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Abstract

Background: eIF2α is a regulatory node that controls protein synthesis initiation by its phosphorylation or

dephosphorylation. General control nonderepressible-2 (GCN2), protein kinase R-like endoplasmic reticulum kinase

(PERK), double-stranded RNA (dsRNA)-dependent protein kinase (PKR) and heme-regulated inhibitor (HRI) are four

kinases that regulate eIF2α phosphorylation.

Main body: In the viral infection process, dsRNA or viral proteins produced by viral proliferation activate different

eIF2α kinases, resulting in eIF2α phosphorylation, which hinders ternary tRNAMet-GTP-eIF2 complex formation and

inhibits host or viral protein synthesis. The stalled messenger ribonucleoprotein (mRNP) complex aggregates under

viral infection stress to form stress granules (SGs), which encapsulate viral RNA and transcription- and translation-

related proteins, thereby limiting virus proliferation. However, many viruses have evolved a corresponding escape

mechanism to synthesize their own proteins in the event of host protein synthesis shutdown and SG formation

caused by eIF2α phosphorylation, and viruses can block the cell replication cycle through the PERK-eIF2α pathway,

providing a favorable environment for their own replication. Subsequently, viruses can induce host cell autophagy

or apoptosis through the eIF2α-ATF4-CHOP pathway.

Conclusions: This review summarizes the role of eIF2α in viral infection to provide a reference for studying the

interactions between viruses and hosts.

Keywords: Virus, eIF2α, General translation inhibition, Stress granule, Cell replication cycle, Autophagy/apoptosis

Background

Cellular DNA undergoes transcription, mRNA transla-

tion and processing/modification to form protein mole-

cules with certain structures and functions. During this

process, translation initiation is an important step in

protein synthesis, which requires the participation of

many eukaryotic initiation factors.

eIF2, which is required for the initiation of most

eukaryotic translation (Fig. 1), mediates the binding of

Met-tRNAiMet and the ribosomal 40S subunit in a GTP-

dependent manner and initiates peptide chain synthesis.

Under normal circumstances, the GTP conversion factor

eIF2B converts inactive eIF2-GDP into active eIF2-GTP.

Next, eIF2-GTP, Met-tRNAiMet, the ribosomal 40S sub-

unit and other components (i.e., eIF1, eIF1A and eIF3)

form the 43S complex, which scans for the initiation

codon, AUG, along the mRNA. After the initiation

codon is recognized, GTP bound to eIF2 is hydrolyzed

to GDP by eIF5, and the initiation factors (eIF1, eIF2

and eIF5) bound to 40S dissociate (Fig. 4). Then, joining

of the 60S large subunit mediated by eIF5B forms a
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complete initiation complex with the 40S small subunit

and begins peptide chain synthesis. eIF2 is a heterotri-

mer composed of α, β and γ subunits, and its activity is

regulated by phosphorylation of its α subunit at Ser51.

Once eIF2α is phosphorylated, the eIF2 affinity for eIF2B

is increased, and the ability of eIF2B to convert eIF2-

GDP to eIF2-GTP is decreased or absent, resulting in

GTP that cannot cycle, eventually inhibiting translational

initiation [1–3]. In addition, the level of eIF2B in the cell

is 10 to 20 times lower than that of eIF2; therefore, small

changes in eIF2 phosphorylation can have a significant

effect on protein translation [5].

Four kinases that phosphorylate eIF2α have been

identified in mammals, namely, general control

nonderepressible-2 (GCN2), protein kinase R-like

endoplasmic reticulum kinase (PERK), double-

stranded RNA (dsRNA)-dependent protein kinase

(PKR), and heme-regulated inhibitor (HRI) [6]. These

four kinases are all Ser/Thr kinases that phosphorylate

Ser51 of the eIF2 α subunit under different stress con-

ditions, which weakens the eIF2 ability to bind GTP

during translation, resulting in the general translation

suppression. After viral invasion, eIF2α phosphoryl-

ation is both advantageous and disadvantageous to

cells: on the one hand, eIF2α phosphorylation shuts

down protein synthesis and prevents viral replication;

on the other hand, prolonged eIF2α phosphorylation

leads to apoptosis or autophagy. In this paper, we

discuss the role of eIF2α in viral infection and provide

a reference for studying the interactions between

viruses and hosts and the development of possible new

targeted drugs.

Main text

Viral infection and eIF2α phosphorylation

The four host kinases mentioned above play different

roles: PKR senses dsRNA during viral infection [7];

endoplasmic reticulum (ER) stress initiates the unfolded

protein response (UPR) to activate PERK [8]; HRI moni-

tors changes in hemoglobin levels [9, 10]; and GCN2 de-

tects amino acid starvation [11], UV damage, and viral

infection [12]. The main downstream substrate of these

four kinases is eIF2α, but other substrates of these

kinases have also been discovered. For instance, PERK

acts on nuclear factor erythroid 2-related factor 2 (Nrf2)

[13, 14], while PKR acts on nuclear factor kappa-light-

chain-enhancer of activated B cells (NF-kB) [15, 16] and

the tumor suppressor gene P53 [17]. This wide range of

kinase activity contributes to the ability of different

eIF2α kinases to sense different signals determined by

Fig. 1 eIF2α phosphorylation inhibits translation initiation. The GTP conversion factor eIF2B converts inactive eIF2-GDP into active eIF2-GTP. The

43S complex containing eIF2-GTP scans along the mRNA for the initiation codon AUG. Once eIF2α is phosphorylated, the function of eIF2B to

convert eIF2-GDP to eIF2-GTP is weakened or disappears, eventually leading to translational initiation inhibition [1–3]
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unique regulatory characteristics. However, in some

cases, the overlap of these stimuli leads to some redun-

dancy between kinases [18]. After a virus invades the

host cell, the host produces a corresponding stress

response that stimulates stress kinases (GCN2, PKR,

PERK, HRI), which affect eIF2α phosphorylation. Among

these kinases, GCN2 and PKR have antiviral effects in

the viral infection process. PERK plays a role in ER stress

caused by viral protein synthesis, and HRI may play a

role in the viral infection process. The four kinases play

important roles in coordination under stress. However,

under continuous viral infection, the virus promotes its

own replication by regulating different eIF2α kinases.

Viral infection and GCN2

GCN2 activation, which occurs when cells lack essential

amino acids, inhibits cellular protein translation [19, 20].

Recent studies have shown that GCN2 also plays an

important role in inhibiting viral infection. GCN2 is in-

volved in the innate antiviral response pathway of the

host defense against RNA viruses, and mice in which

GCN2 has been knocked out are more susceptible to

Sindbis virus (SINV) and have higher viral titers in their

brain than normal mice [21]. Human immunodeficiency

virus-1 (HIV-1) activates GCN2, and GCN2 inhibits

HIV-1 viral replication [22]. Similarly, GCN2 also has a

strong inhibitory effect on vesicular stomatitis virus

(VSV) [23]. Although GCN2 can inhibit viruses, viruses

can also regulate GCN2. For example, HIV-1 encodes a

protease (HIV-1Pro) that cleaves the viral precursor

polyprotein, which cleaves GCN2 and prevents its anti-

viral effect [22]. The K3L protein of vaccinia virus (VV)

interacts directly with the kinase catalytic domain of

GCN2, inhibiting GCN2 and the general amino acid

control pathway [24].

Viral infection and PERK

During viral infection, viral proteins pressure the host

ER, resulting in ER stress. Host cells respond to ER

stress, initiate the UPR, and activate the stress sensor

PERK, inositol-requiring enzyme 1 (IRE1) and activating

transcription factor 6 (ATF6). When the cell is at rest,

these three stress sensors bind to glucose-regulated pro-

tein 78 (GRP78), which is also called binding immuno-

globulin protein (Bip). Bip dissociates from the stress

sensors and activates them in the presence of accumu-

lated unfolded proteins in the ER (Fig. 2) [34, 35]. Under

ER stress, ATF6 is released from Bip and transported to the

Golgi complex, where it is sequentially cleaved by two prote-

ases, the site 1 and site 2 proteases (S1P and S2P), to form

active p50 ATF6; active p50 ATF6 is then transported to the

nucleus, where it activates the transcription of genes contain-

ing the ER stress response element (ERSE), such as Bip and

XBP1 [25–27]. Activated IRE1 cleaves 26 nucleotides from

XBP1 mRNA to generate spliced XBP1 mRNA, which is

translated to the active spliced XBP1 (XBP1(s)) protein.

Subsequently, XBP1(s) activates the transcription of genes

containing UPR elements (UPREs), such as ER-

degradation-enhancing alpha-mannosidase-like protein-1

(EDEM1), which causes misfolded protein degradation

[28–31]. Here, we focus on the importance of PERK in

regulating ER stress and cell survival. This kinase phosphor-

ylates the eIF2 α subunit and reduces protein synthesis to

relieve ER stress [32, 33].

Most viruses stimulate the PERK-eIF2α pathway after

infecting host cells, and there have been many reports

on this process. Porcine reproductive and respiratory

syndrome virus (PRRSV) phosphorylates eIF2α via a

PERK-dependent mechanism and induces the formation

of stress granules (SGs), which were shown to be

involved in the PRRSV-induced inflammatory signaling

pathway in MARC-145 cells [36]. In the late stage of

PRRSV infection, PERK-mediated eIF2α phosphorylation

inhibits tumor necrosis factor alpha (TNF-α) and inter-

feron alpha (IFN-α) production in alveolar macrophages

[37]. Hepatitis C virus (HCV) is a classic ER stress-

inducing virus that activates three stressors and regulates

this stress response [38–40]. The core protein and enve-

lope proteins (E1 and E2) of HCV mature in the ER and

are important proteins that cause ER stress [39–42].

However, HCV can modulate PERK kinase through the

E1 and E2 proteins. E1 can interact with PERK, inhibit

Bip and CHOP promoter activity and decrease CHOP

expression induced by the UPR [40]. The E2 protein has

a PKR-eIF2α phosphorylation site homology domain

(PePHD), which can mimic PERK’s natural substrate

eIF2α, thus reversing the translational repression

induced by ER stress [39]. In addition, enterovirus 71

(EV71), porcine circovirus type 2 (PCV2), bluetongue

virus type 1 (BTV1) and dengue virus (DENV) can also

enhance replication using the PERK pathway [43–46].

PERK pathway activation increases Ca2+ and intracellu-

lar reactive oxygen species (ROS) levels in the cytosol

and mitochondria to induce apoptosis [47].

Viral infection and PKR

The transcription of PKR, which has antiviral activity, is

induced by IFN, and PKR is activated early in viral infec-

tion. In turn, IFN induction requires PKR catalytic activ-

ity, and PKR plays a role in the MDA5 signaling

pathway [48]. PKR consists of an N-terminal dsRNA-

binding domain (dsRBD) and a C-terminal kinase cata-

lytic domain [49]. dsRNA produced during viral replica-

tion can bind the dsRBD at the N-terminus of PKR.

dsRNA binding causes conformational changes that lead

to dsRBD release from the kinase domain and induce

PKR dimerization through the kinase domain and subse-

quent PKR phosphorylation [50]. Activated PKR inhibits
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viral protein translation primarily by phosphorylating

eIF2α to achieve its antiviral effect.

Some viruses can use PKR activation to promote

their replication. After the treatment of CHSE-214

and TO cells with the PKR inhibitor C16, infectious

pancreatic necrosis virus (IPNV) induced reduced

eIF2α phosphorylation, and the viral titer was

decreased, indicating that IPNV proliferation de-

pends on PKR activation [51]. Similarly, in HCV-

infected cells, HCV replicated more efficiently only

when PKR was activated, and PKR activation inhib-

ition reduced the amount of virus [52]. One reason

for this finding is that the NS5B protein interacts

with PKR, and its RNA polymerase activity activates

PKR, resulting in the decreased major histocompati-

bility complex I (MHC-I) expression [53]. Another

reason for these effects is that HCV nonstructural

protein 5A (NS5A) can directly bind the PKR

protein kinase catalytic domain, thereby inducing

IFN resistance [54].

However, most viruses usually block the PKR antiviral

effects in a variety of ways (Fig. 3). 1. Hiding dsRNA is

one such strategy. A proline-rich structure on the RNA-

binding protein (RBP) encoded by the Us11 gene of her-

pes simplex virus type 1 (HSV-1) inhibits PKR activa-

tion, and the RBP can bind viral dsRNA to avoid PKR

recognition [55, 56]. 2. Blocking PKR activation is

another strategy. Encephalomyocarditis virus (EMCV),

PRRSV, the NS1 protein of influenza A virus (IAV) and

the accessory protein 4a of Middle East respiratory syn-

drome coronavirus (MERS-CoV) prevent PKR activation

and the effects of eIF2α phosphorylation on viral protein

synthesis [57–61]. 3. Some viral factors act as a pseudo-

substrate for PKR. The myxoma virus immunoregulatory

Fig. 2 Three UPR signaling pathways. Under ER stress, ATF6 is processed to form active p50 ATF6, which is then transported to the nucleus to

activate the transcription of genes containing an ERSE [25–27]. IRE1 cleaves 26 nucleotides from XBP1 mRNA to generate spliced XBP1 mRNA,

which is translated into the active XBP1(s) protein. Subsequently, XBP1(s) activates the transcription of genes containing an UPRE [28–31].

Similarly, PERK is activated under cellular stress, which phosphorylates eIF2α and reduces protein synthesis to relieve ER stress [32, 33]

Liu et al. Virology Journal          (2020) 17:112 Page 4 of 15



protein M156R, an effective PKR phosphorylation sub-

strate, competes with eIF2α, alleviating the effect of PKR

on viral protein synthesis [62]. 4. Other viruses degrade

PKR by the lysosome or proteasome pathway. Mouse

adenovirus type 1 (MAV-1) and foot-and-mouth disease

virus (FMDV) degrade PKR via the proteasome pathway

and lysosome pathway, respectively [63, 64]. 5. Another

strategy is PKR cleavage by viral proteases. After EV71

infection, the 3C protein can cleave PKR at position

Q188, resulting in decreased PKR expression [65].

Viral infection and HRI

HRI was originally thought to be mainly expressed in

nucleated red blood cells, where it regulates protein syn-

thesis and mature erythrocyte numbers. However, recent

studies have shown that HRI is also present in the liver

and phagocytic cells [66]. HRI is inactive at normal

hemoglobin concentrations; once hemoglobin concen-

trations are reduced, HRI can be activated by autophos-

phorylation [10]. The HRI heme-binding site is located

at its N-terminus and kinase insert domain [67], con-

taining H119, H120 and C409, which are required for

HRI function [10]. HRI is known to play a protective

role when the host is infected with bacteria [68, 69], but

there have been few reports on the role of HRI during

infections in mammals. HRI is the only activated stress

kinase in arsenite-treated L929 cells, and its activation

increases the protein expression and infection rate of

reovirus in cells after arsenite treatment [70, 71].

Recently, HRI was reported to be involved in the fish

immune response to viral infections. Rong et al. detected

HRI mRNA transcription and protein expression in

Paralichthys olivaceus immune organs and tissues, and

HRI transcription and translation in the P. olivaceus

head kidney and spleen tissues infected with turbot

Scophthalmus maximus L. rhabdovirus (SMRV) were

significantly enhanced [72]. Overexpression of HRI ho-

mologs from the orange-spotted grouper inhibited red-

spotted grouper nervous necrosis virus (RGNNV) repli-

cation and increased IFN-associated cytokine levels [73].

Effect of eIF2α phosphorylation on viral replication

eIF2α phosphorylation regulates host cell and virus

translation

Classic translation initiation in eukaryotic cells is

dependent on the ribosome scanning mechanism of the

cap structure (Fig. 4). The process occurs as follows: 43S

preinitiation complex assembly, 43S preinitiation com-

plex binding to mRNA, initiation codon (AUG) recogni-

tion, and 60S ribosomal subunit addition to form a

complete initiation complex and initiate translation [4].

After the virus invades cells, it can hijack or disturb

PABP, eIF4G, eIF4E, eIF2, etc., which are involved in

classic cap-dependent translation initiation, and reduce

Fig. 3 Viruses inhibit the antiviral effects of PKR. Viral dsRNA activates PKR, and activated PKR inhibits viral protein synthesis by phosphorylating

eIF2α (green arrow). However, viruses have evolved many escape mechanisms (red arrows), such as hiding dsRNA (HSV-1 [55, 56]), blocking PKR

activation (PRRSV [57], EMCV [58], IAV [59, 60], and MERS-CoV [61]), competing for PKR phosphorylation substrates (myxoma virus [62]), degrading

PKR by the lysosome or proteasome pathway (MAV-1 [63] and FMDV [64]) and cleaving PKR via viral proteases (EV71 [65])
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the efficiency of intracellular mRNA recruitment by

ribosomes [74–77]. Among these factors, eIF2 α subunit

phosphorylation disrupts 43S subunit formation, leading

to translation initiation cessation [78]. PRRSV infection

induces host translational shutdown, which is associated

with the C-terminal transmembrane (TM) region of viral

nonstructural protein 2 (nsp2). PRRSV-induced host

translational shutdown can be partially reversed by

eIF2α dephosphorylation or mTOR pathway reactiva-

tion, suggesting that both eIF2α phosphorylation and

mTOR signaling pathway attenuation contribute to

PRRSV-induced host translational arrest [79]. However,

not all viruses suppress ongoing host translation during

their infection cycle [80]. For instance, the gamma [1]

34.5 protein of HSV-1 and the V16 and F18 residues in

the African swine fever virus (ASFV) DP71L protein

regulate protein phosphatase 1 (PP1) to dephosphorylate

eIF2α, thereby avoiding general protein synthesis shut-

down [81, 82]. Notably, DENV and MNV has been

shown to trigger host cell translational shutdown

uncoupled from eIF2α phosphorylation in recent find-

ings [83–85], which may be a new strategy for inhibiting

host translation, and the mechanism for inhibiting host

translation requires further study.

Differences in viral nucleic acids and their struc-

tures can lead to differences in their translation. The

picornavirus genome does not have a 5′ cap structure

but contains an internal ribosome entry site (IRES)

sequence that can recruit a small ribosomal subunit

to the viral mRNA translation initiation site with the

help of some IRES-transacting factors (ITAFs) [86].

After coxsackievirus B type 3 (CVB3) enters the cell,

it releases its viral nucleic acid and uses the host

DAP5 protein to complete its first round of transla-

tion. Subsequently, the translated 2A protein cleaves

eIF4GI into two parts. The eIF4GI N-terminus is

recruited to the IRES sequence, effectively promoting

viral replication (Fig. 5a) [87]. However, picornavirus

infection can cause eIF2α phosphorylation, and

translation may show a dual mechanism of eIF2

Fig. 4 Classical cap-dependent translation initiation in eukaryotic cells. The process consists of 43S preinitiation complex assembly, 43S

preinitiation complex binding to mRNA, initiation codon (AUG) recognition, and 60S ribosomal subunit addition to form a complete initiation

complex and start translation [4]
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involvement: eIF2α phosphorylation was shown to

block EMCV RNA translation in the early infection

stages, synthesizing the proteins necessary for genome

replication, whereas in the late EMCV infection

phase, viral protein synthesis could occur in the pres-

ence of eIF2α phosphorylation [90]. In contrast, the

SINV genome contains a 5′ cap structure. eIF2α

phosphorylation weakens the translational function of

the host, which should be inhibited as host mRNAs

contain a 5′ cap structure; however, SINV mRNAs

are all efficiently translated after eIF2α phosphoryl-

ation [91]. This phenomenon occurs because SINV

subgenomic mRNA (sgRNA) has a downstream stable

hairpin (DSH) structure located in the coding region,

which facilitates non-AUG codon translation to

enhance viral protein synthesis (Fig. 5b). The muta-

tion of nucleotides on the DSH loop reduced transla-

tion initiation at the CUG codon, and DSH was

shown to interact with the 40S subunit to facilitate

sgRNA translation [88, 89].

How host translation initiation factors are used to pro-

mote the synthesis of a virus’s own proteins when eIF2α

is phosphorylated is a controversial issue. It is suspected

that viruses can use proteins other than eIF2 to promote

translation of their proteins. Terenin et al. suggested that

eIF2 was replaced by eIF5B and eIF3 in HCV-infected

cells and that Met-tRNAiMet was transported to the

small ribosomal subunit independently of eIF2-GTP,

thereby initiating viral IRES translation [92]. Kim et al.

hypothesized that eIF2A can replace eIF2 and bind the

HCV IRES to guide translation [93]. Subsequent studies

have suggested that HCV mRNA initiates translation

using the ternary Met-tRNAiMet-eIF2-GTP complex

under normal cellular conditions but does not rely on

eIF2 under stress because the interaction of the HCV

IRES with the preinitiation complex replaces its

interaction with eIF2 [94]. However, recent studies have

shown that eIF2, eIF2A, eIF2D, eIF4A, and eIF4G are

not involved in HCV IRES-driven translation [95].

Therefore, a deeper understanding of the viral transla-

tion mechanism is required. Changes in translation

mechanisms after viral infection may be better under-

stood through proteomics.

Although viruses can induce host translational shut-

down, they can selectively express host mRNA, allowing

the host to better serve the virus [80]. eIF2A or eIF2D

can be used to replace eIF2 in the expression of these

mRNAs or initiate non-AUG codon translation under

stressful conditions due to viral infection [96]. During

VV infection, the relative translational efficiency of

mRNAs involved in oxidative phosphorylation, which is

responsible for cellular energy production, was

increased, and the levels and activities of proteins

involved in oxidative phosphorylation were increased,

while cellular oxidative phosphorylation inhibition

significantly inhibited VV replication [97]. The alpha-

virus nsP3 protein YXXM motif binds the phos-

phatidylinositol 3-kinase (PI3K) regulatory subunit p85

and protein kinase B (PKB or AKT), increasing glucose

metabolism toward fatty acid synthesis [98]. In addition,

when eIF2α was phosphorylated, the stress-related

proteins ATF4 and CHOP could still be synthesized

[99]. The role of the eIF2α-ATF4-CHOP pathway in the

virus life cycle is discussed in a later section.

Fig. 5 IRES-dependent and cap-independent translation initiation. a CVB3 RNA employs an IRES to recruit the 40S subunit to start translation. The

host protein DAP5, some eIFs and ITAFs are required for IRES-driven translational initiation. Subsequently, the translated 2A protein cleaves eIF4GI

into two parts. The N-terminus of eIF4GI recruited to the IRES effectively promotes viral replication [87]. b SINV contains a 5′ cap structure. The

DSH structure on its sgRNA can initiate non-AUG codon translation to enhance viral protein synthesis [88, 89]
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eIF2α phosphorylation leads to SG formation

SGs are formed under stress (heat shock, starvation,

ultraviolet radiation, or viral infection) [100]. SG assem-

bly is driven by liquid-liquid phase separation (LLPS),

which occurs when the collective interactions of a core

protein-RNA interaction network breach a saturation

threshold under stress. Ras GTPase-activating protein-

binding protein 1 (G3BP1) is the central node of this

network, which functions as a tunable switch to trigger

RNA-dependent LLPS. Furthermore, G3BP1 can regu-

late the SG core network through positive or negative

cooperativity with other G3BP1-binding factors [101].

The core component of SG formation is stalled preini-

tiation translation complex aggregation, including

mRNA, the 40S ribosomal subunit, translation initiation

factors and many RBPs [102]. G3BP1, T cell-restricted

intracellular antigen 1 (TIA-1) and TIA-1-related pro-

tein (TIAR) are important RBPs in SGs. When cells

adapt to stress or when the pressure is removed and the

cells exhibit normal, balanced translation, SGs will disin-

tegrate [103]. In some cases, SG formation is dependent

on eIF2α phosphorylation [104], and phosphorylated

eIF2α reduces the tRNAMet-GTP-eIF2 ternary complex

activity level, which promotes TIA-1 transfer from the

nucleus to the cytoplasm, where it binds the 48S com-

plex to replace the ternary complex; these effects thus

promote polyribosome decomposition and simultaneous

mRNA transfer to SGs [105]. Since SGs isolate cellular

and viral mRNAs and translational initiation factors to

inhibit viral translation during viral infection, they are

antiviral structures.

SG formation provides a platform for antiviral signal-

ing pathways [58]. In the viral infection process, SGs can

recruit a variety of proteins related to innate immunity,

such as PKR, 2′-5′ oligoadenylate synthetase (OAS) and

ribonuclease L (RNase L), to protect cells [106]. OAS-

like protein 1 (OASL1), an OAS family member, is one

of the SG components during viral infection. It contrib-

utes to type I IFN expression by trapping viral RNAs in

SGs and increases the sensitivity of innate immune

receptors involved in dsRNA recognition in the early

infection stages [107]. Therefore, viral RNA and protein

levels were found to be significantly inhibited in the

early CVB3 infection stage [108].

Viruses have also evolved the following mechanisms to

regulate SGs and thus promote their survival (Table 1).

1. Viruses change the cellular localizations of key pro-

teins that make up SGs. The rotavirus VP2, NSP2 and

NSP5 proteins can cause eIF2α phosphorylation but pre-

vent SG formation by changing the localizations of the

cellular proteins that make up SGs, allowing viral mRNA

translation [5]. Mouse norovirus (MNV) and Zika virus

(ZIKV) can recruit SG-related proteins into viral replica-

tion complexes to proliferate efficiently [84, 109]. 2.

Viruses also cleave key proteins that make up SGs. This

strategy is most common in picornaviruses. EV71 infec-

tion induces SG formation via the PKR-eIF2α pathway,

but these SGs differ from typical SGs in their morph-

ology and composition [118]. Later studies demonstrated

that the EV71 2A protease cleaves eIF4GI to isolate cel-

lular mRNA, allowing the virus to induce atypical SG

formation and facilitate viral translation [110]. Another

study also demonstrated that enterovirus (EV) 2Apro

could antagonize SGs and inhibit IFN-β transcription

[119]. However, Zhang et al. suggested that EV71 2Apro

is a key viral component that triggers SG formation in

the early infection stages. As infection progresses, SGs

are destroyed due to G3BP1 cleavage mediated by the

viral protease 3Cpro [111]. These seemingly contradict-

ory results may be caused by different experimental

methods. Similarly, the Theiler’s murine encephalomy-

elitis virus (TMEV) and FMDV L proteins can inhibit

SG formation [113, 120]. Recent studies have shown that

the picornavirus L and 2A proteins can interfere with

Table 1 Strategies of some viruses for inhibiting SG formation. Viruses have evolved the following strategies to regulate SGs and

thus promote their survival

Virus Viral protein Strategies for resisting SG formation Reference

Rotavirus Changes the cellular localization of TIA-1 and PABP [5]

MNV Recruits G3BP1 to the viral replication complex [84]

ZIKV Alters the cellular localization of HuR [109]

EV71 2A Cleaves eIF4GI [110]

EV71 3C Cleaves G3BP1 [111]

PV 3C Cleaves G3BP1 [112]

FMDV L Cleaves G3BP1 and G3BP2 [113]

EMCV 3C Cleaves G3BP1 [58]

Picornavirus L or 2A Interferes with the eIF4GI-G3BP1 interaction [114]

HPIV3 Hides viral RNA [115]

HIV-1 Inhibits PKR and eIF2α phosphorylation [116, 117]
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the eIF4GI-G3BP1 interaction and block typical SG for-

mation [114]. In addition, EMCV and poliovirus (PV)

can inhibit SG formation by 3C-mediated cleavage of

G3BP1 [58, 112]. These results show that the picorna-

virus L, 2A and 3C proteins are SG antagonist proteins.

3. Additionally, viruses hide their viral RNA. Human

parainfluenza virus type 3 (HPIV3) induces SG forma-

tion by eIF2α phosphorylation and hides its newly syn-

thesized viral RNA in inclusion bodies (IBs) to escape

the antiviral effect of SGs [115]. 4. Moreover, viruses re-

duce eIF2α phosphorylation. The HIV-1 nucleocapsid

(NC) interacts with the host dsRNA-binding protein

Staufen1 to inhibit PKR and eIF2α phosphorylation,

thereby dissociating SGs and relieving translation shut-

down to achieve viral production [116, 117].

eIF2α phosphorylation blocks the cell replication cycle

The cell replication cycle is divided into three phases:

the G0 phase at rest, the intermitotic phase (G1 phase, S

phase, and G2 phase) and the mitosis phase (M phase).

After a virus invades cells, it blocks the cell cycle. Some

viruses block the cell cycle at the G/M phase [121, 122],

while some viruses block the cell cycle at the G0/G1

phase. G0/G1 phase blockade is associated with eIF2α

phosphorylation [123]. Newcastle disease virus (NDV)

infection activated the PERK-eIF2α-CHOP pathway in

HeLa cells, downregulating cyclin D1 to arrest the cell

cycle at the G0/G1 phase and providing a favorable en-

vironment for NDV replication [124]. The Muscovy

duck reovirus (MDRV) P10.8 protein reduced cyclin-

dependent kinase 2 (CDK2), cyclin-dependent kinase 4

(CDK4) and cyclin E expression in DF-1 cells via the

PERK-eIF2α pathway, arresting the cells in the G0/G1

phase [125]. The virus replication process requires a

series of proteins in the host cell that facilitate its

replication, and viral infection causes the cells to

stagnate in the G0/G1 phase, reducing the competitive

pressure due to intracellular DNA replication and

providing an environment favorable for virus replication

[126, 127].

eIF2α phosphorylation mediates cell autophagy or

apoptosis

Under stress, the host can regulate autophagy via the

eIF2α kinase signaling pathway [128]. Activating tran-

scription factor 4 (ATF4) is preferentially translated dur-

ing eIF2α phosphorylation. ATF4 has two upstream

open reading frames (uORFs) that regulate ATF4 trans-

lation (Fig. 6). uORF1 is a positive element that facili-

tates ribosome scanning and reinitiation at downstream

coding regions in ATF4 mRNA, while uORF2 is an in-

hibitory element that blocks ATF4 expression. In non-

stressed cells, uORF1 facilitates ribosome scanning and

reinitiates at the downstream coding region, uORF2,

which blocks ATF4 expression. Under stress conditions,

the time required for scanning ribosomes to reinitiate

translation increases; thus, uORF1 allows ribosomes to

scan through uORF2 and to initiate the ATF4-coding re-

gion [129]. ATF4 regulates ATF4-specific target genes

through heterodimerization or posttranslational modifi-

cations (ubiquitination, phosphorylation, acetylation, or

methylation), and these target genes are involved in

apoptosis or autophagy, the cell cycle, amino acid im-

port and metabolism, and resistance to oxidative stress

[130–137]. Therefore, ATF4 is the main stress regulator

of cells, balancing the pro- and anti-survival of cells

[138]. Here, we discuss that viral infection induces au-

tophagy or apoptosis through the eIF2α-ATF4 pathway.

Under stress, the eIF2α-ATF4 pathway activates the

transcription of a large number of autophagy genes (P62,

Fig. 6 The translation regulation of ATF4 under stress conditions. ATF4 translation is regulated through upstream open reading frames (uORFs).

The 5′-proximal uORF1 encodes three amino acid residues, and the uORF2 and ATF4 coding regions partially overlap. In nonstressed cells, uORF1

facilitates ribosome scanning and reinitiates at the downstream coding region, uORF2, which blocks ATF4 expression. Under stress conditions, the

time required for scanning ribosomes to reinitiate translation increases; thus, uORF1 allows ribosomes to scan through uORF2 and to initiate the

ATF4-coding region [129]
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Atg16l1, Map1lc3b, Atg12, Atg3, Becn1, Gabarapl2, etc.)

[139]. Autophagy enables cells to recover amino acids

and nutrients to maintain protein synthesis, energy syn-

thesis and metabolic balance [140]. After viral invasion,

autophagy can process and present antigens to MHC-

I and MHC-II molecules in order to activate adaptive

immune responses [141–143]. However, the virus can

regulate autophagy to facilitate its own replication

[144–146]. The FMDV capsid protein VP2 was found

to activate the eIF2α-ATF4 pathway and interact with

heat shock protein beta-1 (HSPB1) to induce autoph-

agy, while FMDV replication was significantly reduced

when autophagy was suppressed [145]. Mammalian

cell infection with HSV-1 induced autophagy via

PKR-eIF2α, but this autophagy could be antagonized

by the HSV-1 neurovirulence gene product ICP34.5

[128]. Virus-induced autophagy is often associated

with ER stress. For example, DENV, CVB3, duck

enteritis virus (DEV), prototype foamy virus (PFV)

and other viruses induce autophagy through the

PERK-eIF2α pathway [44, 147–149].

CHOP, a key ATF4 downstream target, is also effi-

ciently translated when eIF2α is phosphorylated. It can

be speculated that CHOP may have a translation regula-

tion mechanism similar to that of ATF4. However, viral

infection prolongs stress, and CHOP is involved in apop-

tosis. PCV2, the MDRV p10.8 protein and the Japanese

encephalitis virus (JEV) NS4B protein promote apoptosis

via the PERK-eIF2α-ATF4-CHOP pathway [46, 125, 150,

151]. Similarly, human astroviruses (HAstVs) activate

caspase using the eIF2α-ATF4-CHOP pathway for viral

release [152]. Interestingly, West Nile virus (WNV) pro-

liferated to significantly higher viral titers in CHOP-

deficient mouse embryonic fibroblasts (MEFs) than in

wild-type MEFs, which indicates that CHOP-mediated

apoptosis functions to control WNV replication [153].

This finding shows that apoptosis has a dual role in

viruses: on the one hand, apoptosis is beneficial for viral

replication and release; on the other hand, apoptosis of

host cells can inhibit viral spread to protect uninfected

cells. Regarding the role of the latter, the virus can regu-

late CHOP expression for survival. The ASFV DP71L

protein recruits PP1c to dephosphorylate eIF2α and in-

hibit ATF4 and downstream CHOP, although the

DP71L gene is not the only factor required for ASFV to

control eIF2α phosphorylation during infection [154].

The hepatitis B virus (HBV) X protein interacts directly

with GRP78, inhibiting eIF2α phosphorylation and

subsequently inhibiting ATF4-CHOP-Bcl-2 expression

to prevent hepatocellular carcinoma (HCC) cell death

and the negative regulation of DNA repair [155].

CHOP can activate growth arrest and DNA damage-

inducible protein (GADD34) and PP1 to promote eIF2α de-

phosphorylation and restore protein translation [156–158].

In the late NDV infection stage, eIF2α phosphorylation

leads to host cell translational shutdown, and GADD34

Fig. 7 The role of host eIF2α in viral infection. Different viruses can stimulate specific eIF2α kinases, or the same virus can stimulate different

eIF2α kinases, such as PRRSV, HCV, and EV71, which can activate PKR and PERK. eIF2α phosphorylation can affect host cell translation efficiency,

SG formation, the cell cycle, and autophagy or apoptosis, thus facilitating viral infection
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levels are upregulated, but PP1 downregulation counteracts

the role of GADD34 [159]. The HSV γ34.5 protein and the

ASFV DP71L protein exhibit sequence similarity with

GADD34, and PP1 recruitment dephosphorylates eIF2α in

infected cells, thereby promoting viral protein synthesis

[160].

Conclusion

After viruses infect a host, they affect eIF2α phosphoryl-

ation to promote self-replication. This process is mani-

fested in main four ways (Fig. 7). First, the kinase-

promoted eIF2α phosphorylation inhibits host protein

translation, and proteins beneficial to the virus itself are

selectively expressed. Some viruses inhibit eIF2α phos-

phorylation via GADD34 or PP1, avoiding host protein

synthesis shutdown and promoting viral protein synthe-

sis. Second, eIF2α phosphorylation leads to SG forma-

tion, which encapsulate host and viral mRNAs and some

translation initiation factors, but viruses can evade the

antiviral effect of SGs in different ways, thereby promot-

ing self-replication. Third, viruses use the PERK-eIF2α-

CDK pathway to induce cell cycle arrest, providing a fa-

vorable environment for their replication. Fourth, viral

infection leads to abnormal kinase expression, and

autophagy or apoptosis is regulated by the eIF2α-ATF4

pathway to promote viral proliferation.

eIF2α, a balance point between cellular resistance to

viruses and virus-induced apoptosis or autophagy, is

essential for cell survival. Anne Bertolotti et al. found

that the phosphatase regulatory subunit PPP1R15A

(R15A) inhibitor Sephin1 could increase the eIF2α phos-

phorylation level [161], and studies have shown that

Sephin1 has inhibitory effects on some RNA and DNA

viruses [162]. In addition, pathologic changes caused by

viruses can induce cancerous changes in cells, such as

HCC development in patients with HCV infection [163,

164]. Some studies have shown that eIF2α phosphoryl-

ation inhibits c-Myc-mediated glycolysis, thereby inhibit-

ing cancer growth and metastasis [165, 166]. Therefore,

the study of eIF2α has played an important role in

revealing viral pathogenesis and new targeted drug

development. Simultaneously, how viruses synthesize

their own proteins in the case of eIF2α phosphorylation

also needs to be further clarified systematically.
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