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Abstract: Autophagy is an important cellular process, involving the transportation of cytoplasmic
contents in the double membrane vesicles to lysosomes for degradation. Autophagy disorder
contributes to many diseases, such as immune dysfunction, cancers and nervous system diseases.
Hydrogen sulfide (H2S) is a volatile and toxic gas with a rotten egg odor. For a long time, it was
considered as an environmental pollution gas. In recent years, H2S is regarded as the third most
important gas signal molecule after NO and CO. H2S has a variety of biological functions and can
play an important role in a variety of physiological and pathological processes. Increasingly more
evidences show that H2S can regulate autophagy to play a protective role in the nervous system, but
the mechanism is not fully understood. In this review, we summarize the recent literatures on the
role of H2S in the pathological process of the nervous system by regulating autophagy, and analyze
the mechanism in detail, hoping to provide the reference for future related research.

Keywords: autophagy; cognitive impairment; diabetes depression; hydrogen sulfide; Parkinson’s
disease; traumatic brain injury

1. Introduction

Autophagy refers to a complex molecular pathway in which intracellular components
are transported to the lysosome chamber for degradation and recycling [1,2]. According to
the different ways in which substrates enter lysosomes, there are three types of autophagy:
macroautophagy, microautophagy and chaperone-mediated autophagy [3]. As an evolu-
tionarily conservative process, autophagy helps cells adapt to various stress conditions
by providing amino acid libraries through the decomposition of proteins and peptides.
Therefore, autophagy maintains intracellular homeostasis, enabling cells to survive [4]. Au-
tophagy dysfunction is associated with many diseases, such as cancer, metabolic diseases,
neurodegenerative diseases and lung diseases [3,5].

Hydrogen sulfide (H2S) is a volatile, flammable and toxic gas with a rotten egg smell,
which can be detected by the human nose at a very low content [6]. Recently, it has
been regarded as a biological signal molecule together with nitric oxide (NO) and carbon
monoxide (CO) [7,8]. H2S is involved in many physiological and pathological processes in
the body, such as ischemia-reperfusion injury, vasodilation, carcinogenesis or inhibition
of cancer, anti-inflammatory and regulation of hormone metabolism [9]. An increasing
amount of evidences indicate that H2S regulates autophagy in many diseases, such as
ischemia/reperfusion injury [10], lung disease [11] and neurodegenerative disease [12]. In
this review, we summarize recent studies on the role of H2S in the pathological processes of
the nervous system by regulating autophagy, and analyze the mechanism in detail, hoping
to provide references for future related research.

2. Overview of Autophagy

Autophagy is a catabolic process through which cellular components, including pro-
teins, lipids and organelles, are degraded in lysosomes and recycled to promote cellular

Metabolites 2022, 12, 879. https://doi.org/10.3390/metabo12090879 https://www.mdpi.com/journal/metabolites

https://doi.org/10.3390/metabo12090879
https://doi.org/10.3390/metabo12090879
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/metabolites
https://www.mdpi.com
https://orcid.org/0000-0002-5617-3563
https://doi.org/10.3390/metabo12090879
https://www.mdpi.com/journal/metabolites
https://www.mdpi.com/article/10.3390/metabo12090879?type=check_update&version=2


Metabolites 2022, 12, 879 2 of 12

homeostasis [13]. In the process of autophagy, the abnormal organelles and proteins,
and pathogens are wrapped in autophagosomes formed by double membranes, and then
transferred to lysosomes to be degraded [14]. Three types of autophagy have been found, in-
cluding macroautophagy, microautophagy and chaperone-mediated autophagy, according
to the substrate selectivity and the delivery path of the cargo to the lysosome cavity [15,16].
Macroautophagy, commonly known as autophagy, is the most thoroughly studied one,
including initiation, expansion, closure and degradation processes [17]. Macroautophagy
firstly forms cytosolic double membrane vesicles called autophagosomes to isolate the
cargo. The autophagosomes then fuse with lysosomes to form autophagolysosomes, and
the cargo is then degraded by the protease [18]. Chaperone-mediated autophagy transports
a single unfolded and labeled protein directly across the lysosomal membrane. Microau-
tophagy involves the direct uptake of cargo through lysosomal membrane invagination. All
three types of autophagy lead to the degradation of cargo and transport the decomposition
products back to the cytoplasm for cell reuse (Figure 1) [14,19–25]. Under physiological
conditions, autophagy is usually at a basic level. Activated by various cellular stresses,
including nutrient/energy starvation, endoplasmic reticulum stress, hypoxia, hypoxia,
and organelle damage, the enhanced autophagy can clear the abnormal proteins in cells
to maintain cell survival [26]. However, if autophagy is maintained at a high level for a
long time due to internal and external factors, it may lead to autophagic death of cells to
cause diseases. Therefore, the effect of autophagy on cells is a “double-edged sword” [27].
Autophagy disorders can be involved in a variety of pathological processes, including type
2 diabetes and obesity, infectious diseases and inflammation, neurodegenerative diseases
and cancers [28]. In the pathological processes, the abnormal autophagy lost the function
of clearing abnormal substances in the cell, leading to autophagic death [29]. However, the
mechanism is not completely clear.
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3. Overview of H2S

H2S is a colorless, flammable, lipophilic molecule with an unpleasant smell, similar to
rotten eggs [30]. For many years, H2S has been simply regarded as a toxic gas and environ-
mental pollutant [31]. Abe and Kimura’s 1996 report proposed the role of endogenous H2S
in neural regulation, ushering in a new era of H2S study and its role in biology [32]. The
evidence shows that H2S can regulate the function of the nervous system, especially the
hippocampus. H2S not only plays an important regulatory role in the nervous system, but
also plays an important role in digestive, cardiovascular system, urinary and blood systems.
Therefore, H2S has been considered as the third gas signal molecule after CO and NO [33].
Endogenous H2S is mainly produced under the catalysis of three enzymes:cystathionine-
β-synthase(CBS), cystathionine-γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase



Metabolites 2022, 12, 879 3 of 12

(3-MST)[34]. During the production of endogenous H2S, L-homocysteine (Hcy) is converted
into cystathionine, which is then converted into L-cysteine. CBS and CSE catalyse L-cysteine
to produce H2S. L-cysteine was catalyzed by CAT to generate 3-mercaptopyruvate (3-MP)
and eventually H2S. Moreover, 3-MST catalyzes 3-MP to produce H2S. Hcy is also catalyzed
by CSE to produce H2S (Figure 2) [35,36]. H2S has many physiological functions, such as
anti-apoptosis, anti-inflammatory, anti-oxidative stress, vasodilation and lowering blood
pressure [37]. The biological function of H2S is mainly achieved by reversible protein
vulcanization [38]. H2S mainly plays its physiological function by regulating cell function.
There are many mechanisms for its regulation of cell function: histone modification, DNA
methylation, DNA damage repair and H2S post-translational modification of proteins
through sulfur hydration [39]. In recent years, the evidence has shown that H2S plays
an important role by regulating autophagy in the pathological processes of the nervous
system, including traumatic brain injury, nervous system hypoxia-ischemia injury, sleep
deprivation-induced cognitive impairment, diabetic depression and Parkinson’s disease.
However, the relevant mechanisms have not been fully understood. In this review, we
summarize the literature on the role of H2S in regulating autophagy in the pathological
processes of the nervous system, and analyze the related mechanism, in order to provide a
reference for future research.
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4. H2S Plays a Protective Role by Regulating Autophagy in Traumatic Brain Injury

Traumatic brain injury (TBI) refers to the interruption of brain function or other
pathological changes of the brain caused by external forces. It is estimated that the annual
incidence rate of TBI in the world is 50 million cases, and TBI is the major cause of the
disability and death worldwide [40–42]. The secondary injury (subsequent biochemical
changes) of TBI can lead to cell death, such as autophagic cell death and apoptosis, resulting
in neurological impairment. Therefore, the inhibition of secondary cell death is the focus
of brain injury treatment [43,44]. Mingyang Zhang and colleagues found that exogenous
H2S ameliorated TBI of mice by decreasing brain edema, improving movement disorder
and spatial memory acquisition after brain injury. Mechanism research revealed that
H2S decreased the acute plasmalemma permeability in injured cells of the cortical and
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hippocampal brain regions in mice with TBI. The plasma membrane permeability is a
marker of apoptosis and autophagy. Therefore, the subsequent detection of apoptosis
and autophagy showed that H2S abolished TBI-induced cleaved caspase-3 and decline of
Bcl-2, inhibited LC3-II, Beclin-1 and Vps34 activation and reversed the decline of p62 in
the cortex and hippocampus of mice with TBI, indicating that H2S suppressed apoptosis
and autophagy in TBI model of mice [45]. It has been reported that autophagic death
and apoptosis participate in TBI [46]. Hence, in the above study, it can be deduced that
exogenous H2S improves TBI of mice through inhibiting autophagy and apoptosis, which
needs to be further confirmed [45]. In addition, Beclin 1 interacts with Bcl-2 through its BH3
domain [47], suggesting that autophagy and apoptosis can regulate each other. In the above,
H2S reverses the upregulation of the Beclin-1/Bcl-2 ratio induced by TBI, which indicated
that H2S inhibits apoptosis and autophagy through regulating Beclin-1-Vps34 interaction.

Mitochondria is a dynamic and multifunctional organelle, which plays an important
role in maintaining the balance of intracellular environment and the function and survival of
cells [48,49]. It has been reported that protecting mitochondria is important for TBI [50–52].
The results of Kebin Xu et al. showed that exogenous H2S preserved the integrity of
blood–brain barrier (BBB) by increasing the expression of adherens junctions (AJs) and
tight junctions (TJs), ameliorating pericyte survival, and mitigating neurovascular defect.
H2S also protected neurons from apoptosis through decreasing apoptotic cells number
and increasing Bcl-2/Bax ratio. Moreover, H2S induced remyelination and axonal repair
through stabilizing microtubules and mitigating mitochondrial dysfunction. In addition,
H2S suppressed autophagy following TBI, which was caused by the activation of the
PI3K/AKT/mTOR pathway. Rapamycin (an autophagy activator) reversed H2S protection
of TBI, while 3-MA (an autophagy suppressor) had the opposite effect, indicating that
H2S improved TBI by inhibiting autophagy. Collectively, exogenous H2S ameliorated
TBI through suppressing autophagy via activating PI3K/AKT/mTOR pathway [53]. The
study showed that autophagy can promote cell survival through eliminating the damaged
organelles and protein [27]. In H2S improvement of TBI, autophagy promotes cell death
after TBI via the excessive degradation of basic cellular components, which is inhibited
by H2S.

In addition to exogenous H2S, the endogenous H2S may also improve TBI. 3-MST is an
important enzyme regulating endogenous H2S synthesis [54,55]. To explore 3-MST changes
after TBI and its possible role, Mingyang Zhang et al. established a mouse model of TBI
through a controlled cortical impingement system. The results showed that 3-MST existed
in the cerebral cortex of normal mice. It increased gradually to reach a peak on the first day
after TBI, and then dropped to a valley on the third day. Moreover, 3-MST collocated with
neuron. Additionally, autophagy also peaked evidenced by the increased expression of LC3
on the first day after TBI. Moreover, the TBI-induced 3-MST was partially labeled by LC3.
This indicated that some of the neurons expressing 3-MST, not dying neurons, were LC3
positive. However, 3-MST was not collocated with propidium iodide (cell death marker),
and LC3 positive cells were partially colocalized with propidium iodide, suggesting that a
considerable proportion of dead cells underwent autophagic cell death, and 3-MST has a
protective effect on brain injury [56]. The evidence indicates that autophagy can maintain
the survival of nerve cells [57,58]. Therefore, in the above study, it can be deduced that the
TBI-induced 3-MST in cerebral cortex is related to the autophagic protection of neurons
after TBI, suggesting that endogenous H2S may play an important role in autophagic cell
death after TBI [56]. Whether endogenous H2S can improve TBI through autophagy needs
further research.

5. H2S Plays a Protective Role by Regulating Autophagy in Nervous System
Hypoxia-Ischemia Injury
5.1. H2S Plays a Protective Role by Regulating Autophagy in Spinal Cord
Ischemia-Reperfusion Injury

Spinal cord ischemia-reperfusion (I/R) injury is a dynamic process and one of the most
devastating complications during thoracic-abdominal aortic surgery, which can lead to the



Metabolites 2022, 12, 879 5 of 12

severe nerve defect of lower limbs and even brain death [59,60]. However, the pathological
mechanism of spinal cord I/R injury is not completely clear, and there is no effective
neuroprotective therapy [61]. It has been reported that autophagy is involved in spinal cord
I/R injury; however, whether autophagy plays a protective or harmful role in spinal cord
I/R injury is still uncertain [62,63]. Lei Li and colleagues established an in vivo and in vitro
spinal cord I/R injury model and conducted a series of experiments. The results showed
that exogenous H2S decreased the infarcted area of spinal cord and ameliorated the motor
function of hind limbs of a rat model of spinal cord I/R injury. Mechanism research showed
that H2S treatment decreased miR-30c expression and induced autophagy by upregulating
the expression of Beclin-1 and LC3II in spinal cord of rat with spinal cord I/R injury. The
results in OGD-induced spinal cord I/R injury of SY-SH-5Y cells were similar to those
in vivo. Moreover, miR-30c negatively regulated Beclin-1 expression by targeting its 3′UTR,
indicating that miR-30c negatively regulated autophagy in spinal cord with I/R injury.
Similarly, exogenous H2S also suppressed Beclin-1 3′UTR in SY-SH-5Y cells with Oxygen,
Glucose Deprivation (OGD)-induced spinal cord I/R injury. In addition, pretreatment of
3-MA or pre-miR-30c abolished H2S improvement of spinal cord I/R injury, indicating
that exogenous H2S improved spinal cord I/R injury by promoting autophagy through
inhibiting miR-30c [64]. The study indicates that in the case of extensive mitochondrial
damage, autophagy can clear the damaged mitochondria to protect cells before it releases
death-inducing proteins [63,65]. In the early stage of I/R injury, autophagy is upregulated
to protect cells [66]. Therefore, in the above study, it can be deduced that H2S can improve
spinal I/R injury by promoting autophagy and clearing the damaged mitochondria caused
by I/R injury. Furthermore, it has been reported that the inhibition of autophagy improves
spinal cord I/R injury [62], which is contrary to the above conclusion. The reason may be
the different periods of spinal I/R injury, which needs to be studied further.

5.2. H2S Plays a Protective Role by Regulating Autoophagy in the Hypoxia-Ischemia Brain Injury
of Neonatal Mice

Perinatal brain injury induced by hypoxia-ischemia (HI) may lead to neurodevelop-
mental disorders. Improving perinatal care can greatly improve the survival of infants
with brain injury. In the critical period of brain development, HI can lead to perinatal
brain neuron excitotoxicity, brain cell apoptosis and microglia activation [67,68]. H2S has
been reported to play neuroprotective role in the central nervous system [69,70]. However,
whether H2S can improve HI brain injury through regulating autophagy is not clear. Dan-
qing Xin et al. found that L-Cysteine treatment after HI decreased early brain injury and
improved behavioral deficits and synaptic damage in neonatal mice, which is related to the
increased expression of synaptophysin and postsynaptic density protein 95 expression in
the damaged cortex. In-depth research showed that L-cysteine could reduce the aggregation
of CD11b+/CD45high cells, inhibit the activation of microglia and astrocytes, and decrease
the upregulation of reactive oxygen species (ROS), malondialdehyde, neuronal apoptosis
and inflammatory gene expression induced by HI in the damaged cortex of neonatal mice.
Furthermore, L-Cysteine promoted autophagy by upregulating the expression of LC3 II
and Beclin1 and downregulating p62 expression in the injured cortex after HI. CQ, an
inhibitor of autophagy, abolished the protective effect of L-Cysteine on HI brain injury, indi-
cating that L-Cysteine improved HI brain injury by promoting autophagy. In addition, the
treatment of amino-oxyacetic acid (a suppressor of the H2S-producing enzyme) reversed
the protective effect of L-Cysteine on HI brain injury. Collectively, endogenous H2S pro-
duced by L-Cysteine ameliorated HI-induced brain injury of neonatal mice by promoting
autophagy [71]. In the above study, the enhanced autophagy can reduce ROS-mediated cell
injury by scavenging HI-induced damaged mitochondria. Previous studies have shown
that exogenous H2S promotes autophagy through the mTOR pathway [11,72,73]. Fur-
thermore, Stat3 pathway has been reported to be involved in autophagy [74]. L-Cysteine
inhibited mTOR and Stat3 pathway, suggesting that the endogenous H2S produced by
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L-Cysteine might promote autophagy by inhibiting the mTOR and Stat3 pathway, which
needs to be further confirmed [71].

6. H2S Plays a Protective Role by Regulating Autophagy in Sleep Deprivation-Induced
Cognitive Impairment

Sleep is very important to maintain the balance of physiological internal environment.
Therefore, insufficient sleep will lead to various diseases. Sleep deprivation (SD) is an
increasingly serious health problem in contemporary society [75]. SD can lead to cognitive
impairment; however, the mechanism is not completely clear [76,77]. H2S has been reported
to improve cognitive impairment [78]; however, how H2S inhibits SD-induced cognitive
impairment has not been thoroughly studied. The results of Shan Gao and colleagues
showed that exogenous H2S alleviated SD-induced cognitive impairment by ameliorating
working memory impairment in Y-maze test, cognitive dysfunction in the novel object
recognition test, location memory deficit in object location test, and spatial learning and
memory disorder in the Morris water maze test, which were reversed by the inhibition
of Sirt-1 by Sirtinol (an inhibitor of Sirit-1). H2S also reduced SD-induced hippocampal
excessive autophagy by decreasing autophagosomes, downregulating Beclin1, and upreg-
ulating p62 in the hippocampus of SD-exposed rats. Furthermore, Sirtinol reversed H2S
inhibition of the cognitive impairment and excessive hippocampal autophagy induced by
SD in rats [79]. In addition, it has been reported that H2S increased Sirt-1 expression in
the hippocampus of SD-exposed rats [80]. Collectively, it can be deduced that exogenous
H2S mitigates SD-induced cognitive impairment by inhibiting autophagy via hippocampal
Sirt-1 of rats [79]. Another study demonstrated that hippocampal excessive autophagy and
inhibition of endogenous H2S production results in SD-induced cognitive impairment [81],
which further confirmed the protective effect of H2S on SD-induced cognitive impairment.

7. H2S Plays a Protective Role by Regulating Autophagy in Diabetic Depression

The incidence rate of depression in people with diabetes is higher than that in people
without diabetes [82,83]. Therefore, it is particularly important to study the mechanism
of depression in diabetes. Brain-derived neurotropic factor (BDNF) has been reported to
play an important role in depression [84,85]; however, the mechanism is not completely
clear. Hai Yao Liu and colleagues found that exogenous H2S activated BDNF-TrkB path-
way by increasing the protein expressions of BDNF and p-TrkB in the hippocampus of
streptozotocin (STZ)-induced diabetic rats. K252a, which is an inhibitor of BDNF-TrkB
pathway, abolished the antidepressant effect of H2S as evidenced by the tail suspension,
novelty suppressed feeding, forced swimming and elevated plus-maze tests. Moreover,
K252a reversed H2S-promoted hippocampal autophagy by downregulating the protein
expression level of Beclin-1 and upregulating the protein expression of p62 in diabetic rats.
Summarily, exogenous H2S improved depression by promoting autophagy via activating
the BDNF-TrkB pathway [86]. In the above studies, in addition to BDNF-TrkB pathway,
whether H2S can regulate autophagy through other ways to play an antidepressant role
remains to be studied. In addition, the evidence indicates that the injury of hippocampal
neurons contributes to diabetic depression [87,88]. Hence, future studies are needed to
clarify whether H2S inhibits hippocampal neuronal damage by regulating autophagy.

8. H2S Plays a Protective Role by Regulating Autophagy in Parkinson’s Disease

Parkinson’s disease (PD) is a common progressive neurodegenerative disorder, the
prevalence of which rises with advancing age. It affects about 2% of the population world-
wide [89–91]. The neuronal apoptosis in the substantia has been reported to contribute
to PD [92,93]. Wu Jiang et al. found that exogenous H2S mitigated neuronal apoptosis
in the substantia by inhibiting 6-hydroxydopamine (OHDA)-induced TUNEL-positive
cells, caspase-3 activity and Bax expression and mitigated 6-OHDA-induced reduction
of Bcl-2 expression in substantia nigra of rats. In-depth research showed that 6-OHDA
upregulated the expressions of Beclin-1, LC3-II and P62, increased the autophagosomes
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number and decreased the autolysosomes number in the substantia nigra, which were
reversed by NaHS treatment, indicating that exogenous H2S restored the autophagy flux of
substantia nigra impaired by 6-OHDA in rats. Moreover, H2S abolished 6-OHDA-induced
decrease of leptin expression in the substantia nigra, and leptin-OBR, an inhibitor of leptin
signaling, mitigated H2S inhibition of neuronal apoptosis and H2S promotion of the im-
paired autophagy in substantia nigra of rats treated by 6-OHDA. Summarily, exogenous
H2S ameliorated neuronal apoptosis in substantia nigra by promoting autophagy impaired
by 6-OHDA via activating leptin signaling in PD, which needed to be further confirmed by
using the autophagy inhibitor [94]. It has been reported that mitochondrial dysfunction
plays an important role in PD [95,96]. In the above study, exogenous H2S upregulates
Bcl-2 expression and downregulates Bax expression, suggesting that H2S may inhibit
mitochondrial-mediated neuronal apoptosis, which need to be studied further. Evidence
indicates that the leptin signaling promotes autophagy [97,98]. The in-depth mechanism of
H2S alleviating neuronal apoptosis through upregulating autophagy via leptin remains to
be clarified.

9. Conclusions

In this review, we summarize the recent studies about the role of H2S targeting au-
tophagy in the pathological processes of the nervous system as follows: (1) exogenous
H2S ameliorates TBI of mice through suppressing autophagy and apoptosis; (2) exogenous
H2S improves TBI by inhibiting autophagy via activating PI3K/AKT/mTOR pathway;
(3) endogenous H2S may play protective role against TBI by inhibiting autophagic cell
death; (4) exogenous H2S ameliorates spinal I/R injury through promoting autophagy and
clearing the damaged mitochondria caused by I/R injury; (5) endogenous H2S produced
by L-Cysteine improves HI-induced brain injury of neonatal mice by promoting autophagy
via inhibiting mTOR and Stat3 pathway; (6) exogenous H2S alleviates SD-induced cognitive
impairment by inhibiting autophagy via hippocampal Sirt-1; (7) exogenous H2S ameliorates
depression through promoting autophagy by activating BDNF-TrkB pathway; (8) exoge-
nous H2S improves neuronal apoptosis in substantia nigra through promoting autophagy
impaired by 6-OHDA via activating leptin signaling (Table 1). It can be seen from the above
that H2S sometimes promotes autophagy, and sometimes inhibits autophagy to protect the
nervous system. The reason may be related to the types of nervous system diseases and
the different course of nervous system disease. Generally speaking, at the beginning of the
pathological process, the enhanced autophagy can help cells adapt to in vitro and in vivo
stimulation and promote intracellular homeostasis, while the continuously enhanced au-
tophagy can lead to autophagic death, thereby aggravating the pathological process. In
addition, H2S regulates autophagy in the nervous system through a variety of pathways,
including PI3K/AKT/mTOR pathway, mTOR/Stat3 pathway, Sirt-1 pathway, BDNF-TrkB
pathway and leptin pathway. Whether there are other pathways to participate remains to
be clarified in future research.

Table 1. The summary of the role of H2S targeting autophagy in the pathological processes of the
nervous system.

The Type of Nervous
System Diseases The Role of H2S Targeting Autophagy Experimental Model Reference

Traumatic brain injury (TBI) Exogenous H2S ameliorates TBI of mice through
suppressing autophagy and apoptosis Mice model of TBI [45]

TBI
Exogenous H2S improves TBI by inhibiting

autophagy via activating PI3K/AKT/
mTOR pathway

Mice/SH-SY5Y cells model
of TBI [53]

TBI Endogenous H2S may play protective role against
TBI by inhibiting autophagic cell death Mice model of TBI [56]
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Table 1. Cont.

The Type of Nervous
System Diseases The Role of H2S Targeting Autophagy Experimental Model Reference

Spinal cord
ischemia-reperfusion

(I/R) injury

Exogenous H2S ameliorates spinal I/R injury
through promoting autophagy and clearing the

damaged mitochondria caused by I/R injury

Rat model of spinal cord
ischemia-reperfusion injury [64]

hypoxia-ischemia (HI)
brain injury

Endogenous H2S produced by L-Cysteine improves
HI-induced brain injury of neonatal mice by

promoting autophagy via inhibiting the mTOR and
Stat3 pathway

Neonatal mice model of
hypoxia-ischemia injury [71]

sleep deprivation
(SD)-induced

cognitive impairment

Exogenous H2S alleviates SD-induced cognitive
impairment by inhibiting autophagy via

hippocampal Sirt-1

Mice model of SD-induced
cognitive impairment [79]

diabetes depression
Exogenous H2S ameliorates depression through

promoting autophagy by activating
BDNF-TrkB pathway

Rat model of
diabetes depression [86]

Parkinson’s disease (PD)
Exogenous H2S improves neuronal apoptosis in
substantia nigra through promoting autophagy

impaired by 6-OHDA via activating leptin signaling

6-hydroxydopamine rat
model of PD [94]

Our previous studies have shown that exogenous H2S can target autophagy/NLRP3
inflammasome and play a protective role in the liver [72,99]. Therefore, whether H2S can
improve nervous system diseases by regulating autophagy/NLRP3 inflammasome is a
topic worthy of study in the future.

With the deepening of relevant studies, H2S inhibition of autophagy death of neural
cells may become a new therapeutic strategy for the treatment of neurological diseases.
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