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Introduction
Susceptibility to type 2 diabetes mellitus (T2DM) is influ-
enced by genetic variation. Approaches to discovery of
genes affecting T2DM susceptibility include linkage analysis
and candidate gene association analysis. More than 20
genome scans for linkage to T2DM have been reported [1•],
and many groups have performed genome-wide quantita-
tive trait locus linkage analysis for T2DM-related traits, such
as glucose or insulin metabolism, obesity, energy metabo-
lism, and lipids or lipoproteins [2]. The first gene described
based on a genome-wide screen and positional cloning is
CAPN10 [3], and recent meta-analyses defined a 19% and a
17% increased risk, respectively, to carriers of the C allele of
intronic “SNP (single nucleotide polymorphism) 44” [4]
and carriers of the GG genotype of intronic “SNP 43” [5].
Primarily as the result of candidate gene studies, more than
40 different variants have been proposed to be associated
with T2DM [6]. Meta-analyses have described significant
increased risk associated with nonsynonymous changes in
PPARG (Pro12Ala; odds ratio [OR] = 1.27) [6] and KCNJ11
(Glu23Lys; OR ~ 1.13 to 1.49) [7–11]. Other previously
reported variants may represent T2DM susceptibility genes
that have not yet been confirmed widely.

A monogenic form of T2DM, maturity-onset diabetes of
the young (MODY), has a strong genetic component. MODY
is characterized by an early age of onset, autosomal-domi-

nant inheritance, and primary defects in pancreatic β-cell
function. Mutations causing MODY and other early-onset
forms of diabetes have been identified in at least eight genes,
including hepatocyte nuclear factors 4-α (HNF4A), 1-α
(HNF1A), and 1-β (HNF1B), glucokinase (GCK), insulin-
promoting factor-1/pancreatic duodenal homeobox 1
(IPF1), neurogenic differentiation 1 (NEUROD1), islet-
brain-1 (also known as mitogen-activated protein kinase 8
interacting protein 1, MAPK8IP1), and the insulin gene
(INS) [12•]. These genes have been considered candidates
for T2DM in individuals with an older age of onset. Ten per-
cent to 20% of MODY families are apparently not due to
mutations in these genes [12•].

Evidence for Linkage to T2DM on 
Chromosome 20q
At least 10 groups have reported evidence for chromosome
20q linkage with T2DM (Table 1) [13,14,15••,16–25]. Ini-
tially, three groups tested for linkage on chromosome 20q,
motivated in part by the location of the MODY gene HNF4A;
these groups described evidence of T2DM linkage in Cauca-
sians [13,18,22]. Other reports of linkage to this region based
on genome-wide studies have been described in other popu-
lations of Caucasians [14,19,20], Asians [16,17,24], and Afri-
cans [25]. Some of these studies have been updated to include
additional markers or samples [15••,21,23]. In the FUSION
(Finland-United States Investigation of Non-Insulin-Depen-
dent Diabetes Mellitus Genetics) study, genotyping additional
markers in 495 families increased the maximum logarithm of
the odds (LOD) score to 2.48, but a second sample of 242
independent families showed no evidence for linkage on
chromosome 20q, and the combined samples showed a max-
imum LOD score on chromosome 20q of only 0.51 [21].
Chromosome 20q has also been implicated in linkage studies
of other diabetes-related traits, including obesity [26,27],
insulin [28,29], energy metabolism [30], and lipids [31,32],
and there are mouse quantitative trait loci for obesity in the
syntenic region of chromosome 2 [28,33].

Identification of Common Variants Near 
HNF4A Associated with T2DM
At least three groups evaluated evidence that common variants
on chromosome 20q may have an impact on risk to T2DM
[34,35,36••]. Two groups independently identified equivalent
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DNA variants near HNF4A that were associated with T2DM in
study participants from Finland and Israel [15••,36••] using
somewhat different approaches. In addition, HNF4A was
tested as a T2DM candidate gene independent of evidence for
linkage, and a haplotype of common variants was found to be
associated with T2DM [37••]. These three studies will be
described in greater detail below.

The HNF4A protein is a widely acting transcription factor
in the steroid hormone receptor family. The protein plays an
important role in development, metabolism, and differentia-
tion. HNF4A is expressed in the liver, pancreatic islets, kid-
ney, and intestine, has two known promoters designated P1
and P2, and has at least nine splice variants [38]. The P2 pro-
moter is active in pancreatic β cells and hepatocytes and is
located 46 kb upstream of the P1 promoter, which is active in
hepatocytes [39,40]. The HNF4A protein functions as part of
a complex transcriptional network with many downstream
targets. Recently, HNF4A was found to be bound to promot-
ers of 42% of genes actively transcribed in liver cells and 43%
of genes actively transcribed in pancreatic islet cells [41•].

Fine-mapping in the chromosome 20q linkage region
Genetic fine-mapping of a linkage region followed by study
of positional candidate genes provides an alternative to the
classical candidate gene approach. Fine-mapping acknowl-
edges that our a priori knowledge of the genes involved in
diabetes is limited and so more thoroughly investigates the
region at the expense of additional genotyping. To thor-
oughly assess evidence for association across a region, fine-

mapping requires densely spaced markers, with more mark-
ers in regions of greater recombination. The HapMap project
(http://www.hapmap.org) is providing excellent resources
and will soon allow a large fraction of common genetic vari-
ability to be assayed [42].

The fine-mapping approach used by FUSION investiga-
tors (http://fusion.sph.umich.edu) began with a screen for
SNP-T2DM association using DNA pools [36••]. This
approach enabled more SNPs to be screened for a fixed cost,
although with the disadvantage of increased variability in
allele frequency estimation due to pool construction and
measurement error [43]. Using DNA pools of 182 to 499
case or control samples, the investigators screened an initial
291 SNPs for evidence of association with T2DM. This pre-
liminary density of approximately 25 kb per SNP has not
captured all common variability between individuals in this
region. For the 21 SNPs estimated to have significant allele
frequency differences between case pools and control pools,
all individuals comprising the pools were genotyped. The
most strongly associated SNP based on individual geno-
types was rs2144908, located in intron 1D, 1272 bp down-
stream of the ATG translation initiation site corresponding
to the P2 promoter. Once this first associated SNP was iden-
tified, 61 other SNPs in the gene region were tested for asso-
ciation. Evidence for association was observed with SNPs
spanning a 59-kb region, including both the P2 and P1 pro-
moters and coding exons 1 to 3. Figure 1 shows the location
of SNPs with evidence for association. More recently, stron-
ger evidence for T2DM-SNP association was identified with

Table 1. Published genome scans with evidence for linkage to chromosome 20q

Study Population Families/sample Phenotype Score cM

Zouali et al. [13] French 148 families, 301 ASP T2DM 1.31 MLS 50.5
Permutt et al. [14] Ashkenazi Jewish 267 families, 472 ASP T2DM 2.05 NPL 50.8
Permutt et al. [14], updated by 

Love-Gregory et al. [15••] 
Ashkenazi Jewish 199 families, 299 ASP T2DM age of 

diagnosis > 35 y
2.01 MLS 50.8

Iwasaki et al. [16] Japanese 164 families, 256 ASP T2DM 1.99 MLS 55.8
Mori et al. [17] Japanese 159 families, 224 ASP, 

359 affected individuals
Lean T2DM 2.32 MLS 61.8

Mori et al. [17] Japanese 159 families, 224 ASP, 359 
affected individuals

T2DM 1.67 MLS 61.8

Bowden et al. [18] Caucasian 21 families, 53 ASP T2DM + diabetic 
nephropathy

1.48 MLS 66.2

Vionnet et al. [19] French 143 nuclear families, 677 ASP Large T2DM families 1.72 MLS 66.2
Ghosh et al. [20], 

updated by Silander et al. [21] 
Finnish 495 families, 1129 affected 

individuals
T2DM 2.48 MLS 66.2

Ji et al. [22], 
updated by Klupa et al. [23] 

Caucasian 43 families, 241 affected 
individuals

Middle-age-onset 
T2DM

5.32 NPL 75

Luo et al. [24] Han Chinese 102 families, 282 affected 
individuals

T2DM 1.52 NPL 75

Rotimi et al. [25] West African 343 ASPs, 691 affected 
individuals

T2DM 1.80 MLS 76.4

Zouali et al. [13] French 42 families, 55 ASP Early-onset T2DM 2.34 MLS 82.1
Rotimi et al. [25] West African 343 ASPs, 691 affected 

individuals
T2DM 2.63 MLS 92.5

ASP—affected sibling pair; cM—centimorgan map position of the maximum logarithm of odds score on the Marshfield genetic map; MLS—maximum 
logarithm of the odds score; NPL—nonparametric linkage score; T2DM—type 2 diabetes mellitus.
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rs6031558 (P = 0.002, OR = 1.36). This SNP has an allele
frequency of 0.749 in FUSION cases and 0.686 in FUSION
controls. The SNP is not in strong linkage disequilibrium
(LD) with the previously identified SNPs near P2
(rs6031558 with rs2144908, |D’|< 0.10).

Candidate gene in the chromosome 20q 
linkage region
The investigators studying Ashkenazi Jewish individuals from
Israel also observed evidence for linkage on chromosome 20q
(Table 1) [14]. In their linkage region, an initial screen for
T2DM association using a similar approach with DNA pools
did not identify reproducible associations [35], so they pur-
sued candidate genes using more closely spaced SNPs [15••].

These investigators tested SNPs spanning 78 kb around
HNF4A in 275 Ashkenazi Jewish individuals with T2DM and
342 control individuals. They identified evidence for associa-
tion initially with SNP rs1884614 located near the P2 pro-
moter and rs3818247 located in intron 9 near the 3’ end of
the gene. Once these initial associated SNPs were identified,
additional SNPs were tested for association. As in the
FUSION study, evidence for SNP-T2DM association was
observed with SNPs spanning both the P2 and P1 promoter
regions and coding exons, a region of 82 kb (Fig. 1) [15••].

These two groups shared preliminary results and discov-
ered that the T2DM-associated SNPs each group had identi-
fied near the P2 promoter were in perfect LD (r2 = 1) with one
another. That is, the same alleles at SNPs rs2144908 and
rs1884614, as well as SNPs rs4810424 and rs1884613, were
always found together on the chromosomes in both the Finn-
ish and Ashkenazi Jewish samples. In contrast, the T2DM-
associated SNPs that each group had identified in intron 1D,

the P1 promoter region, and among the distal coding exons
were not associated in the other study [15••,36••]. These
results may be explained, in part, by the significant evidence
for historic recombination between the P2 and P1 promoters.
It remains to be determined whether there is one common
underlying variant responsible for evidence of association in
both populations, or whether there is more than one underly-
ing variant in one or both populations.

Candidate gene independent of evidence for linkage
Common SNPs in HNF4A were also detected in a candi-
date gene survey that did not use prior evidence for linkage
as a criterion for gene selection [37••]. These investigators
tested 152 SNPs in 71 genes for evidence of association
with T2DM in 517 Caucasian individuals from the United
Kingdom with T2DM and 517 control subjects, and they
tested the same SNPs in a cohort of 1100 Caucasians for
evidence of association with related quantitative traits. In
this study, three SNPs in HNF4A were tested individually
and as haplotypes. The SNPs are located in exon 1C and
intron 1B, downstream of the P1 promoter. Although nei-
ther SNP showed individual evidence for association, a
common haplotype with population frequency 0.33 of G
at SNP rs2071197 (Val49Met) and C at SNP rs736824
showed decreased risk of T2DM (OR 0.83; 95% confidence
interval, 0.68 to 1.00). In addition, this same haplotype
was significantly associated with increased insulin secre-
tion compared with the other two haplotypes observed.
The SNPs on this haplotype are located near T2DM-associ-
ated SNPs identified separately by the studies discussed
earlier (Fig. 1). In the Finnish sample, this haplotype
shows the same trend but is not significantly associated

Figure 1. HNF4A gene structure and single nucleotide polymorphisms (SNPs) reported to be associated with type 2 diabetes mellitus (T2DM) or 
maturity-onset diabetes of the young (MODY). Symbols represent SNP association with T2DM in Finnish samples (triangles) [36••], Ashkenazi 
Jewish samples (squares) [15••], or both (circles); diamonds represent SNPs in a haplotype associated with T2DM in United Kingdom samples 
[37••]. Labels below the gene structure represent the approximate locations of rare variants implicated in MODY or T2DM. (Adapted from 
Silander et al. [36••]; with permission.)
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with T2DM (case frequency = 0.306, control frequency =
0.331, OR = 0.89, P = 0.32). These variants may be in LD
with causative variants shared across studies.

Confirmation of association between T2DM and 
HNF4A SNPs near the P2 promoter
Recently, other groups have tested the described SNPs near
the P2 promoter for evidence of association (Table 2). As
expected for a complex trait, whereas some of these replica-
tion studies confirm significance others may not. Consistent
with the modest significance level in the original two studies
and the winner’s curse [46,47], replication studies have
reported lower ORs and larger P values. The original studies
may have overestimated the ORs associated with the risk
allele due to bias or population diversity [46,48], the use of
familial cases of T2DM, or because the original studies have
some evidence for linkage at HNF4A, which strengthened the
power to detect the association [49]. A meta-analysis is under-
way to determine whether these variants are associated with
T2DM in combined population samples. Although these
DNA variants show evidence for association with T2DM,
functional studies will be needed to identify the putative caus-
ative variant(s) and it remains possible that a nearby gene is
affected rather than (or in addition to) HNF4A.

SNP association and evidence for linkage
As expected for genetic variants with modest effect, tests for
association can detect variants in regions without signifi-
cant evidence for linkage. Within the FUSION study, the
two groups of families, designated FUSION 1 and FUSION
2, showed very different evidence for linkage, with maxi-
mum LOD scores of 2.48 and 0.00, respectively, near
HNF4A [21]. Yet, the same allele frequency of 0.21 was
observed in the genotyped cases from the 532 FUSION 1
and 263 FUSION 2 families, with one case genotyped from
each family. The modest ORs are also consistent with the
observation of significant evidence for association in at
least two studies [44•,45•] where no evidence for linkage
was observed on chromosome 20q [50–52].

HNF4A in MODY Versus T2DM
At least 20 possible mutations in HNF4A have been
described to cause MODY [53]. These variants include mis-
sense, nonsense, and frameshift mutations, as well as an in-
frame insertion and a putative splicing variant. In addition,
MODY mutations that indicate the importance of the P2 pro-
moter include a translocation disrupting the spacing between
the P2 and P1 promoters, and mutations in the IPF1 and
HNF1A transcription factor binding sites in the P2 promoter.
None of the mutations have been determined to have a dom-
inant negative effect, suggesting that the likely molecular
mechanism for MODY is haploinsufficiency.

In addition to severe hyperglycemia, patients with MODY
carrying HNF4A mutations exhibit impaired insulin secre-
tion, suggesting that the primary defect is in pancreatic β cells
[12•]. Serum triglyceride concentration and apolipoproteins
AII and CIII have been reported as reduced in some individu-
als with MODY due to HNF4A mutations [54]. In compari-
son, HNF4A SNPs associated with T2DM also show evidence
for association with similar quantitative traits. In FUSION,
SNP rs2144908 shows evidence for association with acute
insulin response to glucose, a measure of β-cell function, in
unaffected at-risk offspring [36••]. The haplotype identified
by Barroso et al. [37••] is also associated with insulin secre-
tion. In a study of the Amish, inheritance of the A “risk” allele
at rs1884614 is associated with increased glucose area under
the curve during an oral glucose tolerance test, consistent with
decreased insulin secretion [45•].

Direct mutation screens of coding and proximal pro-
moter regions of HNF4A have identified rare variants in indi-
viduals with T2DM (Fig. 1) [55–62]. The T130I [56,63],
present with frequencies up to 0.05, is associated with T2DM
in Danes (P = 0.04, OR = 1.26), and has been shown to
reduce transactivation in a reporter system in some, but not
all, cell types [56,64]. Other variants, described in at least one
T2DM family, include V393I [57], a deletion of an Sp1 tran-
scription factor binding site in the P1 promoter [61]; and
V255M, which has also been shown to reduce transactivation
[60,64,65]. The haplotype relationship between these rare

Table 2. Published reports testing evidence of association between T2DM and HNF4A SNPs near 
the P2 promoter*

Study Population Samples† Result

Silander et al. [36••] Finnish 795 cases, 414 controls P = 0.011, OR = 1.33
Love-Gregory et al. [15••] Ashkenazi Jewish 275 cases, 342 controls P = 0.008, OR = 1.45
Weedon et al. [44•] U.K. Caucasians 2004 cases, 1635 controls, 

509 trio families
P = 0.02, OR = 1.15

Damcott et al. [45•] Amish 137 T2DM, 139 IGT, 
342 NGT individuals 

T2DM vs NGT: Trend toward 
association, P = 0.09, OR = 1.40. T2DM 
+ IGT vs NGT: Trend toward 
association, P = 0.07, OR = 1.35

*rs1884613, rs1884614, rs2144908, or rs4810424.
†When unspecified, cases are individuals with T2DM.
IGT—impaired glucose tolerance; NGT—normal glucose tolerance; OR—odds ratio; SNPs—single nucleotide polymorphisms; 
T2DM—type 2 diabetes mellitus.
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mutations and the common variants described earlier is not
yet known.

Taken together, these data suggest possible mechanisms
for how HNF4A variants may increase susceptibility to T2DM.
The T2DM-associated variants identified to date are located
mostly in noncoding nonpromoter regions and the many
previous screens of promoters, exons, and intron/exon
boundaries suggest that T2DM susceptibility variants would
regulate gene expression through enhancers or chromosomal
biology. Loss-of-function mutations leading to MODY should
decrease gene function by 50%, suggesting that T2DM suscep-
tibility variants decrease gene function by less than 50%.
Given the very large number of promoters to which HNF4A
protein binds [41•], the T2DM susceptibility variants may
have a very small effect on HNF4A gene expression, an effect
that is amplified by downstream genes. Alternate mecha-
nisms include altered HNF4A expression timing during pan-
creas or liver development, an altered ratio of splice variants,
or feedback from an isoform of HNF4A protein that had been
transcribed by the P1 promoter [66].

Next Steps Toward Identification of 
Causative Alleles
The common T2DM-associated SNPs identified to date were
more or less randomly chosen and are not likely the putative
functional variants. To determine the location of all possible
susceptibility variants requires additional testing of previously
discovered variants, and may require intense resequencing if
several rare risk alleles exist (allelic heterogeneity). Functional
studies of potential variants will be necessary to determine the
mechanism by which the variants act. These studies are chal-
lenging because there could be more than one predisposing
SNP, the predisposing SNP(s) could be rare, and there is
extensive LD, suggesting that the predisposing alleles could be
located tens of kilobases away from the original SNPs. In
addition, the functional effect may be too small to measure
and may be limited by tissue or timing of expression.

Are There Other Chromosome 20q Genes 
for T2DM?
The evidence for SNP-T2DM association at HNF4A may rep-
resent one of several chromosome diabetes susceptibility
genes on chromosome 20q. For example, there is evidence for
association between obesity [67], T2DM [68], insulin resis-
tance [69], and SNPs in the PTPN1 gene (protein tyrosine
phosphatase, nonreceptor type 1), located approximately 6.2
Mb from HNF4A. The presence of multiple underlying genes
could contribute to evidence for T2DM linkage observed in
multiple studies (Table 1).

The SNPs near the P2 promoter appeared to partition the
evidence for linkage in the FUSION 1 families and the Ash-
kenazi Jewish sample [15••,36••]. That is, families in which
the genotyped individual carried the SNP risk allele exhibit
substantially greater evidence for linkage on chromosome
20q than sibling pairs, where a genotyped individual did not
carry the SNP risk allele. However, these results do not mean
that the SNP fully explained the evidence for linkage. Full
explanation of a linkage signal may not be reached if sam-
pling variability by chance-generated excess allele sharing, so
that even predisposing SNPs wouldn’t necessarily account
fully for the observed linkage [3].

Conclusions
Several years after the identification of HNF4A as a gene
causing MODY, there is now accumulating evidence that
HNF4A may play a role in cases of T2DM as well. Initially,
HNF4A was weakened as a T2DM candidate because no
clearly predisposing variants were found in coding regions
or exon/intron boundaries or proximal promoter regions
[56,58,59,61,62]. As genotyping technology has improved,
the cost of screening genes and chromosomal regions more
thoroughly has decreased, which improves the chances of
identifying noncoding susceptibility alleles. These factors,
combined with the larger sample sizes necessary for good
power, may lead to further replications of genetic associa-
tion with T2DM. Perhaps other candidate genes previously
excluded as T2DM genes on the basis of screening exons,
exon/intron boundaries, and promoters will be found to
harbor noncoding susceptibility variants.

Future work will determine whether the HNF4A vari-
ants play a significant role in additional populations,
which allele(s) is functional, and how the variants impact
susceptibility. Additional studies may also identify relevant
upstream and downstream genes, as well as possible inter-
acting genes and environmental exposures.
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