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Abstract
Pregnancy in mammals featuring hemochorial placentation introduces a major conflict with the
mother's immune system, which is dedicated to repelling invaders bearing foreign DNA and RNA.
Numerous and highly sophisticated strategies for preventing mothers from rejecting their
genetically different fetus(es) have now been identified. These involve production of novel soluble
and membrane-bound molecules by uterine and placental cells. In humans, the placenta-derived
molecules include glycoproteins derived from the HLA class Ib gene, HLA-G. Isoforms of HLA-G
saturate the maternal-fetal interface and circulate in mothers throughout pregnancy.
Uteroplacental immune privilege for the fetus and its associated tissues is believed to result when
immune cells encounter HLA-G. Unequivocally demonstration of this concept requires
experiments in animal models. Both the monkey and the baboon express molecules that are similar
but not identical to HLA-G, and may comprise suitable animal models for establishing a central role
for these proteins in pregnancy.

Introduction
The enigma of mammalian pregnancy, which usually suc-
ceeds despite genetic differences between the mother and
her embryo/fetus, has intrigued immunologists for half a
century [1]. Immune mechanisms are in place to prevent
incursion into the host of foreign DNA or RNA that suc-
cessfully prevent transplantation of "unmatched" organs
such as kidneys, but, surprisingly, this does not prevent
semiallogeneic pregnancy. Most successfully implanted
embryos mature and are delivered without difficulty.
Nonetheless, many pregnancies, perhaps 50% in women,
are lost prior to implantation, and others are lost subse-
quently as a result of genetic abnormalities, infection and
other causes.

The first immunologist to attempt sorting out strategies
used in pregnancy to circumvent maternal rejection of the
embryo/fetus was Sir Peter Medawar [1]. He proposed
that protective mechanisms included a physical separa-
tion of maternal and fetal tissues, poor expression of fetal
antigens that could stimulate graft rejection, and develop-
ment of tolerance in the mother. Certain aspects of these
ideas are clearly correct: maternal and fetal blood circula-
tions are entirely separate; the antigens most involved in
graft rejection are only gradually developed through fetal
life; maternal and fetal factors generate immune privilege
at the maternal-fetal interface.
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Central features of immune mechanisms in viviparous
pregnancy that were not specifically envisioned by Meda-
war but are now well established are that (i) overlapping,
interactive systems provide protection, (ii) both maternal
and fetal contributions are essential to maintaining the
pregnant uterus as an immune privileged site, and (iii) fac-
tors derived from placentas and extraplacental mem-
branes program maternal immune responses.

Although it is generally agreed that genetic abnormalities
lead the list, two conditions related to the immune system
might comprise adverse circumstances that lead to preg-
nancy loss [2]. These are failure of mothers and their
embryo/fetuses to develop appropriate immunological
relationships, and override of the normal protective sys-
tems by more powerful signals. This latter event is associ-
ated with infections. It is therefore critical to have a full
understanding of the conditions that prevail during une-
ventful pregnancy in order to predict what circumstances
related to immunity might lead to failure.

In this article, we examine the literature describing the
immunological features of the normal maternal-fetal
interface then describe in detail a novel strategy that has
evolved to protect semiallogeneic pregnancy. This is high
expression in placental cells of membrane-bound and sol-
uble Major Histocompatibility Complex (MHC) antigens
with immunosuppressive properties. Finally, the possibil-
ity that studies in non-human primates might assist in
elucidating the functions of these antigens is evaluated.

The human maternal-fetal interface
Maternal tissues
Comparative features of the cycling and pregnant human
uterus have been extensively reviewed [3]. In brief, the
cycling endometrium is much like any other mucosal sur-
face in that aggregates of antigen-specific T and B lym-
phocytes as well as macrophages and natural killer (NK)
cells are readily identified. In pregnancy, the entire situa-
tion changes; the altered endometrium, now termed the
decidua, is home mainly to cells of the natural or innate
immune system. Macrophages comprising 10% to 20% of
the decidual cells are randomly distributed through the
tissue throughout pregnancy. NK cells are high profile res-
idents, comprising 20% to 30% of decidual cells. The NK
cells are impermanent, staying in place only during the
first and second trimesters. CD4+/CD25+ regulatory T
lymphocytes and dendritic cells, which are powerful anti-
gen-presenting cells (APC), comprise numerically smaller
populations.

The overall biochemical environment of the decidua is
also dramatically different from conditions in the cycling
uterus, with steroid hormones, particularly progesterone,
prostaglandins, chemokines and an ever-fluctuating net-

work of cytokines characterizing pregnancy decidua. Of
the cytokines, both inflammatory and anti-inflammatory
molecules are present but the overall picture is that of a
shift toward anti-inflammatory mediators. Immunosup-
pressive molecules such as transforming growth factor-β1
(TGF-β1) and interleukin 10 (IL-10) predominate
(reviewed in Ref. [3,4]).

Both maternal (uterus) and fetal (placenta) organs and
tissues contribute to fetal tolerance at the dynamic mater-
nal-fetal interface (reviewed in Ref. [3]). Both contribute
soluble molecules (hormones, prostaglandins, cytokines,
chemokines) and both are populated mainly by cells of
the innate immune system. Cell surface and soluble mol-
ecules from several multigenic families, including HLA,
complement regulatory proteins, the TNF superfamily of
ligands, and B7 family proteins, are exhibited by placental
cells. This armament together with other components
provides the fetus with immune protection.

Human placentas and extraplacental membranes
In women, cells derived from the trophectoderm layer of
the blastocyst, i.e., trophoblast cells, face the decidua and
maternal blood. Precursor cytotrophoblast cells located in
developing placental villi differentiate along two major
pathways so as to perform specific, required functions.
Strategies devised for protecting these two subpopulations
of trophoblast cells differ according to their anatomic
location, which defines their exposure to elements of the
maternal immune system.

One trophoblast cell differentiation pathway results in
formation of a single trophectoderm cell layer that covers
the villous placenta. By week 10 to 12, the syncytium is
continuously exposed to maternal blood. Among other
functions, it serves as (i) the site of production of placen-
tal hormones, (ii) an effective, although not impenetra-
ble, impediment to maternal-fetal cell traffic, (iii) a
resistance barrier to attack by maternal anti-fetal cytotoxic
antibodies and cytotoxic cells, and (iv) a site of produc-
tion of an array of non-hormonal soluble substances that
inhibit immune responses.

Brenner et al [5] have commented on the critical role
played by progesterone in orchestrating levels of the pro-
teases and cytokines required for maintenance of preg-
nancy in humans and non-human primates. In addition,
there is strong evidence that progesterone contributes to
the immunosuppressive environment of the maternal-
fetal interface; at high concentrations progesterone acts
similarly to corticosteroids in inhibiting immune cell
reactivity [6].

Regarding trafficking of fetal cells into mothers, this is
now known to occur in small numbers [7,8]. The fetal
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cells are maintained for decades in the maternal circula-
tion and maternal organs. Yet the basic characteristics of
these cells and their diverse roles in maternal health and
disease remain to be established. In mice, cells with nor-
mal adult expression of foreign MHC antigens are rapidly
removed, so it is possible that persistence of the human
fetal cells in maternal blood and organs is related in some
way to depressed expression of their MHC antigens. In
humans, these are known as the Human Leukocyte Anti-
gens (HLA).

At least two additional systems, both composed of mem-
brane-bound molecules, protect syncytiotrophoblast.
These are proteins that interfere with complement-medi-
ated cytolysis and the lymphocyte-inhibiting B7-H1 anti-
gens (reviewed in Ref. [3]). In addition, syncytium
produces many soluble substances that are relevant to
immune privilege in the pregnant uterus. As recently
reviewed [3], one of these is a soluble isoform of an HLA
class Ib antigen, HLA-G5, which is also known as soluble
HLA-G1. Mechanisms underlying selection of this specific
isoform and no other from the spectrum of HLA-G glyco-
proteins are unknown.

The second subset of trophoblast cells is characterized by
proliferation and migration into the decidua where it per-
forms three well-described major functions. These are to
(i) anchor the placenta to the uterus, (ii) permit expansion
of the uterine spiral arteries to accommodate increased
maternal blood perfusion as pregnancy progresses, and
(iii) drive the decidual hematopoietic cells into pathways
consistent with protection of the fetal semiallograft. Of
these, the last is directly relevant to the establishment and
maintenance of uterine immune privilege (reviewed in
Ref. [3,9]).

Migrating cytotrophoblastic cells select for expression
mainly the HLA class Ib antigens from among the cluster
of HLA genes in the MHC. HLA-A and -B class Ia antigens
as well as those from the HLA class II genes (HLA-D), all
of which are highly polymorphic and stimulate immedi-
ate or chronic graft rejection when foreign to the host, are
entirely unexpressed. Lack of diversity in expression of the
various HLA class I genes is believed to be compensated in
some respects by diversity in expression of isoforms. For
example, overlapping functions of the HLA-G isoforms is
thought to protect against pregnancy loss when a genetic
abnormality obviates expression of two of the seven vari-
ants, HLA-G1 and -G5, but leaves other HLA-G glycopro-
teins in place [10]. This and other functional aspects of the
isoforms are discussed in a recent comprehensive review
[3].

HLA-G: expression, regulation and function
Each of the strategies used in semi-allogeneic human preg-
nancy is of considerable interest but some may be abso-
lutely central to a successful conclusion. For example,
humans completely lacking expression of the three genes
encoding the complement regulatory proteins and indi-
viduals failing to express the entire roster of proteins
derived from the HLA-G gene are unknown. By contrast, a
number of immune suppressive cytokines and chemoat-
tractants for hemopoietic cells have been identified in the
pregnant uterus and placenta that might compensate for
one another, and maternal production might compensate
for fetal deficiencies and vice versa, as has been shown in
the TGF-β1 deficient mice.

Here, we will focus on the HLA-G gene, presenting evi-
dence that has appeared in the scientific literature sup-
porting immune suppressive roles for its products and
discussing some aspects of its probable functions in preg-
nancy.

Novel aspects of the HLA-G gene
This HLA class Ib gene is unusual in many respects
(reviewed in Ref. [3]). First, as is the case for all of the class
Ib genes, the HLA-G gene has few alleles; only five func-
tionally different proteins have been reported. The single
HLA-G message is alternatively spliced to yield at least
seven different messages. Four of these encode membrane
bound proteins and three encode soluble proteins. The
soluble antigens result from message termination by stop
codons in intron 4 (HLA-G5, HLA-G6) and intron 2
(HLA-G7). The membrane-bound isoforms have short-
ened cytoplasmic tails and deletions in promoter ele-
ments that protect against upregulation by inflammation-
associated cytokines. The crystal structure of HLA-G, pre-
sumably HLA-G1 since this isoform is encoded by the
most abundant mRNA, has been defined and reportedly
resembles HLA-E more than HLA class Ia molecules [11].
The only isoforms that have been evaluated for peptides
in the H chain/L chain cleft are HLA-G1 and its soluble
counterpart, HLA-G5, which, in the placenta, capture only
a small repertoire of peptides [12]. This may limit the
effectiveness of these isoforms to present antigens to cyto-
toxic T lymphocytes.

Even though HLA-G has a limited number of functional
alleles, these may be critical to determining the quantities
of soluble HLA-G that find their way into serum/plasma.
In 2000, Rebmann et al reported relationships between
HLA-G alleles and levels of soluble HLA-G glycoproteins
in male and female plasma that implied a level of genetic
control over expression or secretion of the HLA-G anti-
gens [13]. The techniques used in these and other studies
[14] were designed such that the only HLA-G molecules
that would be detected were those where the heavy (H)
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chains were associated with light (L) chains, β2-
microglobulin (β2-m), i.e., which can only take place in
the isoforms containing the α2 domain, which is a
required element for H chain/L chain associations.

Evidence for immune suppression and a role in pregnancy
The scientific literature now holds many reports of how
HLA-G is involved in creating tolerance, but most are
associative rather than clearly illustrative of definitive
function. For example, high levels of the two soluble HLA-
G isoforms, HLA-G5 and HLA-G6, are associated with suc-
cessful organ transplantation [15]. Further, HLA-G5
appeared to be the more important isoform. Although the
soluble isoforms were detectable only in 18% of patients
tested (9 of 51), HLA-G5 was more frequently chosen for
production (7 of 9 patients) than HLA-G6 (2 of 9
patients).

Soluble HLA-G circulates in pregnant women [16], is
present in amniotic fluid [13], and is found in the super-
natant culture media from in vitro cultured embryos [17].
Production of soluble HLA-G is associated with successful
IVF therapy, suggesting that HLA-G production may be a
marker for embryo quality. However, it is not always clear
in these studies whether the soluble HLA-G was generated
from the same embryo that successfully implanted. Fur-
ther, low plasma HLA-G in early gestation correlates with
later development of preeclampsia [18]. Hviid and col-
leagues have been particularly productive in correlating
HLA-G genotypes and success of in vitro fertilization and
pregnancy outcome [19]. Their studies have addressed the
role of a 14 bp deletion/insertion polymorphism in the 3'
untranslated region of exon 8. Furthermore, these authors
have reported that levels of HLA-G5 and interleukin-10
(IL-10), an immunosuppressive cytokine believed to be of
central importance in pregnancy, are not linked [20] as
has been suggested by others. Data we have published on
lack of stimulation of IL-10 production by interferon-γ-
activated, HLA-G5/G6-stimulated mononuclear phago-
cytes [21] are consistent with the Hviid findings.

Expression of HLA-G at the maternal-fetal interface
A certain spectrum of HLA antigens is expressed in the
migrating, invasive cytotrophoblast cells. As these cells
drive toward the decidua, their expression of the HLA anti-
gens changes dramatically. Precursor villous cytotrophob-
last cells express only one HLA-G isoform, HLA-G5. As the
leading edge of the trophoblastic column nears the
decidua, the cytotrophoblast cells gain expression of mul-
tiple HLA class Ib molecules, including at least one mem-
brane HLA-G isoform, HLA-G1, possibly a second, HLA-
G2, HLA-E and possibly also HLA-F. A second soluble iso-
form, HLA-G6, appears also to be expressed although this
is as yet unconfirmed [22]. The cells also express one HLA
class Ia antigen, HLA-C [23]. Interestingly, these new anti-

gens are expressed as oxygen levels increase in the region,
suggesting a potential link. Recent experiments in our lab-
oratory (Figure 1) show that HLA-G1, -G2, -G5 and -G6
mRNAs are upregulated by hypoxia, but whether this
upregulation is carried through to translation or, alterna-
tively, that translation requires one or more additional
signals is in question.

Functions of HLA-G
The functions of the products of the HLA-G gene have
been explored using many experimental approaches and
have included studies on HLA-G-transgenic mice, HLA-G
proteins isolated from HLA-G-expressing tumor and
transfected cells and recombinant proteins generated in
human eukaryotic cells (reviewed in Ref. [3]).

HLA-G contributes to uterine and placental immune priv-
ilege by targeting various subpopulations of hematopoi-
etic cells with immunological functions and driving the
targeted cells into immune suppressive modes (Table 1).
Cell bound isoforms of HLA-G program uterine natural
killer (NK) cells into pathways of tolerance [24-31]
although this may also be a property of HLA-E. Soluble
HLA-G proteins influence cytokine production by blood
mononuclear cells [32] and profoundly affect cytotoxic T
lymphocytes [22,28,30,33-37], inducing T lymphocyte
death under some circumstances [36] and reducing pro-
duction of the critical CD8 molecule under others [22].
Helper T lymphocytes are programmed into tolerance-
associated pathways [38,39]. HLA-G5 and -G6 drive pro-
duction of the immunosuppressive cytokine, TGF-β1, by
one type of antigen presenting cell, the mononuclear
phagocyte [21], and tolerize a second type, the dendritic
cell [40-43].

The data collected thus far also suggest that the HLA-G
glycoproteins may have additional functions at the mater-
nal-fetal interface that promote pregnancy. These latter
functions may include modulation of cell trafficking and
assistance in host defense.

Paan-AG: studies on protein expression and gene 
regulation
Orthologues of HLA-G have been identified in non-
human primates (reviewed in Ref. [44,45]). In Old World
monkeys that have been examined so far, the orthologue
of HLA-G appears to be a pseudogene [46]. Interestingly,
a unique gene locus, which appears to be evolutionarily
related to the HLA-A locus , has been identified in two spe-
cies of Old World Monkeys, the rhesus monkey (Mamu-
AG) [46] and the olive baboon (Paan-AG) [48,49].
Despite the similarity to the HLA-A locus, the messages
and proteins encoded by this gene are strikingly similar to
those of the HLA-G locus (reviewed in Ref. [45,50]), lead-
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Exposure of term cytotrophoblast cells to low oxygen increases steady state levels of HLA-G mRNAsFigure 1
Exposure of term cytotrophoblast cells to low oxygen increases steady state levels of HLA-G mRNAs. Cytotro-
phoblast cells harvested from a term placenta using gradient centrifugation and purified by magnetic bead technology were 
>98% cytokeratin-7 positive. The cells were cultured for 72 hr under ambient (20% O2) and two hypoxic (8%, 2%) conditions. 
RT-PCR experiments were conducted using mRNA-specific primers. The results were analyzed using scanning densitometer 
against a stable message (β2m). Note that the abundance of transcripts encoding HLA-G1, -G2, -G5 (sHLA-G1), and -G6 
(sHLA-G2) were inversely related to levels of O2. Under 2% O2, mRNAs encoding HLA-G1 and -G5 were more profoundly 
enhanced (×7, ×4, respectively) than those encoding HLA-G2 and -G6 (×2, ×2, respectively).

Table 1: Immunoregulatory effects of HLA-G.

Cellular Target of HLA-G Functional Effect References

Natural killer cell Prevents cytolytic killing 24–28
Inhibits migration 29
Induces apoptosis 30
Induces proliferation, IFNγ production 31

Blood mononuclear cells Regulates cytokine production 32
Cytotoxic T cell Suppresses cytolytic killing 28, 30, 33, 34

Regulates cytokine production 35
Induces apoptosis 30, 36, 37
Decreases expression of CD8 22

Helper T cell Decreases proliferation 38
Induces suppressive phenotype 39

Monocyte/macrophage Induces TGF-β1 production 21
Dendritic cell Reduces stimulatory capacity 40, 41

Alters maturation 41–43
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ing to the hypothesis that the AG locus may be the func-
tional homologue of HLA-G in these species.

The Paan-AG gene, message and protein expression
Recent studies in our laboratory have characterized regu-
latory sequences in the 5' and 3' termini of the Paan-AG
gene expressed in the olive baboon (Papio anubis). The
coding region of this gene is very similar to that of HLA-G,
with eight exons encoding a leader peptide, three external
domains, a transmembrane region and a cytoplasmic tail.
This study showed that in the baboon placenta, the Paan-
AG message is alternatively spliced to generate at least
seven different-sized transcripts [49]. The differential
splicing eliminates one or more exons from the message
without changing the open reading frame, or results in
retention of one or more introns. One of these transcripts
retains intron 4 and encodes a soluble glycoprotein with
three external domains and a unique 21 amino acid
sequence at the carboxyl terminal, similar to HLA-G5.
This glycoprotein was detected in first trimester placental
villous cytotrophoblast and syncytiotrophoblast, and in
extravillous cytotrophoblast cells in term placental basal
plate.

Four of the transcripts (Paan-AG1, Paan-AG2, Paan-AG3,
Paan-AG4) encode membrane-bound class Ib MHC glyc-
oprotein isoforms. Paan-AG1 protein expression was sim-
ilar to that of Paan-AG5 while Paan-AG2 protein was not
detected in these tissues [49]. Similar results were
obtained from analysis of the rhesus monkey counterpart,
Mamu-AG[48,50]. These properties are similar to those
observed in HLA-G, as summarized in Table 2. The main
differences between HLA-G and the AG locus were
observed in the untranslated regions, as described below.

Regulatory regions
Comparison of the sequences of the promoter and 3'
untranslated region (3'UTR) of HLA-G and Paan-AG told
a different story. We cloned the 5' and 3' untranslated
regions of Paan-AG and compared it to other human
MHC class I genes. Sequence comparisons showed that
potential regulatory elements in Paan-AG strikingly
resembled those in class Ia and differed in major respects
from those in HLA-G [51]. Unlike HLA-G, which contains
a partially deleted and non-functional interferon-γ stimu-
lated response element (ISRE), Paan-AG contained an

intact ISRE in the promoter. Furthermore, studies using
luciferase reporter assays showed that the Paan-AG ISRE
was functional [51]. Basal activity of Paan-AG ISRE and
response to interferon-γ was similar to that of class Ia
MHC genes. Further, we identified a potential ISRE in the
3' untranslated region of Paan-AG that is known to be
functional in HLA-A2 but is deleted in HLA-G. No tissue-
specific control element has been identified so far in
either in HLA-G or Paan-AG, but studies are under way in
our laboratory to further characterize the untranslated
regions of Paan-AG.

The structural similarities, common features of organ-spe-
cific expression and splicing of the message, as well as
similar patterns of protein expression in placentas suggest
that studies on Paan-AG may be of value in dissecting the
functions of the class Ib proteins in human pregnancy,
although both cell-specific expression of proteins and the
regulation of this gene may differ from that of HLA-G.

Conclusion
Pregnancy in mammals that employs hemochorial pla-
centation, where maternal and fetal tissues are not sepa-
rated by a layer of endothelial cells or a basement
membrane, requires re-design of the interfacing maternal
and fetal tissues. Human pregnancy is characterized by an
abundance of these changes, among which is production
of HLA class Ib molecules. Further studies are required to
establish unequivocally that HLA-G is essential to
immune privilege in semiallogeneic pregnancy.
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Table 2: Common characteristics of the HLA-G, Paan-AG and Mamu-AG genes and their proteins

1. Limited polymorphism with only five functionally distinct HLA-G alleles and two Paan-AG alleles; 11 functionally uncharacterized Mamu-AG alleles 
identified so far.
2. Alternatively spliced mRNA that yields transcripts encoding multiple membrane-anchored and soluble protein isoforms
3. Truncation of the cytoplasmic tail due to the presence of a pre-mature stop codon in exon 6
4. High steady state levels of mRNA expression in the placenta and low expression in other tissues
5. Limitation of protein expression to very few tissues, notably the trophoblast cells in the placenta
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