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The Role of Hubness in Clustering
High-Dimensional Data

Nenad Tomašev, Miloš Radovanović, Dunja Mladenić, and Mirjana Ivanović

Abstract—High-dimensional data arise naturally in many domains, and have regularly presented a great challenge for traditional

data-mining techniques, both in terms of effectiveness and efficiency. Clustering becomes difficult due to the increasing sparsity

of such data, as well as the increasing difficulty in distinguishing distances between data points. In this paper we take a novel

perspective on the problem of clustering high-dimensional data. Instead of attempting to avoid the curse of dimensionality by

observing a lower-dimensional feature subspace, we embrace dimensionality by taking advantage of inherently high-dimensional

phenomena. More specifically, we show that hubness, i.e., the tendency of high-dimensional data to contain points (hubs)

that frequently occur in k-nearest neighbor lists of other points, can be successfully exploited in clustering. We validate our

hypothesis by demonstrating that hubness is a good measure of point centrality within a high-dimensional data cluster, and by

proposing several hubness-based clustering algorithms, showing that major hubs can be used effectively as cluster prototypes

or as guides during the search for centroid-based cluster configurations. Experimental results demonstrate good performance of

our algorithms in multiple settings, particularly in the presence of large quantities of noise. The proposed methods are tailored

mostly for detecting approximately hyperspherical clusters and need to be extended in order to properly handle clusters of

arbitrary shapes.

Index Terms—Clustering, curse of dimensionality, nearest neighbors, hubs.

✦

1 INTRODUCTION

C LUSTERING in general is an unsupervised process
of grouping elements together, so that elements

assigned to the same cluster are more similar to each
other than to the remaining data points [1]. This
goal is often difficult to achieve in practice. Over the
years, various clustering algorithms have been pro-
posed, which can be roughly divided into four groups:
partitional, hierarchical, density-based, and subspace al-
gorithms. Algorithms from the fourth group search
for clusters in some lower-dimensional projection of
the original data, and have been generally preferred
when dealing with data that is high-dimensional [2],
[3], [4], [5]. The motivation for this preference lies in
the observation that having more dimensions usually
leads to the so-called curse of dimensionality, where
the performance of many standard machine-learning
algorithms becomes impaired. This is mostly due to
two pervasive effects: the empty space phenomenon
and concentration of distances. The former refers to
the fact that all high-dimensional data sets tend to
be sparse, because the number of points required to
represent any distribution grows exponentially with
the number of dimensions. This leads to bad density
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estimates for high-dimensional data, causing difficul-
ties for density-based approaches. The latter is a some-
what counterintuitive property of high-dimensional
data representations, where all distances between data
points tend to become harder to distinguish as dimen-
sionality increases, which can cause problems with
distance-based algorithms [6], [7], [8], [9].

The difficulties in dealing with high-dimensional
data are omnipresent and abundant. However, not all
phenomena which arise are necessarily detrimental to
clustering techniques. We will show in this paper that
hubness, which is the tendency of some data points
in high-dimensional data sets to occur much more
frequently in k-nearest neighbor lists of other points
than the rest of the points from the set, can in fact
be used for clustering. To our knowledge, this has
not been previously attempted. In a limited sense,
hubs in graphs have been used to represent typical
word meanings in [10], which was not used for data
clustering. A similar line of research has identified
essential proteins as hubs in the reverse nearest neigh-
bor topology of protein interaction networks [11]. We
have focused on exploring the potential value of using
hub points in clustering by designing hubness-aware
clustering algorithms and testing them in a high-
dimensional context. The hubness phenomenon and
its relation to clustering will be further addressed in
Section 3.

There are two main contributions of this paper.
First, in experiments on synthetic data we show
that hubness is a good measure of point centrality
within a high-dimensional data cluster and that major
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hubs can be used effectively as cluster prototypes.
In addition, we propose three new clustering algo-
rithms and evaluate their performance in various
high-dimensional clustering tasks. We compared the
algorithms with a baseline state-of-the-art prototype-
based method (K-means++ [12]), as well as kernel-
based and density-based approaches. The evaluation
shows that our algorithms frequently offer improve-
ments in cluster quality and homogeneity. The com-
parison with kernel K-means [13] reveals that kernel-
based extensions of the initial approaches should also
be considered in the future. Our current focus was
mostly on properly selecting cluster prototypes, with
the proposed methods tailored for detecting approxi-
mately hyperspherical clusters.

The rest of the paper is structured as follows. In the
next section we present the related work, Section 3
discusses in general the phenomenon of hubness,
while Section 4 describes the proposed algorithms that
are exploiting hubness for data clustering. Section 5
presents the experiments we performed on both syn-
thetic and real-world data. We expect our observa-
tions and approach to open numerous directions for
further research, many of which are outlined by our
final remarks in Section 6.

2 RELATED WORK

Even though hubness has not been given much atten-
tion in data clustering, hubness information is drawn
from k-nearest-neighbor lists, which have been used
in the past to perform clustering in various ways.
These lists may be used for computing density esti-
mates, by observing the volume of space determined
by the k nearest neighbors. Density-based clustering
methods often rely on this kind of density estima-
tion [14], [15], [16]. The implicit assumption made by
density-based algorithms is that clusters exist as high-
density regions separated from each other by low-
density regions. In high-dimensional spaces this is of-
ten difficult to estimate, due to data being very sparse.
There is also the issue of choosing the proper neigh-
borhood size, since both small and large values of k
can cause problems for density-based approaches [17].

Enforcing k-nearest-neighbor consistency in algo-
rithms such as K-means was also explored [18]. The
most typical usage of k-nearest-neighbor lists, how-
ever, is to construct a k-NN graph [19] and reduce
the problem to that of graph clustering.

Consequences and applications of hubness have
been more thoroughly investigated in other related
fields: classification [20], [21], [22], [23], [24], image
feature representation [25], data reduction [23], [26],
collaborative filtering [27], text retrieval [28], and mu-
sic retrieval [29], [30], [31]. In many of these studies it
was shown that hubs can offer valuable information
that can be used to improve existing methods and
devise new algorithms for the given task.

Finally, the interplay between clustering and hub-
ness was briefly examined in [23], where it was
observed that hubs may not cluster well using con-
ventional prototype-based clustering algorithms, since
they not only tend to be close to points belonging
to the same cluster (i.e., have low intra-cluster dis-
tance) but also tend to be close to points assigned
to other clusters (low inter-cluster distance). Hubs
can therefore be viewed as (opposing) analogues of
outliers, which have high inter- and intra-cluster dis-
tance, suggesting that hubs should also receive special
attention [23]. In this paper we have adopted the
approach of using hubs as cluster prototypes and/or
guiding points during prototype search.

3 THE HUBNESS PHENOMENON

Hubness is an aspect of the curse of dimensionality
pertaining to nearest neighbors which has only re-
cently come to attention, unlike the much discussed
distance concentration phenomenon. Let D ⊂ Rd be a
set of data points and let Nk(x) denote the number of
k-occurrences of point x ∈ D, i.e., the number of times
x occurs in k-nearest-neighbor lists of other points
from D. As the dimensionality of data increases, the
distribution of k-occurrences becomes considerably
skewed [23]. As a consequence, some data points,
which we will refer to as hubs, are included in many
more k-nearest-neighbor lists than other points. In
the rest of the text we will refer to the number of
k-occurrences of point x ∈ D as its hubness score.
It has been shown that hubness, as a phenomenon,
appears in high-dimensional data as an inherent prop-
erty of high dimensionality, and is not an artefact
of finite samples nor a peculiarity of some specific
data sets [23]. Naturally, the exact degree of hubness
may still vary and is not uniquely determined by
dimensionality.

3.1 The Emergence of Hubs

The concentration of distances enables one to view
unimodal high-dimensional data as lying approxi-
mately on a hypersphere centered at the data distri-
bution mean [23]. However, the variance of distances
to the mean remains non-negligible for any finite
number of dimensions [7], [32], which implies that
some of the points still end up being closer to the data
mean than other points. It is well known that points
closer to the mean tend to be closer (on average) to
all other points, for any observed dimensionality. In
high-dimensional data, this tendency is amplified [23].
Such points will have a higher probability of being
included in k-nearest neighbor lists of other points in
the data set, which increases their influence, and they
emerge as neighbor-hubs.

It was established that hubs also exist in clus-
tered (multimodal) data, tending to be situated in
the proximity of cluster centers [23]. In addition, the
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degree of hubness does not depend on the embedding
dimensionality, but rather on the intrinsic data dimen-
sionality, which is viewed as the minimal number of
variables needed to account for all pairwise distances
in the data [23].

Generally, the hubness phenomenon is relevant to
(intrinsically) high-dimensional data regardless of the
distance or similarity measure employed. Its existence
was verified for Euclidean (l2) and Manhattan (l1)
distances, lp distances with p > 2, fractional distances
(lp with rational p ∈ (0, 1)), Bray-Curtis, normalized
Euclidean, and Canberra distances, cosine similarity,
and the dynamic time warping distance for time
series [22], [23], [28]. In this paper, unless otherwise
stated, we will assume the Euclidean distance. The
methods we propose in Section 4, however, depend
mostly on neighborhood relations that are derived
from the distance matrix, and are therefore indepen-
dent of the particular choice of distance measure.

Before continuing, we should clearly define what
constitutes a hub. Similarly to [23], we will say that
hubs are points x having Nk(x) more than two stan-
dard deviations higher than the expected value k (in
other words, significantly above average). However,
in most experiments that follow, we will only concern
ourselves with one major hub in each cluster, i.e. the
point with the highest hubness score.

3.2 Relation of Hubs to Data Clusters

There has been previous work on how well high-
hubness elements cluster, as well as the general im-
pact of hubness on clustering algorithms [23]. A cor-
relation between low-hubness elements (i.e., antihubs
or orphans) and outliers was also observed. A low
hubness score indicates that a point is on average
far from the rest of the points and hence proba-
bly an outlier. In high-dimensional spaces, however,
low-hubness elements are expected to occur by the
very nature of these spaces and data distributions.
These data points will lead to an average increase in
intra-cluster distance. It was also shown for several
clustering algorithms that hubs do not cluster well
compared to the rest of the points. This is due to
the fact that some hubs are actually close to points
in different clusters. Hence, they lead to a decrease in
inter-cluster distance. This has been observed on real
data sets clustered using state-of-the art prototype-
based methods, and was identified as a possible area
for performance improvement [23]. We will revisit this
point in Section 5.4.

It was already mentioned that points closer to
cluster means tend to have higher hubness scores
than other points. A natural question which arises
is: Are hubs medoids? When observing the problem
from the perspective of partitioning clustering ap-
proaches, of which K-means is the most commonly
used representative, a similar question might also be

posed: Are hubs the closest points to data centroids in
clustering iterations? To answer this question, we ran
K-means++ [12] multiple times on several randomly
generated 10000-point Gaussian mixtures for various
fixed numbers of dimensions (2, 5, 10, 20, 30, 50, 100),
observing the high-dimensional case. We measured
in each iteration the distance from current cluster
centroid to the medoid and to the strongest hub, and
scaled by the average intra-cluster distance. This was
measured for every cluster in all the iterations, and
for each iteration the minimal and maximal distance
from any of the centroids to the corresponding hub
and medoid were computed.

Figure 1 gives example plots of how these ratios
evolve through iterations for the case of 10-cluster
data, using neighborhood size 10, with 30 dimen-
sions for the high-dimensional case, and 2 dimensions
to illustrate low-dimensional behavior. The Gaussian
mixtures were generated randomly by drawing the
centers from a [lbound, ubound]

d uniform distribution (as
well as covariance matrices, with somewhat tighter
bounds). In the low-dimensional case, hubs in the
clusters are far away from the centroids, even farther
than average points. There is no correlation between
cluster means and frequent neighbors in the low-
dimensional context. This changes with the increase
in dimensionality, as we observe that the minimal
distance from centroid to hub converges to minimal
distance from centroid to medoid. This implies that
some medoids are in fact cluster hubs. Maximal dis-
tances to hubs and medoids, however, do not match.
There exist hubs which are not medoids, and vice
versa. Also, we observe that maximal distance to hubs
drops with iterations, suggesting that as the iterations
progress, centroids are becoming closer and closer
to data hubs. This already hints at a possibility of
developing an iterative approximation procedure.

To complement the above observations and explore
the interaction between hubs, medoids and the classic
notion of density, and illustrate the different rela-
tionships they exhibit in low- and high-dimensional
settings, we performed additional simulations. For a
given number of dimensions (5 or 100), we generated
a random Gaussian distribution centered around zero
and started drawing random points from the distri-
bution one by one, adding them sequentially to a
synthetic data set. As the points were being added,
hubness, densities, distance contrast and all the other
examined quantities and correlations between them
(most of which are shown in Fig. 2 and Fig. 3)
were calculated on the fly for all the neighborhood
sizes within the specified range {1, 2, . . . , 20}. The
data sets started with 25 points initially and were
grown to a size of 5000. The entire process was
repeated 20 times, thus in the end we considered 20
synthetic 5-dimensional Gaussian distributions and 20
synthetic 100-dimensional Gaussian distributions. Fig-
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(a) Minimal distances, d = 30 (b) Maximal distances, d = 30 (c) Minimal distances, d = 2 (d) Maximal distances, d = 2

Fig. 1. Evolution of minimal and maximal distances from cluster centroids to hubs and medoids on synthetic
data for neighborhood size 10, and 10 clusters.

ures 2 and 3 display averages taken over all the runs.1

We report results with Euclidean distance, observing
similar trends with Manhattan and l0.5 distances.

Figure 2 illustrates the interaction between norm,
hubness and density (as the measurement, not the
absolute term) in the simulated setting. From the defi-
nition of the setting, the norm of a point can be viewed
as an “oracle” that expresses exactly the position of
the point with respect to the cluster center.2 As can be
seen in Fig. 2(a), strong Pearson correlation between
the density measurement and norm indicates that in
low dimensions density pinpoints the location of the
cluster center with great accuracy. In high dimensions,
however, density loses it connection with centrality
(Fig. 2(b)), and is no longer a good indicator of the
main part of the cluster.

Hubness, on the other hand, has some correlation
with the norm in low dimensions (Fig. 2(c)), albeit
weak. It is in the high-dimensional setting of Fig. 2(d)
that hubness begins to show its true potential, as
the correlation becomes much stronger, meaning that
the hubness score of a point represents a very good
indicator of its proximity to the cluster center. In
both charts, a trend of slight weakening of correlation
can be observed as the number of points increases.
Meanwhile, strengthening of correlation can be seen
for an increasing number of neighbors k, indicating
that larger values of k can be used to adjust to larger
data-set sizes. Quite expectedly, density and hubness
are well correlated in low dimensions, but not in the
high-dimensional setting (Fig. 2(e, f)).

Figure 3 shows the interaction between hubs,
medoids and other points in the simulated setting, ex-
pressed through distances. Based on the ratio between
the average distance to the strongest hub and average
distance to the medoid, from Fig. 3(a, b) it can be seen
that in high dimensions the hub is equally informative
about the location of the cluster center as the medoid,
while in low dimensions the hub and medoid are
unrelated. At the same time, generally the hub and the
medoid are in neither case the same point, as depicted
in Fig. 3(c, d) with the distances from hub to medoid

1. This is the reason why some of the graphs are not smooth.
2. In realistic scenarios, such indicators are not available.

which are always far from 0. This is also indicated in
Fig. 3(e, f) that shows the ratio between hub to medoid
distance and average pairwise distance. In addition,
Fig. 3(f) suggests that in high dimensions the hub and
medoid become relatively closer to each other.

This brings us to the idea that will be explained
in detail in the following section: Why not use hubs
as cluster prototypes? After all, it is expected of points
with high hubness scores to be closer to centers of
clustered subregions of high-dimensional space than
other data points, making them viable candidates for
representative cluster elements. We are not limited to
observing only points with the highest hubness scores,
we can also take advantage of hubness information for
any given point. More generally, in case of irregularly
shaped clusters, hubs are expected to be found near
the centers of compact sub-clusters, which is also
beneficial. In addition, hubness of points is straight-
forward to compute exactly, while the computation
cluster centroids and medoids must involve some iter-
ative inexact procedure intrinsically tied to the process
of cluster construction. The remaining question of
how to assign individual hubs to particular clusters
will be addressed in the following section.

4 HUB-BASED CLUSTERING

If hubness is viewed as a kind of local centrality mea-
sure, it may be possible to use hubness for clustering
in various ways. In order to test this hypothesis, we
opted for an approach that allows observations about
the quality of resulting clustering configurations to be
related directly to the property of hubness, instead of
being a consequence of some other attribute of the
clustering algorithm. Since it is expected of hubs to
be located near the centers of compact sub-clusters
in high-dimensional data, a natural way to test the
feasibility of using them to approximate these centers
is to compare the hub-based approach with some
centroid-based technique. For this reason, the con-
sidered algorithms are made to resemble K-means,
by being iterative approaches for defining clusters
around separated high-hubness data elements.

Centroids and medoids in K-means iterations tend
to converge to locations close to high-hubness points,
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(c) Correlation between norm and hubness
for d = 5
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(e) Correlation between density and hub-
ness for d = 5
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(b) Correlation between density and norm
for d = 100
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(d) Correlation between norm and hubness
for d = 100
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(f) Correlation between density and hub-
ness for d = 100

Fig. 2. Interaction between norm, hubness and density in the simulated setting, in low- and high-dimensional
scenarios.
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(e) Ratio between hub to medoid distance
and average pairwise distance for d = 5
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(b) Ratio between distance to hub and dis-
tance to medoid for d = 100
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(d) Hub to medoid distance for d = 100
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(f) Ratio between hub to medoid distance
and average pairwise distance for d =
100

Fig. 3. Interaction between hubs, medoids and other points in the simulated setting, expressed through
distances, in low- and high-dimensional scenarios.
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Fig. 4. Illustrative example: The red dashed circle

marks the centroid (C), yellow dotted circle the medoid
(M ), and green circles denote two elements of highest

hubness (H1, H2), for neighborhood size 3.

which implies that using hubs instead of either of
these could actually speed up the convergence of the
algorithms, leading straight to the promising regions
in the data space. To illustrate this point, consider
the simple example shown in Fig. 4, which mimics
in two dimensions what normally happens in multi-
dimensional data, and suggests that not only might
taking hubs as centers in following iterations provide
quicker convergence, but that it also might prove
helpful in finding the best end configuration. Cen-
troids depend on all current cluster elements, while
hubs depend mostly on their neighboring elements
and therefore carry localized centrality information.
We will consider two types of hubness below, namely
global hubness and local hubness. We define local
hubness as a restriction of global hubness on any
given cluster, considered in the context of the current
algorithm iteration. Hence, the local hubness score
represents the number of k-occurrences of a point in
k-NN lists of elements within the same cluster.3

The fact that hubs emerge close to centers of dense
subregions might suggest some sort of a relationship
between hubness and the density estimate at the
observed data point. There are, however, some impor-
tant differences. First of all, hubness does not depend
on scale. Let D1 and D2 be two separate sets of points.
If the local distance matrices defined on each of them
separately are proportional, we might think of D1

and D2 as two copies of the same abstract data model
appearing at different scales. Even though the density
estimate might be significantly different, depending
on the defining volumes which are affected by scale,
there will be a perfect match in hubness scores of the
corresponding points. However, there is a more subtle
difference. Let Dk(x) be the set of points where x is
among the k nearest neighbors. Hence, the hubness
score of x is given by Nk(x) = |Dk(x)|. For each
xi ∈ Dk(x), whether point x is among the k nearest
neighbors of xi depends on two things: distance(x, xi),
and the density estimate at point xi, not the density
estimate at point x. Consequently, a hub might be a
k-neighbor for points where density is high, as well
as for points where density is low. Therefore, there is

3. Henceforth, we will use uppercase K to represent the desired
number of clusters and lowercase k for neighborhood size.

no direct correspondence between the magnitude of
hubness and point density. Naturally, since hubs tend
to be close to many points, it would be expected that
density estimates at hub points are not low, but they
may not correspond to the points of highest density in
the data. Also, in order to compute the exact volume
of the neighborhood around a given point, one needs
to have a suitable data representation. For hubness,
one only needs the distance matrix.

Computational complexity of hubness-based algo-
rithms is mostly determined by the cost of computing
hubness scores. Several fast approximate approaches
are available. It was demonstrated [33] that it is pos-
sible to construct an approximate k-NN graph (from
which hubness scores can be read) in Θ(ndt) time,
where the user-defined value t > 1 expresses the
desired quality of graph construction. It was reported
that good graph quality may be achieved with small
values of t, which we were able to confirm in our ini-
tial experiments. Alternatively, locality-sensitive hash-
ing could also be used [34], as such methods have
become quite popular recently. In other words, we
expect our algorithms to be applicable in big data
scenarios as well.

4.1 Deterministic Approach

A simple way to employ hubs for clustering is to
use them as one would normally use centroids. In
addition, this allows us to make a direct comparison
with the K-means method. The algorithm, referred to
as K-hubs, is given in Algorithm 1.

Algorithm 1 K-hubs

initializeClusterCenters();
Cluster[] clusters = formClusters();
repeat

for all Cluster c ∈ clusters do
DataPoint h = findClusterHub(c);
setClusterCenter(c, h);

end for
clusters = formClusters();

until noReassignments
return clusters

After initial evaluation on synthetic data, it became
clear that even though the algorithm manages to find
good and even best configurations often, it is quite
sensitive to initialization. To increase the probability
of finding the global optimum, we resorted to the
stochastic approach described in the following section.
However, even though K-hubs exhibited low stability,
it converges to cluster configurations very quickly, in
no more than four iterations on all the data sets used
for testing, most of which contained around 10000
data instances.

4.2 Probabilistic Approach

Even though points with highest hubness scores are
without doubt the prime candidates for cluster cen-
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ters, there is no need to disregard the information
about hubness scores of other points in the data.
In the algorithm described below, we implemented
a squared hubness-proportional stochastic scheme
based on the widely used simulated annealing ap-
proach to optimization [35]. The temperature factor
was introduced to the algorithm, so that it may start
as being entirely probabilistic and eventually end by
executing deterministic K-hubs iterations. We will
refer to this algorithm, specified by Algorithm 2, as
hubness-proportional clustering (HPC).

Algorithm 2 HPC

initializeClusterCenters();
Cluster[] clusters = formClusters();
float t = t0; {initialize temperature}
repeat

float θ = getProbFromSchedule(t);
for all Cluster c ∈ clusters do

if randomFloat(0,1) < θ then
DataPoint h = findClusterHub(c);
setClusterCenter(c, h);

else
for all DataPoint x ∈ c do

setChoosingProbability(x, N
2

k (x));
end for
normalizeProbabilities();
DataPoint h = chooseHubProbabilistically(c);
setClusterCenter(c, h);

end if
end for
clusters = formClusters();
t = updateTemperature(t);

until noReassignments
return clusters

The reason why hubness-proportional clustering is
feasible in the context of high dimensionality lies
in the skewness of the distribution of k-occurrences.
Namely, there exist many data points having low hub-
ness scores, making them bad candidates for cluster
centers. Such points will have a low probability of
being selected. To further emphasize this, we use the
square of the actual hubness score instead of making
the probabilities directly proportional to Nk(x).

We have chosen to use a rather trivial temperature
schedule in the getProbFromSchedule(t) function. The
number of probabilistic iterations NProb is passed as
an argument to the algorithm and the probability
θ = min(1, t/NProb). Different probabilistic schemes
are possible and might even lead to better results.

The HPC algorithm defines a search through the
data space based on hubness as a kind of a local
centrality estimate. To justify the use of the proposed
stochastic scheme, we executed a series of initial tests
on a synthetic mixture of Gaussians, for dimensional-
ity d = 50, n = 10000 instances, and K = 25 clusters
in the data. Neighborhood size was set to k = 10
and for each preset number of probabilistic iterations
in the annealing schedule, the clustering was run 50
times, each time re-initializing the seeds. The results

Fig. 5. Estimated quality of clustering for various
durations of probabilistic search in HPC.

are displayed in Fig. 5. The silhouette index [36] was
used to estimate the clustering quality. Due to the
significant skewness of the squared hubness scores,
adding more probabilistic iterations helps in achiev-
ing better clustering, up to a certain plateau that is
eventually reached. The same shape of the curve also
appears in the case of not taking the last, but the error-
minimizing configuration.

4.3 A Hybrid Approach

The algorithms outlined in Sections 4.1 and 4.2 share
a property that they do not require knowledge of
data/object representation (they work the with dis-
tance matrix only), so all that is required is a dis-
tance/similarity measure defined for each pair of data
objects. However, if the representation is also avail-
able such that it is possible to meaningfully calculate
centroids, there also exists a third alternative: use
point hubness scores to guide the search, but choose
a centroid-based cluster configuration in the end. We
will refer to this algorithm as hubness-proportional K-
means (HPKM). It is nearly identical to HPC, the
only difference being in the deterministic phase of the
iteration, as the configuration cools down during the
annealing procedure: instead of reverting to K-hubs,
the deterministic phase executes K-means updates.

There are, indeed, cases when HPKM might be
preferable to the pure hubness-based approach of K-
hubs and HPC. Even though our initial experiments
(Fig. 3) suggest that the major hubs lie close to local
cluster means in high-dimensional data, there is no
guarantee that this would hold for every cluster in
every possible data set. It is reasonable to expect
there to be distributions which lead to such local data
structure where the major hub is not among the most
central points. Also, an ideal cluster configuration
(with minimal error) on a given real-world data set
is sometimes impossible to achieve by using points
as centers, since centers may need to be located in
the empty space between the points.

In fact, we opted for the hybrid approach only after
observing that, despite the encouraging initial results
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Algorithm 3 HPKM

initializeClusterCenters();
Cluster[] clusters = formClusters();
float t = t0; {initialize temperature}
repeat

float θ = getProbFromSchedule(t);
for all Cluster c ∈ clusters do

if randomFloat(0,1) < θ then
DataPoint h = findClusterCentroid(c);
setClusterCenter(c, h);

else
for all DataPoint x ∈ c do

setChoosingProbability(x, N
2

k (x));
end for
normalizeProbabilities();
DataPoint h = chooseHubProbabilistically(c);
setClusterCenter(c, h);

end if
end for
clusters = formClusters();
t = updateTemperature(t);

until noReassignments
return clusters

on synthetic data discussed in Section 5.1, hubness-
based algorithms were not consistently better on real-
world data sets. This is why we tried to take “the
best of both worlds,” by combining the centroid-
based cluster representation with the hubness-guided
search. This way, we are hoping to avoid premature
convergence to a local optimum. We must keep in
mind, however, that it is not as widely applicable as
K-hubs and HPC, since it only makes sense with data
where centroids can actually be defined.

5 EXPERIMENTS AND EVALUATION

We tested our approach on various high-dimensional
synthetic and real-world data sets. We will use
the following abbreviations in the forthcoming
discussion: KM (K-Means), ker-KM (kernel K-
means), GKH (Global K-Hubs), LKH (Local K-
Hubs), GHPC (Global Hubness-Proportional Cluster-
ing) and LHPC (Local Hubness-Proportional Cluster-
ing), HPKM (Hubness-Proportional K-Means), local
and global referring to the type of hubness score that
was used (see Section 4). For all centroid-based algo-
rithms, including KM, we used the D2 (K-means++)
initialization procedure [12].4 The neighborhood size
of k = 10 was used by default in our experiments
involving synthetic data and we have experimented
with different neighborhood size in different real-
world tests.

There is no known way of selecting the best k
for finding neighbor sets, the problem being domain-
specific. To check how the choice of k reflects on
hubness-based clustering, we ran a series of tests
on a fixed 50-dimensional 10-distribution Gaussian

4. Hubness could also be used for cluster initialization, an option
which we have not fully explored yet.

Fig. 6. Sensitivity of the quality of GHPC clustering on
neighborhood size (k), measured by silhouette index.

mixture for a range of k values, k ∈ {1, 2, . . . , 20}.
The results are summarized in Fig. 6. It is clear that,
at least in such simple data, the hubness-based GHPC
algorithm is not overly sensitive on the choice of k.

In the following sections, K-means++ will be used
as the main baseline for comparisons, since it is suit-
able for determining the feasibility of using hubness
to estimate local centrality of points. Additionally,
we will also compare the proposed algorithms to
kernel K-means [13] and one standard density-based
method, GDBScan [37]. Kernel K-means was used
with the non-parametric histogram intersection ker-
nel, as it is believed to be good for image clustering
and most of our real-world data tests were done on
various sorts of image data.

Kernel methods are naturally much more powerful,
since they can handle non-hyperspherical clusters.
Yet, the hubness-based methods could just as easily be
”kernelized,” pretty much the same way it was done
for K-means. This idea requires further tests and is
beyond the scope of this paper.

For evaluation, we used repeated random sub-
sampling, training the models on 70% of the data
and testing them on the remaining 30%. This was
done to reduce the potential impact of overfitting,
even though it is not a major issue in clustering, as
clustering is mostly used for pattern detection and
not prediction. On the other hand, we would like
to be able to use the clustering methods not only
for detecting groups in a given sample, but rather
for detecting the underlying structure of the data
distribution in general.

5.1 Synthetic Data: Gaussian Mixtures

In the first batch of experiments, we wanted to com-
pare the value of global vs. local hubness scores. These
initial tests were run on synthetic data and do not in-
clude HPKM, as the hybrid approach was introduced
later for tackling problems on real-world data.

For comparing the resulting clustering quality, we
used mainly the silhouette index as an unsupervised
measure of configuration validity, and average cluster
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entropy as a supervised measure of clustering ho-
mogeneity. Since most of the generated data sets are
“solvable,” i.e., consist of non-overlapping Gaussian
distributions, we also report the normalized frequency
with which the algorithms were able to find these per-
fect configurations. We ran two lines of experiments,
one using 5 Gaussian generators, the other using 10.
For each of these, we generated data of ten different
high dimensionalities: 10, 20, . . . , 100. In each case, 10
different Gaussian mixtures were generated, resulting
in 200 different generic sets, 100 of them containing
5 data clusters, the others containing 10. On each
of the data sets, KM++ and all of the hub-based
algorithms were executed 30 times and the averages
of performance measures were computed.

The generated Gaussian distributions were hyper-
spherical (diagonal covariance matrices, independent
attributes). Distribution means were drawn randomly
from [lmbound, u

m
bound]

d, lmbound = −20, um
bound = 20 and

the standard deviations were also uniformly taken
from [lσbound, u

σ
bound]

d, lσbound = 2, uσ
bound = 5.

Table 1 shows the final summary of all these runs.
(Henceforth, we use boldface to denote measurements
that are significantly better than others, in the sense
of having no overlap of surrounding one-standard
deviation intervals.) Global hubness is definitely to be
preferred, especially in the presence of more clusters,
which further restrict neighbor sets in the case of
local hubness scores. Probabilistic approaches signifi-
cantly outperform the deterministic ones, even though
GKH and LKH also sometimes converge to the best
configurations, but much less frequently. More im-
portantly, the best overall algorithm in these tests
was GHPC, which outperformed KM++ on all basis,
having lower average entropy, a higher silhouette
index, and a much higher frequency of finding the
perfect configuration. This suggests that GHPC is a
good option for clustering high-dimensional Gaussian
mixtures. Regarding the number of dimensions when
the actual improvements begin to show, in our lower-
dimensional test runs, GHPC was better already on 6-
dimensional mixtures. Since we concluded that using
global hubness leads to better results, we only con-
sider GKH and GHPC in the rest of the experiments.

5.2 Clustering and High Noise Levels

Real-world data often contains noisy or erroneous
values due to the nature of the data-collecting process.
It can be assumed that hub-based algorithms will
be more robust with respect to noise, since hubness-
proportional search is driven mostly by the highest-
hubness elements, not the outliers. In the case of
KM++, all instances from the current cluster directly
determine the location of the centroid in the next
iteration. When the noise level is low, some sort of
outlier removal technique may be applied. In setups
involving high levels of noise this may not be the case.

To test this hypothesis, we generated two data
sets of 10000 instances as a mixture of 20 clearly
separated Gaussians, farther away from each other
than in the previously described experiments. The
first data set was 10-dimensional and the sec-
ond 50-dimensional. In both cases, individual dis-
tribution centers were drawn independently from
the uniform [lmbound, u

m
bound]

d distribution, lmbound =
−150, um

bound = 150. The covariance matrix was also
random-generated, independently for each distribu-
tion. It was diagonal, the individual feature standard
deviations drawn uniformly from [lσbound, u

σ
bound]

d,
lσbound = 10, uσ

bound = 60. Cluster sizes were imbal-
anced. Without noise, both of these data sets rep-
resented quite easy clustering problems, all of the
algorithms being able to solve them very effectively.
This is, regardless, a more challenging task than we
had previously addressed [38], by virtue of having a
larger number of clusters.

To this data we incrementally added noise, 250
instances at a time, drawn from a uniform distribution
on hypercube [lnbound, u

n
bound]

d, lnbound = −200, un
bound =

200, containing all the data points. The hypercube
was much larger than the space containing the rest of
the points. In other words, clusters were immersed in
uniform noise. The highest level of noise for which we
tested was the case when there was an equal number
of actual data instances in original clusters and noisy
instances. At every noise level, KM++, GKH, GHPC
and GHPKM were run 50 times each. We used two
different k-values, namely 20 and 50. We have used
somewhat larger neighborhoods in order to try to
smooth out the influence of noisy data on hubness
scores. The silhouette index and average entropy were
computed only on the non-noisy restriction of the
data, i.e., the original Gaussian clusters. This is an
important point, as such measures quantify how well
each algorithm captures the underlying structure of the
data. Indeed, if there is noise in the data, we are not
overly interested in how well the noisy points cluster.
Including them into the cluster quality indices might
be misleading.

A brief summary of total averages is given in
Table 2, with the best Silhouette index value and the
best entropy score in each row given in boldface. The
probabilistic hub-based algorithms show substantial
improvements with higher noise levels, which is a
very useful property. GHPKM is consistently better
than KM++ for all noise levels, especially in terms of
cluster homogeneity. The difference in average cluster
entropy is quite obvious in all cases and is more
pronounced in the 50-dimensional case, where there
is more hubness in the data.

Figure 7 shows the rate of change in algorithm per-
formance under various noise levels. We see that the
achieved improvement is indeed stable and consis-
tent, especially in the high-dimensional case. The dif-
ference increases with increasing noise, which means
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TABLE 1
Averaged results of algorithm runs on high-dimensional mixtures of Gaussians

LKH GKH LHPC GHPC KM++

Silhouette 0.46 ± 0.03 0.51 ± 0.02 0.61± 0.02 0.61± 0.02 0.56 ± 0.02
K = 5 Entropy 0.32 ± 0.04 0.17 ± 0.01 0.09 ± 0.02 0.06± 0.01 0.10 ± 0.01

Perfect 0.32 ± 0.05 0.39 ± 0.05 0.75± 0.07 0.76± 0.06 0.54 ± 0.04

Silhouette 0.38 ± 0.02 0.46 ± 0.01 0.52 ± 0.02 0.57± 0.01 0.52 ± 0.01
K = 10 Entropy 0.52 ± 0.07 0.22 ± 0.01 0.22 ± 0.03 0.08± 0.01 0.13 ± 0.01

Perfect 0.05 ± 0.01 0.06 ± 0.02 0.30 ± 0.05 0.39± 0.06 0.11 ± 0.02

TABLE 2

Estimated cluster quality at various noise levels for synthetic data composed of 20 different clusters

(a) d=10, k=20

GKH GHPC KM++ GHPKM

Sil. Ent. Sil. Ent. Sil. Ent. Sil. Ent.
Noise<10% 0.29 0.41 0.37 0.18 0.34 0.22 0.38 0.10
Noise 10-20% 0.31 0.44 0.38 0.27 0.36 0.28 0.39 0.20
Noise 20-30% 0.31 0.50 0.35 0.33 0.36 0.38 0.39 0.27
Noise 30-40% 0.29 0.52 0.36 0.32 0.35 0.44 0.37 0.36
Noise 40-50% 0.29 0.55 0.35 0.38 0.33 0.53 0.36 0.45

AVG 0.30 0.50 0.36 0.31 0.34 0.41 0.37 0.31

(b) d=10, k=50

GKH GHPC KM++ GHPKM

Sil. Ent. Sil. Ent. Sil. Ent. Sil. Ent.
Noise<10% 0.29 0.44 0.35 0.18 0.33 0.23 0.39 0.10
Noise 10-20% 0.29 0.50 0.36 0.25 0.36 0.27 0.39 0.15
Noise 20-30% 0.30 0.53 0.35 0.32 0.36 0.35 0.38 0.24
Noise 30-40% 0.29 0.59 0.35 0.35 0.35 0.44 0.38 0.32
Noise 40-50% 0.29 0.60 0.33 0.39 0.33 0.50 0.36 0.43

AVG 0.29 0.55 0.35 0.33 0.34 0.39 0.38 0.29

(c) d=50, k=20

GKH GHPC KM++ GHPKM

Sil. Ent. Sil. Ent. Sil. Ent. Sil. Ent.
Noise<10% 0.37 0.45 0.49 0.12 0.48 0.16 0.55 0.03
Noise 10-20% 0.38 0.54 0.50 0.20 0.46 0.30 0.55 0.02
Noise 20-30% 0.37 0.54 0.47 0.23 0.42 0.44 0.55 0.04
Noise 30-40% 0.36 0.58 0.46 0.28 0.40 0.54 0.53 0.09
Noise 40-50% 0.34 0.64 0.43 0.40 0.38 0.59 0.51 0.17

AVG 0.36 0.57 0.46 0.27 0.42 0.46 0.53 0.09

(d) d=50, k=50

GKH GHPC KM++ GHPKM

Sil. Ent. Sil. Ent. Sil. Ent. Sil. Ent.
Noise<10% 0.37 0.36 0.51 0.05 0.48 0.18 0.55 0.02
Noise 10-20% 0.40 0.39 0.51 0.09 0.46 0.33 0.56 0.02
Noise 20-30% 0.36 0.44 0.49 0.14 0.43 0.42 0.55 0.03
Noise 30-40% 0.36 0.45 0.47 0.20 0.42 0.52 0.54 0.10
Noise 40-50% 0.33 0.46 0.45 0.25 0.41 0.57 0.52 0.17

AVG 0.36 0.43 0.48 0.17 0.43 0.44 0.54 0.09

that HPC and HPKM are not only less affected by the
curse of dimensionality, but also more robust to the
presence of noise in the data.

5.3 Experiments on Real-World Data

Real-world data is usually much more complex and
difficult to cluster, therefore such tests are of a higher
practical significance. As not all data exhibits hub-
ness, we tested the algorithms both on intrinsically
high-dimensional, high-hubness data and intrinsically
low-to-medium dimensional, low-hubness data. There
were two different experimental setups. In the first
setup, a single data set was clustered for many dif-
ferent K-s (number of clusters), to see if there is
any difference when the number of clusters is varied.
In the second setup, 20 different data sets were all
clustered by the number of classes in the data (the
number of different labels).

The clustering quality in these experiments was
measured by two quality indices, the silhouette in-
dex and the isolation index [39], which measures a
percentage of k-neighbor points that are clustered
together.

In the first experimental setup, the two-part Miss-
America data set (cs.joensuu.fi/sipu/datasets/) was
used for evaluation. Each part consists of 6480 in-
stances having 16 dimensions. Results were compared
for various predefined numbers of clusters in algo-
rithm calls. Each algorithm was tested 50 times for
each number of clusters. Neighborhood size was 5.

The results for both parts of the data set are given
in Table 3. GHPC clearly outperformed KM and
other hubness-based methods. This shows that hubs
can serve as good cluster center prototypes. On the
other hand, hyperspherical methods have their limits
and kernel K-means achieved the best overall cluster
quality on this data set. Only one quality estimate is
given for GDBScan, as it automatically determines the
number of clusters on its own.

As mostly low-to-medium hubness data (with the
exception of spambase), we have taken several UCI
data sets (archive.ics.uci.edu/ml/datasets.html). Val-
ues of all the individual features in the data sets were
normalized prior to testing. The data sets were mostly
simple, composed only of a few clusters. The value
of k was set to 20. The results are shown in the first
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(a) Cluster entropies for d = 10, k = 50 (b) Cluster entropies for d = 50, k = 50

(c) Silhouette index values for d = 10, k = 50 (d) Silhouette index values for d = 50, k = 50

Fig. 7. Gradual change in cluster quality measures with rising noise levels. The difference between the algorithm
performances is much more pronounced in the high-dimensional case.

TABLE 3
Clustering quality on the Miss-America data set

(a) Silhouette index

K 2 4 6 8 10 12 14 16

GKH 0.28 0.14 0.12 0.08 0.07 0.05 0.06 0.05
GHPC 0.38 0.29 0.25 0.21 0.15 0.10 0.10 0.09
KM++ 0.14 0.12 0.09 0.08 0.07 0.07 0.07 0.07

Part I GHPKM 0.28 0.18 0.17 0.14 0.13 0.11 0.10 0.08
ker-KM++ 0.33 0.36 0.36 0.34 0.35 0.22 0.28 0.14
GDBScan -0.27

GKH 0.33 0.21 0.13 0.08 0.08 0.07 0.06 0.06
GHPC 0.33 0.27 0.22 0.26 0.18 0.19 0.12 0.11
KM++ 0.18 0.12 0.10 0.08 0.07 0.08 0.07 0.07

Part II GHPKM 0.33 0.22 0.18 0.14 0.12 0.11 0.10 0.08
ker-KM++ 0.46 0.30 0.41 0.46 0.29 0.28 0.24 0.23
GDBScan -0.25

(b) Isolation index

K 2 4 6 8 10 12 14 16

GKH 0.83 0.58 0.53 0.38 0.27 0.22 0.21 0.15
GHPC 0.91 0.89 0.71 0.53 0.42 0.33 0.30 0.26
KM++ 0.62 0.46 0.34 0.23 0.19 0.16 0.13 0.12

Part I GHPKM 0.85 0.54 0.45 0.38 0.29 0.26 0.24 0.23
ker-KM++ 0.77 0.92 0.93 0.92 0.95 0.91 0.91 0.80
GDBScan 0.12

GKH 0.82 0.56 0.35 0.26 0.21 0.17 0.15 0.14
GHPC 0.80 0.64 0.45 0.48 0.37 0.35 0.26 0.23
KM++ 0.62 0.35 0.28 0.20 0.16 0.14 0.11 0.09

Part II GHPKM 0.77 0.50 0.36 0.29 0.26 0.24 0.22 0.19
ker-KM++ 0.88 0.78 0.90 0.94 0.91 0.89 0.90 0.91
GDBScan 0.12

parts of Tables 4(a) and 4(b).5 In the absence of hub-
ness,6 purely hubness-based methods do not perform
well. Note, however, that they score comparably to
KM++ on several data sets, and that GHPC did as
well as KM++ on the Iris data set, which is only 4-
dimensional. On the other hand, hubness-guiding the
K-means in HPKM neither helps nor hurts the K-
means base in such cases.

As intrinsically high-dimensional, high-hubness
data, we have taken several subsets of the ImageNet
public repository (www.image-net.org). These data
sets are described in detail in [20], [25]. We examine
two separate cases: Haar wavelet representation and
SIFT codebook + color histogram representation [40],
[41]. This totals to 10 different clustering problems. We
set k to 5. The results are given in the second parts of
Tables 4(a) and 4(b).

We see that the Haar wavelet representation clusters
well, while the SIFT + color histogram one does
not. This is not a general conclusion, but rather a
particular feature of the observed data. GHPKM is

5. Some entries for GDBScan are marked as ”-” and in those cases
the standard parametrization of the algorithm produced a single
connected cluster as a result. Due to space considerations, we show
only averages for the isolation index in Table 4(b).

6. We quantify hubness using the skewness measure, i.e., the
standardized third moment of the distribution of Nk , signified as
SNk

. If SNk
= 0 there is no skewness, positive (negative) values

signify skewness to the right (left).
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TABLE 4
Clustering quality on low to medium-hubness data

sets from the UCI repository and subsets of

high-hubness ImageNet data

(a) Silhouette index

data set size d K SN1
GKHGHPCKM++GHPKM

ker-GDB-
KM Scan

wpbc 198 33 2 0.64 0.16 0.16 0.16 0.16 0.17 -
spamb. 4601 57 2 21.46 0.29 0.38 0.31 0.50 0.13 0.01
arcene 100 1000 2 1.08 0.21 0.22 0.20 0.23 0.21 -

ovarian 25315154 2 1.20 0.17 0.17 0.18 0.19 0.13 -
iris 158 4 3 0.46 0.48 0.47 0.49 0.49 0.38 0.62

parkins. 195 22 2 0.39 0.25 0.30 0.37 0.37 0.45 -
sonar 208 60 2 1.35 0.11 0.11 0.19 0.15 0.13 -
wine 178 13 3 0.76 0.27 0.33 0.34 0.35 0.12 -

abalone 4177 8 29 0.92 0.22 0.20 0.26 0.27 0.26 0.05
spectr. 531 100 10 1.20 0.16 0.16 0.23 0.25 0.15 0.12

AVG-UCI 0.23 0.25 0.27 0.30 0.21 0.20

ds3haar 2731 100 3 2.27 0.62 0.67 0.70 0.70 0.61 0.63
ds4haar 6054 100 4 2.44 0.53 0.59 0.62 0.64 0.52 0.56
ds5haar 6555 100 5 2.43 0.56 0.58 0.65 0.69 0.50 0.51
ds6haar 6010 100 6 2.13 0.49 0.55 0.56 0.58 0.48 0.50
ds7haar10544 100 7 4.60 0.33 0.65 0.63 0.68 0.50 0.58

AVG-Haar 0.51 0.61 0.63 0.66 0.52 0.55

ds3sift 2731 416 3 15.85 0.08 0.12 0.05 0.05 0.05 0.12
ds4sift 6054 416 4 8.88 0.06 0.06 0.02 0.03 0.02 0.18
ds5sift 6555 416 5 26.08 0.05 0.06 0.01 0.02 0.09 0.11
ds6sift 6010 416 6 13.19 0.01 0.02 0.01 0.02 0.11 0.09
ds7sift10544 416 7 9.15 0.04 0.05 0.01 0.03 0.19 0.16

AVG-Sift 0.05 0.06 0.02 0.03 0.09 0.13

AVG-Img 0.28 0.34 0.33 0.35 0.31 0.34

AVG-Total 0.26 0.30 0.30 0.33 0.26 0.27

(b) Isolation index

data sets GKH GHPC KM++ GHPKM
ker- DB-
KM Scan

AVG-UCI 0.48 0.47 0.44 0.47 0.64 0.55

AVG-Haar 0.64 0.69 0.71 0.73 0.70 0.72

AVG-Sift 0.35 0.38 0.37 0.41 0.79 0.32

AVG-Img 0.50 0.54 0.54 0.57 0.76 0.52

AVG-Total 0.49 0.51 0.49 0.52 0.70 0.54

clearly the best amongst the evaluated algorithms in
clustering the Haar representation of the images. This
is encouraging, as it suggests that hubness-guided
clustering may indeed be useful in some real-world
high-dimensional scenarios.

The fact that kernel K-means achieves best isolation
in most data sets suggests that accurate center local-
ization is not in itself enough for ensuring good clus-
tering quality and the possibilities for extending the
basic HPKM and HPC framework to allow for non-
hyperspherical and arbitrarily shaped clusters need to
be considered. There are many ways to use hubs and
hubness in high-dimensional data clustering. We have
only considered the simplest approach here and many
more remain to be explored.

5.4 Interpreting Improvements in Silhouette Index

This section will discuss the reason why hubness-
based clustering can offer better performance when
compared to K-means in terms of intra- and inter-
cluster distance expressed by the silhouette index.

Let us view the a (intra) and b (inter) components
of the silhouette index separately, and compute a,
b and the silhouette index on a given data set for
hubs, outliers and “regular” points.7 Let nh be the
number of hubs selected. Next, we select as outliers
the nh points with the lowest k-occurrences. Finally,
we select all remaining points as “regular” points.

Figure 8 illustrates the described break-up of the
silhouette index on the Miss-America data set (we
have detected similar trends with all other data sets
where hubness-based methods offer improvement),
for k = 5 and K = 2. It can be seen that all
clustering methods perform approximately equally
with respect to the a (intra) part, but that the hubness-
based algorithms increase the b (inter) part, which is
the main reason for improving the silhouette index.
The increase of b is visible in all three groups of points,
but is most prominent for hubs. Earlier research [23]
had revealed that hubs often have low b-values, which
causes them to cluster badly and have a negative
impact on the clustering process. It was suggested that
they should be treated almost as outliers. This why
it is encouraging to see that the proposed clustering
methods lead to clustering configurations where hubs
have higher b-values than in the case of K-means.

5.5 Visualizing the Hubness-Guided Search

In order to gain further insight, we have visualized the
hubness-guided search on several low-to-medium-
dimensional data sets. We performed clustering by
the HPC algorithm and recorded the history of all
iteration states (visited hub-points). After the clus-
tering was completed, the data was projected onto a
plane by a standard multi-dimensional scaling (MDS)
procedure. Each point was drawn as a circle of radius
proportional to its relative hubness. Some of the re-
sulting images generated for the well-known Iris data
set are shown in Fig. 9.

It can be seen that HPC searches through many
different hub-configurations before settling on the
final one. Also, what seems to be the case, at least in
the majority of generated images, is that the search is
somewhat wider for lower k-values. This observation
is reasonable due to the fact that with an increase in
neighborhood size, more points have hubness greater
than a certain threshold and it is easier to distinguish

7. For the ith point, ai is the average distance to all points in
its cluster (intra-cluster distance), and bi the minimum average
distance to points from other clusters (inter-cluster distance). The
silhouette index of the ith point is then (bi − ai)/ max(ai, bi),
ranging between −1 and 1 (higher values are better). The silhouette
index of a set of points is obtained by averaging the silhouette
indices of the individual points.
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Fig. 8. Break-up od the silhouette index into its con-

stituent parts, viewed separately for hubs, outliers and
regular points on the Miss-America data set.

(a) k=1

(b) k=10

Fig. 9. Hubness-guided search for the best cluster
hub-configuration in HPC on Iris data.

between genuine outliers and slightly less central
regular points. Currently, we do not have a universal
robust solution to the problem of choosing a k-value.
This is, on the other hand, an issue with nearly all
kNN-based methods, with no simple, efficient, and
general work-around.

6 CONCLUSIONS AND FUTURE WORK

Using hubness for data clustering has not previously
been attempted. We have shown that using hubs to

approximate local data centers is not only a feasible
option, but also frequently leads to improvement over
the centroid-based approach. The proposed GHPKM
method (Global Hubness-Proportional K-Means) had
proven to be more robust than the K-Means++ base-
line on both synthetic and real-world data, as well as
in the presence of high levels of artificially introduced
noise. This initial evaluation suggests that using hubs
both as cluster prototypes and points guiding the
centroid-based search is a promising new idea in clus-
tering high-dimensional and noisy data. Also, global
hubness estimates are generally to be preferred with
respect to the local ones.

Hub-based algorithms are designed specifically for
high-dimensional data. This is an unusual property,
since the performance of most standard clustering
algorithms deteriorates with an increase of dimen-
sionality. Hubness, on the other hand, is a property
of intrinsically high-dimensional data, and this is
precisely where GHPKM and GHPC excel, and are
expected to offer improvement by providing higher
inter-cluster distance, i.e., better cluster separation.

The proposed algorithms represent only one pos-
sible approach to using hubness for improving high-
dimensional data clustering. We also intend to explore
other closely related research directions, including
kernel mappings and shared-neighbor clustering. This
would allow us to overcome the major drawback of
the proposed methods – detecting only hyperspherical
clusters, just as K-Means. Additionally, we would like
to explore methods for using hubs to automatically
determine the number of clusters in the data.

Acknowledgments. This work was supported by the
Slovenian Research Agency, the IST Programme of the
EC under PASCAL2 (IST-NoE-216886), and the Ser-
bian Ministry of Education, Science and Technological
Development project no. OI174023.

REFERENCES

[1] J. Han and M. Kamber, Data Mining: Concepts and Techniques,
2nd ed. Morgan Kaufmann Publishers, 2006.

[2] C. C. Aggarwal and P. S. Yu, “Finding generalized projected
clusters in high dimensional spaces,” in Proc. 26th ACM SIG-
MOD Int. Conf. on Management of Data, 2000, pp. 70–81.

[3] K. Kailing, H.-P. Kriegel, P. Kröger, and S. Wanka, “Ranking
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