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BACKGROUND: There is strong experimental evidence that physiologic stress from high temperatures is greater if humidity is higher. However, heat
indices developed to allow for this have not consistently predicted mortality better than dry-bulb temperature.

OBJECTIVES:We aimed to clarify the potential contribution of humidity an addition to temperature in predicting daily mortality in summer by using a
large multicountry dataset.

METHODS: In 445 cities in 24 countries, we fit a time-series regression model for summer mortality with a distributed lag nonlinear model (DLNM)
for temperature (up to lag 3) and supplemented this with a range of terms for relative humidity (RH) and its interaction with temperature. City-
specific associations were summarized using meta-analytic techniques.

RESULTS: Adding a linear term for RH to the temperature term improved fit slightly, with an increase of 23% in RH (the 99th percentile anomaly)
associated with a 1.1% [95% confidence interval (CI): 0.8, 1.3] decrease in mortality. Allowing curvature in the RH term or adding terms for interac-
tion of RH with temperature did not improve the model fit. The humidity-related decreased risk was made up of a positive coefficient at lag 0
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outweighed by negative coefficients at lags of 1–3 d. Key results were broadly robust to small model changes and replacing RH with absolute meas-
ures of humidity. Replacing temperature with apparent temperature, a metric combining humidity and temperature, reduced goodness of fit slightly.

DISCUSSION: The absence of a positive association of humidity with mortality in summer in this large multinational study is counter to expectations
from physiologic studies, though consistent with previous epidemiologic studies finding little evidence for improved prediction by heat indices. The
result that there was a small negative average association of humidity with mortality should be interpreted cautiously; the lag structure has unclear
interpretation and suggests the need for future work to clarify. https://doi.org/10.1289/EHP5430

Introduction
There is strong experimental physiologic evidence that the stress
put on the human organism by high air temperatures is higher, by
many measures, if humidity is higher, in particular because heat
loss by evaporation is reduced in a more humid environment
(Davis et al. 2016; Hanna and Tait 2015; McGregor and Vanos
2017). Various heat indices have been developed to allow for this
(Anderson et al. 2013; Davis et al. 2016; Hanna and Tait 2015;
McGregor and Vanos 2017; Steadman 1979) and, in particular,
used in heat warning systems (Hajat et al. 2010). These thermal
comfort variables were not developed to predict mortality, but,
following a prima facie argument that they might do so better
than dry-bulb temperature, some epidemiologists have used them
in mortality studies. Of studies comparing a heat index with dry-
bulb temperature as predictors of mortality, some found evidence
that the index predicted better [e.g., Zhang et al. (2014)], but
others found no consistent improvement of fit (Ragettli et al.
2017; Rodopoulou et al. 2015; Vaneckova et al. 2011), particu-
larly the largest such study, comprised of 107 U.S. cities (Barnett
et al. 2010).

The heat indices imply a prespecified form for a combination
of risks from humidity and heat. Some daily mortality studies fo-
cusing on temperature have included humidity as a separate addi-
tional predictor, but usually they viewed it as a confounder, so
very few reported the nature of any temperature-adjusted humid-
ity–mortality association. The largest such study, using year-
round monthly data from U.S. counties over 30 y (Barreca 2012),
found a reverse J-shaped impact of specific humidity (SH), thus
indicating slightly positive impacts at the highest levels, which
would generally have occurred in summer. A daily year-round
mortality study of 11 cities in Zhejiang Province, China, also found
increased mortality at high relative humidity (RH) at cold tempera-
tures but little impact of RH at high temperatures (Zeng et al.
2017). A daily summer-only study in three Swedish cities
(Rocklöv and Forsberg 2010) found an adverse impact of high RH,
particularly at high temperatures, in Stockholm but not the other
cities. A daily study of Valencia, Spain, reported the presence
of a nonsignificant inverse association of RH with mortality in
summer, but gave no further details (Ballester et al. 1997). One
other daily study of three European cities found models adding
RH separately to temperature fit better [by Akaike information
criterion (AIC)] than those incorporating it as apparent tempera-
ture, but did not report the nature of the temperature-adjusted
RH–mortality association (Rodopoulou et al. 2015). In sum-
mary, those few studies reporting the joint temperature and hu-
midity association with mortality do not present a consistent
pattern of the residual impact of humidity.

We aimed to clarify the potential contribution of humidity an
addition to temperature in predicting daily mortality in summer
by use of a large multicountry dataset.

Methods
The data comprised daily counts of deaths (all ages, either all or
all natural causes), mean temperatures, and RH from 445 loca-
tions from 23 countries across all continents except Africa, with
total durations of 5–41 y (between 1972 and 2015) for each loca-
tion (summarized in Table 1; sources and further details given in

Tables S1–S3). These data were assembled through the Multi-
Country Multi-City (MCC) Collaborative Research Network
(http://mccstudy.lshtm.ac.uk/), described in several previous pub-
lications (Armstrong et al. 2017; Gasparrini et al. 2015a, 2015b,
2016, 2017; Guo et al. 2014, 2016, 2017, 2018; Lee et al. 2018;
Vicedo-Cabrera et al. 2018). All analyses on the combined data
set were carried out in London by the first author.

We focused primarily on mean RH because that was the daily
measure of humidity most commonly available. However, there
are strong advocates of absolute measures of humidity as most
relevant for health (Davis et al. 2016; McGregor and Vanos
2017), in particular because of the strong dependence of RH on
temperature, giving rise, for example, to large diurnal variation.

Thus, to allow investigation of whether using an absolute mea-
sure of humidity gave different results, we also estimated two meas-
ures of absolute humidity: dewpoint and SH. Calculation of these
measures from RH and temperature followed standard formulae
using the R packages weathermetrics and humidity (version 3.5.0;
R Development Core Team), as illustrated in the R code in the sup-
plemental material. Although it was not our intention to provide a
comprehensive investigation of heat indices, we also computed
apparent temperature (a popular combined temperature and humid-
ity metric, also computed using the weathermetrics package) from
temperature and dewpoint (Anderson et al. 2013).

For brevity, we use the term heat as a synonym for high tem-
perature, although we acknowledge that this term is used differ-
ently in other contexts (McGregor and Vanos 2017). Because we
were concerned with heat, we included only summer months in
our analyses (June–September in the northern hemisphere and
December–March in the southern hemisphere). Because we pri-
marily sought to identify the contribution of humidity in addition
to temperature in predicting mortality, we concentrated on mod-
els including both variables, but we also report preliminary analy-
ses comparing the fit of models with just temperature, RH, and
dewpoint individually to test our expectation that temperature
would have the dominant effect. Statistical core models are
described below, with core R code and data on which it can be
demonstrated given in the supplemental material. The core mod-
els were modified in sensitivity analyses.

We proceeded with a standard two-stage approach, fitting dis-
tributed lag nonlinear models (DLNMs) for weather variables at
each location and summarizing the distribution of these using
multivariate meta-analyses (Armstrong 2006; Gasparrini et al.
2010). The base terms in the location-specific models were simi-
lar to those used in summer-only analyses of similar data
(Gasparrini et al. 2015a). They comprised smooth functions of
calendar year [2 degrees of freedom (df)/decade] for long-term
trends and of day in year (4 df with interaction with year as a fac-
tor) for within-season variation.

In broad alignment with previous practice, temperature was
modeled as a natural cubic spline of 4 df with knots at equal per-
centiles. Because previous publications indicated that the most
adverse effects of heat would be apparent within 3 d (Guo et al.
2014) and exploratory analyses of humidity suggested a similar
main lag range, our DLNMs were defined over lags 0–3. For
transparency, which we judged important given the complex lag
structures for humidity in preliminary analyses, we used a simple
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stratified (stepped) lag structure: 0, 1, and 2–3, rather than the
more usual smooth spline.

For our preliminary analyses, we compared total qAIC (quasi-
AIC, summed over all locations) for separate models, each with a
single different weather variable: a) temperature, b) RH, c) dew-
point, and d) apparent temperature. All of these variables were
included with the same DLNM structure as temperature described
above to ensure like-for-like comparability of qAIC. Also for com-
parability of qAIC, all models were fitted using the same data sam-
ple (i.e., excluding days missing in any of the variables, included
or not in that model).

To better focus our exploration of models with temperature
and humidity, we first explored qAIC in models supplementing
the DLNM for temperature with a range of functions for humid-
ity. Because we found that models including dewpoint and tem-
perature gave very similar results to those adding RH, we
focused our main attention on RH because of its greater familiar-
ity in public health discourse.

We also explored mutual effect modification of humidity and
temperature (interaction). The representation of interactions
between two variables with distributed lags is potentially com-
plex, even when both have main linear associations with mortal-
ity (Muggeo 2007), and it becomes more so if nonlinearity of one
or both associations is considered, as appears strongly indicated
for temperature here. We thus made the following simplifying
assumptions, which we found broadly supported in the explora-
tory analyses: a) no cross-lag interactions, i.e., humidity at a spe-
cific lag (such as l d) would modify the impact of temperature
only at the same lag; and b) the main effect of humidity on mor-
tality, to which interaction terms were added, was assumed linear.
Within that framework, we considered that the interaction models
in which the humidity coefficient depended on temperature: a)
linearly; b) nonlinearly by dividing into temperature ranges with
cut points at location-specific percentiles (33rd and 67th, then

50th and 80th, then 50th and 90th); and c) the same as b), but
using global percentile cut points.

Associations estimated from the location-specific models were
summarized and their heterogeneity explored using random-effects
meta-analysis techniques (Gasparrini et al. 2012; Viechtbauer
2010) applied to the weather–mortality associations summed
(cumulated) over all lags considered (Gasparrini and Armstrong
2013).

Results
The climates of the 445 locations were primarily temperate,
although some were tropical (country summaries given in Table 1,
with further variables and location summaries in Tables S1–S3).
Mean summer RH was mostly between 60 and 80%. The standard
deviation of day-to-day variation in RH, on which our estimate of
RH-mortality association depended, was, on average, 9%, although
smaller in tropical countries. Within locations, correlations of daily
RH, dewpoint, and SH with temperature were, on average,
r= − 0:39, 0.59, and 0.59, respectively. Partial within-location
correlations of RH with dewpoint and SH, controlling for tempera-
ture, were r=0:99 and 0.98 on average and in no country less
than 0.97 (details in Table S2).

The goodness of fit, as indicated by qAIC (mean over all loca-
tions), is shown for all models that include temperature (models
4–18) in Figure 1, which has a reverse y-scale so that better-
fitting models are highest (details and results for models 1 to 3 in
Table S4). Models with just RH or dewpoint (models 2 and 3, not
shown in figure) fit much less well than any of the models that
included temperature, only marginally better than the model with
no weather terms (model 1).

Using mean apparent temperature (model 5) in place of sim-
ple temperature (model 4) slightly increased qAIC, indicating
poorer predictive ability. Adding a linear RH term to the model

Table 1. Distribution of key variables by country.

Country N Period Deaths (in thousands)

Distribution of temperature and RH: mean (minimum, maximum)
of location means and of location SDs (for RH) across days

Temperature mean RH mean RH SD

Argentina 3 2005–2015 206 23.6 (23.4, 23.6) 68.4 (67.5, 69.9) 11.9 (11.2, 13.1)
Australia 3 1988–2009 360 22.2 (20.1, 24.2) 69.0 (65.7, 70.7) 10.2 (8.5, 11.4)
Brazil 17 1997–2011 1,034 25.6 (20.8, 28.1) 78.0 (70.0, 87.5) 7.7 (5.1, 12.3)
Canada 21 1986–2009 778 17.1 (13.9, 21.0) 71.8 (62.8, 81.8) 10.8 (7.4, 13.8)
Chile 4 2004–2014 89 18.2 (15.5, 21.0) 67.9 (52.0, 74.4) 10.0 (8.2, 11.0)
China 13 1996–2008 250 24.8 (17.6, 28.4) 71.6 (60.1, 80.4) 11.4 (7.4, 15.6)
Czech Republic 4 1994–2015 225 17.3 (16.4, 18.5) 71.1 (67.1, 73.8) 11.6 (11.0, 12.2)
Estonia 5 1997–2015 46 15.5 (15.0, 15.9) 77.8 (77.7, 78.0) 9.5 (9.2, 9.8)
France 18 2000–2010 375 19.4 (16.6, 23.2) 70.1 (57.9, 78.4) 10.3 (8.8, 15.5)
Ireland 6 1984–2007 317 14.2 (13.7, 14.6) 82.2 (80.9, 84.0) 6.8 (5.7, 8.4)
Italy 12 1987–2010 245 23.2 (20.6, 24.9) 68.0 (58.9, 77.8) 11.3 (8.5, 15.5)
Japan 47 1972–2012 10,853 24.2 (19.4, 27.9) 75.2 (67.9, 82.0) 9.2 (6.7, 11.5)
Mexico 10 1998–2014 726 21.7 (14.8, 28.2) 64.6 (42.2, 75.2) 10.8 (7.3, 17.0)
Philippines 4 2006–2010 94 28.5 (28.1, 29.0) 81.5 (78.5, 82.8) 5.1 (3.2, 6.4)
South Korea 7 1992–2010 548 23.7 (23.0, 24.4) 74.4 (69.4, 78.3) 10.6 (9.7, 11.7)
Spain 50 1990–2014 865 22.3 (17.5, 26.9) 60.9 (42.5, 82.9) 11.1 (6.8, 15.9)
Sweden 3 1998–2005 52 16.1 (15.8, 16.3) 73.5 (70.5, 77.2) 9.3 (8.0, 11.1)
Switzerland 8 1995–2013 75 17.9 (15.8, 20.6) 71.7 (67.7, 75.2) 10.4 (9.0, 13.2)
Taiwan 3 1994–2007 246 28.4 (28.1, 28.6) 76.7 (74.4, 79.8) 7.2 (6.4, 8.2)
Thailand 60 1999–2008 540 28.3 (26.4, 29.6) 79.6 (72.5, 86.9) 5.2 (3.7, 7.5)
United Kingdom 10 1993–2006 2,286 15.8 (14.6, 17.5) 69.2 (60.9, 74.8) 11.0 (9.5, 12.2)
United States 135 1985–2006 6,657 23.4 (17.1, 33.2) 67.1 (21.5, 81.4) 10.0 (4.9, 15.4)
Vietnam 2 2009–2013 36 28.7 (28.4, 29.1) 75.5 (72.1, 78.8) 9.7 (5.2, 14.1)
All 445 1972–2015 26,901 23.1 (13.7, 33.2) 70.7 (21.5, 87.5) 9.4 (3.2, 17.0)

Note: N is the number of locations for which useable data was available. The minimum and maximum temperature and relative humidity (RH) are those for each country’s location
summer means over all days available for that location, not the minimum and maximum of individual daily means. Daily meteorological data comprised means calculated from hourly
data in all except four countries. The exceptions were: Czech Rep: 0700, 1400, and 2100 hours; Italy: every 6 hours; Thailand: minimum and maximum; United Kingdom: hourly for
temperature, and 0900 and 1500 hours for RH. For more information including sources, see Table S1. SD, standard deviation.
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including temperature slightly reduced qAIC, indicating better
predictive ability (model 6); higher-order polynomial models had
higher qAIC (models 7 and 8). We therefore focus most further
analysis on linear models. Models for dewpoint (9–11) fit very
similarly to those for RH of the same functional form, as did
those for SH (not shown), as expected given the high partial cor-
relation of these measures with RH noted above.

Variants of models allowing modification of the RH coeffi-
cient by temperature (interaction models) are shown as models
12–18 in Figure 1 (see legend for details of these models). None
of these interaction models reduced qAIC if compared to the lin-
ear model without interaction (model 6). Interaction model 12,
which assumes that the humidity coefficient changed linearly
with temperature, came closest, indicating that the grouped tem-
perature models gave no evidence against a linear–linear interac-
tion. The model that fit separate RH coefficients for temperature
bins divided at the 50th and 80th percentiles of pooled daily tem-
peratures (22.6 and 25.2ºC) fit second best among the interaction
models. We also considered more elaborate models (not shown),
for example, those in which the modification of the humidity
coefficient by temperature followed a spline curve, but these had
markedly higher qAIC.

We therefore focus now on the model that fit best: the one that
included a temperature spline and a linear term for RH (model 6).
Figure 2 shows the average cumulative relative risk (RR) over
lags 0–3 associated with high RH by country and overall for this
model. The RR shown is for an increment in RH of 23.4%, which
is the average of the 99th percentile of the RH deviations from the
mean RH for the same day’s temperature. Overall mortality
reduced slightly following days with higher humidity, with 99th
percentile RH anomalies associated with RR=0:989 [95% confi-
dence interval (CI): 0.987, 0.992]. There was no underlying varia-
tion beyond chance between countries [estimated percentage of
variation across countries that is due to heterogeneity rather than
chance ðI2Þ=0) and little between locations overall (I2 =12%),
although the latter was significant (p=0:02).

To explore further whether this overall mean result might not
pertain to some groups of locations apart from countries, we
explored factors that might explain what variation there was in
the RH–mortality association across locations within countries by
use of meta-regression. However, in doing so, we found no asso-
ciation that could not easily be explained by chance [p>0:1 for
location-wise summer mean temperature, RH, daily deaths as in-
dicator of population size, or country gross domestic product
(GDP)].

The lag structure of the RH–mortality association was different
than anticipated, with positive lag 0 coefficient (RR=1:015) out-
weighed by negative lag 1 and 2–3 coefficients (with RR=0:991
and 0.992, respectively) (Figure 3).

Figure 4 shows the sensitivity of the estimated overall mean
cumulative RH–mortality coefficient from model 6 to several al-
ternative model specifications. The only models giving substan-
tially different coefficients were those considering only lag 0, for
which RH showed a small positive association with mortality,
and lags 0 and 1 (null association). These models had substan-
tially poorer predictive ability by qAIC, however, than the main
lag 0–3 model.

Figure 4 also shows that using absolute measures of humidity
(SH or dewpoint) gave a very similar average rate ratio in a linear
model to that for RH, if rate ratios were expressed for the average
to 99th percentile anomaly, as with the RH. This was true also
for the qAIC (Table S4), distribution of coefficients in the linear
model, absence of evidence for modification by temperature, and
lag pattern (Figure S1).

Although no model for modification of the humidity–mortality
association (interaction) was significant, we mention estimated
coefficients for the model in which linear RH coefficients were
estimated for each of three temperature groups to demonstrate the
extent to which our data may have missed some interaction due to
lack of precision. The temperature groups were those that provided
optimal fit, with cut points at 22.6 and 25.2°C, which were the
global 50th and 80th percentiles. The coefficients varied little by

Figure 1. Preliminary investigation of goodness of fit of alternative models for humidity. The y-axis shows the goodness of fit as measured by qAIC (quasi-
Akaike’s information criterion), averaged over all 445 locations, in reverse order so that higher points better fit the model. All models from model number 6
include temperature [4-degrees of freedom (df) natural cubic spline] plus a range of humidity terms. Models 6–8 include RH (relative humidity) as linear (A),
quadratic (B) and cubic (C) polynomials, and models 9–11 are the same for dewpoint. Models 12–18 include, in addition to a linear term for RH, a range of
forms of interaction between temperature (temp) and linear RH: linear temperature (model 12); separate RH slopes for each of three groups of temperature
with cut points defined by location-specific (models 13–15) and global (models 16–18) percentiles. Further detail is provided in Table S4.
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temperature, with CIs that were quite narrow, even for the smaller
highest temperature range. They were expressed in the same units
as for the overall model and comprised low: 0.989 (95% CI:
0.987, 0.991), medium: 0.989 (95% CI: 0.986, 0.992), and high:
0.986 (95% CI: 0.982, 0.990) (also graphed in Figure S2).

The temperature–mortality associations (Figure S3 shows the
meta-analytic average) were virtually identical to those without
humidity, described elsewhere (Gasparrini et al. 2015a, 2015b).
They varied substantially between (multivariate I2 =72:8%) and
within countries (I2 =53:8%).

Discussion
On average, over a large sample of locations in over 23 countries,
there was little association of humidity with mortality in summers
after adjustment for the effect of temperature. The direction of
the small association observed was for lower mortality when hu-
midity was high, opposite to what would be expected if the
experimentally well-established impacts of humidity on physio-
logical heat stress translated to impacts on mortality in popula-
tions. This study does not identify why this is the case, but one
may hypothesize that any adverse health effects from increased

heat stress from humidity might be offset or outweighed by other
causal pathways; for example, dehydration might be greater in
low humidity, particularly from respiration (Sauer et al. 1984),
and dehydration has several known adverse health impacts (Liu
et al. 2015).

Of previous publications reporting humidity–mortality associa-
tions after allowing for temperature effects (reviewed briefly in the
“Introduction”), only one other small study (Ballester et al. 1997)
reported presence of a negative association in summer, but it did not
give details. We also found the adverse impact of high RH reported
for Stockholm (Rocklöv and Forsberg 2010) in our Stockholm data,
one of a few locations with nonsignificant positive associations.
Barreca (2012)’s finding of a small adverse impact of high SH on
mortality in the United States contrasts somewhat with ours, includ-
ing our U.S.-specific result. There were, however, several important
differences in methods. In particular, units in the Barreca study
were monthly rather than daily mortality, all-year data were used,
and although a temperature effect was adjusted for, this was with a
single curve assumed to apply across all the United States.

Correlations between temperature and humidity (all meas-
ures) were appreciable, but not so high that they prevented

Figure 2. Increment in mortality for high humidity, overall and by country. RH is included as a linear term with relative risk given per 23.4% increase, which
is the 99th percentile of RH anomalies. All models are adjusted for seasonality, long-term time trends, day of the week, and temperature. For RH and tempera-
ture, lag is distributed over lags 0–3 as described in the text. Note: CI, confidence interval; Isq, I2, estimated percentage of variation across studies that is due
to true heterogeneity rather than chance; p-het, the p-value for Cochran’s test for heterogeneity between location; RH, relative humidity; RR, rate ratio.
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estimating mutually adjusted associations of each with mortality.
However, we found high very partial correlation between abso-
lute and relative measures of humidity given temperature and,
consequently, very similar impacts on mortality (if comparing
RRs at the same percentile anomalies in each measure) when
temperature was also in the model, as Barreca (2012) also
reported. The practical implication of this is that for the purpose
of prediction of a health outcome in a regression model with hu-
midity included as a linear term, the additional prediction allowed
by adding humidity to temperature will not depend on whether an
absolute or relative measure of humidity is used. This is reassur-
ing given uncertainty as to which might be expected a priori as
more relevant for health (Davis et al. 2016).

The lag structure of the association of RH with mortality is in-
triguing. Although a short lag-positive association followed by a
longer lag-negative association is sometimes reasonably inter-
preted as suggestive of short-term mortality displacement (harvest-
ing), we do not find this very plausible here. The negative
association appears at lag 1, much earlier than similar patterns that
have been seen for heat (Baccini et al. 2008; Hajat et al. 2005),
and also, the cumulative negative association outweighing the pos-
itive does not fit well with a displacement hypothesis. Another
possibility we investigated was that cross-lag correlations of hu-
midity, especially relative, with temperature might play a part.

However, after identifying that such cross-lag correlations were
small (Table S5), we did not pursue this further.

A hypothesis we find more plausible, though speculation, is
that the sharp change from positive to negative association between
lags 0 and 1 reflects the impact of change in RH from lags 1 and
2–3 to lag 0. As noted in previous discussions of models for impact
of changes in temperature from 1 d to the next, a model with linear
impacts for, for example, lags 0 and 1 is algebraically equivalent to
one with (linear) impacts of exposure at lag 0 and change in expo-
sure between lags 1 and 0 (Vicedo-Cabrera et al. 2018). This
extends to a model with three lag strata as here. In algebra:

b0xlag0 + b1xlag1 + b2xlags2–3 =b
0

0xlag0 +b
0

1ðxlag0 − xlag1Þ

+b
0

2ðxlag0 − xlag2–3Þ,

with b
0

0 = b0 + b1 +b2, b
0

1 = −b1, b
0

2 = −b2:

Thus, a positive coefficient at lag 0 nearly balancing negative
coefficients at lags 1 and 2–3 as we found in our results can be
interpreted as a near-null coefficient at lag 0, then a change in RH
from lag 1 and 2–3 associated with a change in risk in the same
direction as the RH change. This interpretation is widely known
in life course epidemiology, for example, with opposing-sign
coefficients for height at two points in time as predictors of a later

Figure 3. Lag structure of relative humidity (RH)–mortality association. The model is as described for Figure 2.
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health outcome, suggestive of high or low growth being the
causal predictors (Cole 2007). Whatever the mechanism, in this
time-series context, the impact of the opposite-signed lag-specific
associations that we have observed will be approximately neutral
on overall cumulative risk over a long period (a summer, for
examples) apart from the small beneficial impact of high RH
overall. This is because day-to-day increases in RH will be bal-
anced by decreases unless there has been a sustained trend.

The strength of our study lies particularly in its large and geo-
graphically varied data set and well-tested methodology. We
believe that this is easily the largest study addressing the acute
impact of humidity on mortality. However, there are some limita-
tions. Coverage of tropical climates and less developed economies
was limited. Our approach would find acute but not chronic effects.
Our results were for humidity in ambient air, and we cannot make
conclusions from this about effects of humidity in indoor air on
mortality. We considered only mortality, and only all-cause mortal-
ity; other adverse health events or specific causes of death might
exhibit different patterns. It is also possible that our study may
have missed particular conditions under which humidity may have
had an association with mortality different from the average.
The absence of evidence for variation in humidity coefficients
across countries or by meta-regression according to broad cli-
mate or social indicators (mean temperature or RH; GDP)
excludes obvious contenders but cannot exclude some unmeas-
ured factor as being important. Residual confounding is always
possible, though our models included those factors that are usu-
ally considered critical.

Although we do not draw firm conclusions from this study
alone, our results suggest caution against assuming a substantial
causal relationship between humidity and mortality in hot weather.

Such assumptions are sometime made in designing heat watch
warning systems or in projecting impacts on mortality of climate
change.

In summary, contrary to widespread expectation, this large
study found little association of humidity with mortality in the
following few days after allowing for temperature impacts. This
indicates that studies considering heat effects on mortality with-
out considering humidity are unlikely to be misleading. The small
association we found was of lower mortality following high-
humidity days, but we suggest that this should be interpreted cau-
tiously. The absence of evidence from our data for an adverse
association of humidity with mortality suggests that public health
policy cannot assume presence of such an impact from the physi-
ologic evidence alone, in particular when implementing heat
warning systems and estimating climate change impacts.
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