
0.008 
(0.551) 

0.011 
(0.736) 

0.007 
(0.472) 

0.009 
(0.589) 

0.000 
(0.028) 

1φ  -0.027* 
(-1.936) 

-0.078*** 
(-4.448) 

-0.101*** 
(-5.799) 

-0.100*** 
(-5.718) 

-0.104*** 
(-5.969) 

-0.058*** 
(-4.122) 

ω  0.134*** 
(13.328) 

0.162*** 
(11.990) 

0.238*** 
(14.576) 

0.228*** 
(13.883) 

0.196**** 
(12.402) 

-0.044 
(-1.639) 

β  0.773*** 
(62.810) 

0.621*** 
(36.587) 

0.596*** 
(33.641) 

0.573*** 
(31.709) 

0.554*** 
(29.882) 

0.124*** 
(8.376) 

γ  0.192*** 
(17.799) 

0.361*** 
(19.905) 

0.383*** 
(20.418) 

0.411*** 
(20.892) 

0.431*** 
(21.048) 

0.862*** 
(33.563) 

κ  -0.677*** 
(-26.664) 

-0.442*** 
(-16.304) 

-0.615*** 
(-22.205) 

-0.546*** 
(-19.943) 

-0.448*** 
(-16.031) 

0.052* 
(1.781) 

π  1.046*** 
(49.498) 

0.982*** 
(37.322) 

0.985*** 
(36.764) 

0.973*** 
(37.722) 

0.974*** 
(36.742) 

0.979*** 
(40.640) 

1τ  -0.024* 
(-1.657) 

-0.096*** 
(-10.136) 

-0.129*** 
(-13.841) 

-0.121*** 
(-13.517) 

-0.131*** 
(-15.689) 

-0.090*** 
(-47.603) 

2τ  0.289*** 
(26.099) 

0.098*** 
(16.680) 

0.077*** 
(13.914) 

0.080*** 
(14.928) 

0.056*** 
(11.963) 

0.008*** 
(11.240) 

εσ  0.642*** 
(79.771) 

0.474*** 
(79.823) 

0.473*** 
(79.650) 

0.450*** 
(79.689) 

0.427*** 
(79.661) 

0.070*** 
(79.580) 

ν  11.875*** 
(5.131) 

12.924*** 
(4.797) 

13.040*** 
(4.758) 

12.438*** 
(5.012) 

12.406*** 
(5.073) 

11.424*** 
(5.421) 

ξ  0.895*** 
(41.048) 

0.886*** 
(40.477) 

0.883*** 
(40.439) 

0.880*** 
(40.326) 

0.878*** 
(40.259) 

0.891*** 
(40.968) 

Persistence: 
β πγ+  0.975 0.976 0.974 0.973 0.974 0.967 

logL  -7,870 -6,859. -6,846 -6,694 -6,521 -6,784 

Notes: The t-statistics are in parenthesis. *, ** and *** indicates statistical significance at 10%, 
5% and 1% significance level respestovely. For the estimation we use the full sample from 

1.1.1997 to 09.30.2009. RNG is the daily range, RV is the realized variance, TTS-RV is the two 

time scale realized variance, RBV is the realized bipower variation, RR is the realized range and 
IV is VIX implied volatility index. 
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Table 3 Failure rates and Christoffersen’s (un)conditional coverage tests results  

 5% Coverage level 

Volatility  Daily (h = 1)  Weekly (h = 5)  Bi-weekly (h = 10)  Monthly (h = 20) 

measures FR(%) UC CC  FR(%) UC CC  FR(%) UC CC  FR(%) UC CC 

RNG 6.22 0.017 0.058  5.92 0.096 0.190  5.66 0.177 0.134  7.16 0.078 0.196 

RV 4.98* 0.975* 0.996  5.77 0.096 0.190  4.12 0.089 0.206  7.21 0.035 0.100 

TTS-RV 5.09 0.860 0.894  6.08 0.096 0.190  4.27 0.089 0.206  7.36 0.078 0.100 

RBV 5.04 0.942 0.997*  6.13 0.061 0.122  4.07 0.196 0.358*  7.31 0.078 0.123 

RR 5.19 0.702 0.877  5.82 0.096 0.190  5.36* 0.292* 0.224  7.16 0.035 0.107 

IV 5.65 0.195 0.232   4.84* 0.114* 0.214*   3.45 0.034 0.097   5.97* 0.170* 0.125* 

 1% Coverage level 

RNG 1.13 0.571 0.662  1.49 0.153 0.120  1.65 0.018 0.051  1.96 0.020 0.041* 

RV 0.82 0.416 0.629  1.44 0.153 0.316*  0.77 0.455* 0.738*  2.16 0.020 0.041* 

TTS-RV 0.98* 0.916* 0.402  1.49 0.066 0.117  0.98* 0.455* 0.738*  2.27 0.003 0.007 

RBV 1.03 0.903 0.437  1.54 0.066 0.156  0.93 0.455* 0.742*  2.42 0.003 0.007 

RR 0.82 0.416 0.629  1.65 0.066 0.120  1.80 0.018 0.051  2.37 0.003 0.007 

IV 0.98* 0.916* 0.825*   1.08* 0.317* 0.083   0.72 0.455* 0.738*   1.65* 0.094* 0.041* 

Notes: All forecasts are generated by the Realized GARCH model. RNG is the daily range, RV is the realized variance, TTS-RV is the 
two time scale realized variance, RBV is the realized bipower variation, RR is the realized range and IV is VIX implied volatility index. 
FR denotes the failure rate in percentage points, UC and CC are the p-values for the Christoffersen’s unconditional and conditional 
coverage tests respectively. The bold faced figures indicate rejection of the null at 0.05/h significance level. The table reports the lowest 
p-value across the h sub-series of exceptions. The asterisk (*) indicates the best performing model i.e. the model with the closest FR to 
the prespecified coverage level (α) and the highest p-value.    
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Table 4 Average regulatory loss function (RLF) and superior predictive Ability (SPA) test results 

 5% Coverage level 

Volatility  Daily (h = 1)  Weekly (h = 5)  Bi-weekly (h = 10)  Monthly (h = 20) 

measures RLF SPA-test  RLF SPA-test  RLF SPA-test  RLF SPA-test 

RNG 0.116 -  0.444 0.046  1.143 0.024  2.865 0.013 

RV 0.082* 0.783*  0.383* 0.958*  0.658* 0.960*  2.492 0.325 

TTS-RV 0.084 0.320  0.415 0.051  0.704 0.116  2.578 0.063 

RBV 0.082 0.646  0.400 0.118  0.671 0.498  2.595 0.010 

RR 0.084 0.284  0.391 0.493  1.089 0.009  2.609 0.104 

IV 0.117 0.013  0.426 0.184  0.726 0.173  2.321* 0.858* 

 1% Coverage level 

RNG 0.019 0.066  0.082 0.141  0.405 0.100  1.152 0.049 

RV 0.013* 0.974*  0.068* 0.977*  0.178* 0.917*  0.806 0.645 

TTS-RV 0.015 0.232  0.076 0.115  0.195 0.314  0.816 0.602 

RBV 0.015 0.226  0.068 0.311  0.178 0.803  0.810 0.734 

RR 0.013 0.651  0.065 0.116  0.382 0.055  0.822 0.512 

IV 0.018 0.168   0.126 0.132   0.244 0.087   0.744* 0.836* 

Notes: All forecasts are generated by the Realized GARCH model. RNG is the daily range, RV is the realized 
variance, TTS-RV is the two time scale realized variance, RBV is the realized bipower variation, RR is the realized 
range and IV is VIX implied volatility index. For the SPA test we show the p-values. The bold faced figures 
indicate rejection of the null at a 0.05 significance level. The asterisk indicates the best performing model i.e. the 
model with the lowest RLF and the highest SPA p-value.    
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Table 5 Average firm loss function (FLF) and superior predictive Ability (SPA) test results 

 5% Coverage level 

Volatility  Daily (h = 1)  Weekly (h = 5)  Bi-weekly (h = 10)  Monthly (h = 20) 

measures FLF SPA-test  FLF SPA-test  FLF SPA-test  FLF SPA-test 

RNG 2.684 -  5.965 0.346  8.825 0.072  13.499 0.141 

RV 2.829 0.006  6.024 0.000  8.591 0.001  13.364 0.072 

TTS-RV 2.818 0.022  5.948 0.424  8.481* 0.725*  13.278* 0.957* 

RBV 2.821 0.030  5.933 0.802  8.499 0.473  13.300 0.690 

RR 2.818 0.052  5.932* 0.803*  8.837 0.028  13.289 0.795 

IV 2.745* 0.571*  6.315 0.000  9.242 0.000  14.391 0.000 

 1% Coverage level 

RNG 4.178* 0.616*  8.800* 0.615  12.509 0.373  17.943 0.080 

RV 4.380 0.000  8.913 0.000  12.534 0.000  17.864 0.000 

TTS-RV 4.371 0.000  8.832 0.150  12.405 0.510  17.726 0.106 

RBV 4.364 0.000  8.803 0.794*  12.381* 0.924*  17.666 0.771 

RR 4.375 0.001  8.806 0.695  12.526 0.252  17.658* 0.858* 

IV 4.437 0.000  9.484 0.000  13.714 0.000  20.276 0.000 

Notes: All forecasts are generated by the Realized GARCH model. RNG is the daily range, RV is the realized 
variance, TTS-RV is the two time scale realized variance, RBV is the realized bipower variation, RR is the realized 
range and IV is VIX implied volatility index. For the SPA test we show the p-vlaues. The bold faced figures 
indicate rejection of the null at a 0.05 significance level. The asterisk indicates the best performing model i.e. the 
model with the lowest FLF and the highest SPA p-value.    
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Table 6 Basel II market risk capital requirements 

Volatility  Basel II zones  Basel II Capital requirements 

measures Green (%) Yellow (%) Red (%)  Mean  SPA test 

RNG 69.104 28.597 2.300 

 

268.800 - 

RV 81.250 18.750 0.000 

 

263.968 0.000 

TTS-RV 75.531 24.469 0.000 

 

265.351 0.000 

RBV 80.483 19.517 0.000 

 

263.412* 0.515* 

RR 75.531 24.469 0.000 

 

263.567 0.479 

IV 84.375 15.625 0.000 

 

294.383 0.000 

Notes:  RNG is the daily range, RV is the realized variance, TTS-RV is the two time 
scale realized variance, RBV is the realized bipower variation, RR is the realized range 
and IV is the VIX implied volatility index. The table presents the percentage of days 
during the out of sample forecasting period that the model is placed in the green, 
yellow and red zone according to the Basel traffic light system, the average daily 
capital requirements and Superior Predictive Ability (SPA) test p-values. The bold 
faced figures indicate rejection of the null at a 0.05 significance level. 
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Table 7 Summary of the empirical results  

    Basel II market risk regulatory capital  

Volatility 
measures 

Statistical Accuracy 
(Coverage tests) 

Regulatory Accuracy 
(RLF) 

Capital Efficiency 
(FLF) 

Accuracy  
(Number of exceptions during 

the previous trading year) 

Efficiency 
(Minimization of the 
regulatory capital) 

RNG Yes No Yes No No 

RV Yes Yes No Yes No 

TTS-RV Yes Yes Yes Yes No 

RBV Yes Yes Yes Yes Yes 

RR Yes Yes Yes Yes Yes 

IV Yes Yes No Yes No 

Notes: RNG is the daily range, RV is the realized variance, TTS-RV is the two time scale realized variance, RBV is the realized bipower 
variation, RR is the realized range and IV is the VIX implied volatility index. The table shows the average performance of the volatility 
measures across forecasting horizons and quantiles. A volatility measure is considered as inadequate (No) if it fails in 4 or more out of the total 
8 forecasting schemes examined here, i.e. 4 forecasting horizons and 2 quantiles. For the Basel II market risk regulatory capital the results are 
based solely on Table 6.      
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