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Abstract. In Sarria and Saxton (2013), we derived representation formulae for spa-

tially periodic solutions to the generalized, inviscid Proudman-Johnson equation and

studied their regularity for several classes of initial data. The purpose of this paper is to

extend these results to larger classes of functions including those having arbitrary local

curvature near particular points in the domain.

1. Introduction. In this article, we extend the analysis initiated in [20] concerning

blow-up, and blow-up properties, in solutions to the initial boundary value problem for

the generalized, inviscid Proudman-Johnson equation ([19], [4], [17])⎧⎪⎪⎨
⎪⎪⎩
uxt + uuxx − λu2

x = I(t), t > 0,

u(x, 0) = u0(x), x ∈ [0, 1],

I(t) = −(λ+ 1)
∫ 1

0
u2
x dx,

(1.1)

where λ ∈ R and solutions are subject to periodic boundary conditions

u(0, t) = u(1, t), ux(0, t) = ux(1, t). (1.2)

We note that the equation arises in several important applications, in the presence or

absence of the nonlocal term I(t). For λ = −1, (1.1) i), iii) reduces to the inviscid

Burgers’ equation of gas dynamics differentiated once in space. If λ = −1/2, the Hunter

Saxton equation (HS) describes the orientation of waves in a massive director field of

a nematic liquid crystal ([13], [2], [8], [26]). For periodic functions, the HS equation

also has a deep geometric meaning as it describes geodesics on a group of orientation

preserving diffeomorphisms on the unit circle modulo rigid rotations with respect to a
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56 A. SARRIA AND R. SAXTON

right-invariant metric ([15], [2], [23], [16]). If λ = 1
n−1 , n ≥ 2, (1.1) i), iii) can be obtained

directly from the n−dimensional incompressible Euler equations

ut + (u · ∇)u = −∇p, ∇ · u = 0

using stagnation point-form velocities u(x,x′, t) = (u(x, t),−λx′ux(x, t)), x′ = {x2, . . . ,

xn}, or through the cylindrical coordinate representation ur = −λrux(x, t), u
θ = 0 and

ux = u(x, t), where r = |x′| ([4], [24], [22], [17], [10]). Finally, in the local case I(t) = 0,

the equation appears as a special case of Calogero’s equation

uxt + uuxx − Φ(ux) = 0

for arbitrary functions Φ(·) ([3]).
In [20] we derived representation formulae for periodic solutions to (1.1)-(1.2) and, for

several classes of mean-zero initial data, examined their Lp regularity for p ∈ [1,+∞].

For the convenience of the reader, the main results established in [20] are summarized in

Theorems 1.1-1.3 below.

Theorem 1.1. Consider the initial boundary value problem (1.1)-(1.2). There exist

smooth, mean-zero initial data such that:

(1) For λ ∈ (−∞,−2]∪(1,+∞), there is a finite time t∗ > 0 such that limt↑t∗ |ux(x, t)|
= +∞ for every x ∈ [0, 1]. Additionally, the blow-up is two-sided (two-sided,

everywhere blow-up).

(2) For λ ∈ (−2, 0), there is a finite time t∗ > 0 and a finite number of xj ∈ [0, 1],

j ∈ N, such that limt↑t∗ ux(xj , t) = −∞ (one-sided, discrete blow-up).

(3) For λ ∈ [0, 1], solutions persist globally in time. More particularly, these vanish

as t ↑ t∗ = +∞ for λ ∈ (0, 1) but converge to a nontrivial steady state for λ = 1.

For t∗ > 0 as in Theorem 1.1 above, Theorem 1.2 below examines Lp(0, 1) regularity

of ux for t ∈ [0, t∗) and p ∈ [1,+∞).

Theorem 1.2. Let u in Theorem 1.1 be a solution to the initial boundary value problem

(1.1)-(1.2) defined for t ∈ [0, t∗). Then:

(1) For p ≥ 1 and 2
1−2p < λ ≤ 1, limt↑t∗ ‖ux‖p < +∞.

(2) For p ∈ (1,+∞) and λ ∈ (−∞,−2/p] ∪ (1,+∞), limt↑t∗ ‖ux‖p = +∞.

(3) The energy E(t) = ‖ux‖22 diverges if λ ∈ R\(−2/3, 1] as t ↑ t∗ but remains

finite for t ∈ [0, t∗] otherwise. Moreover, Ė(t) blows up to +∞ as t ↑ t∗ when

λ ∈ R\[−1/2, 1] and Ė(t) ≡ 0 for λ = −1/2, whereas limt↑t∗ Ė(t) = −∞ if

λ ∈ (−1/2,−2/5] but remains bounded when λ ∈ (−2/5, 1] for all t ∈ [0, t∗].

See §3 for details on the class of initial data used to establish Theorems 1.1 and 1.2.

Lastly, let PCR(0, 1) denote the family of piecewise constant functions with zero mean

in [0, 1]. Then, in [20] we proved the following:

Theorem 1.3. For the initial boundary value problem (1.1)-(1.2),

(1) Suppose u′′
0(x) ∈ PCR(0, 1) and λ > 1/2. Then, there exist solutions and a finite

t∗ > 0 for which ux undergoes a two-sided, everywhere blow-up as t ↑ t∗. If λ < 0,

a one-sided discrete blow-up may occur instead. In contrast, for λ ∈ [0, 1/2],
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GENERALIZED INVISCID PROUDMAN-JOHNSON EQUATION 57

solutions may persist globally in time. More particularly, these either vanish as

t ↑ t∗ = +∞ if λ ∈ (0, 1/2) or converge to a nontrivial steady-state for λ = 1/2.

(2) Suppose u′
0(x) ∈ PCR(0, 1) and assume solutions are defined for all t ∈ [0, T ], T >

0. Then noW 1,∞
R

(0, 1) solution may exist for T ≥ t∗, where 0 < t∗ < +∞ if λ < 0,

and t∗ = +∞ for λ ≥ 0. Further, limt↑t∗ ‖ux‖1 = +∞ when λ < −1, while

lim
t↑t∗

‖ux‖p =

{
C, − 1

p ≤ λ < 0, p ≥ 1,

+∞, −1 ≤ λ < − 1
p , p > 1,

where the constants C ∈ R
+ depend on the choice of λ and p.

The reader may refer to [20] for details, as well as the works [18], [7], [22], [14],

[6], [5] and [25] for additional results and background. The purpose of this article is to

extend the above results to initial data which belongs to classes of functions with varying

concavity profile near certain points in the domain. The papers [7] and [25] constitute

the first works to examine the role played by concavity and convexity of the initial data

on periodic solutions to (1.1). Briefly, they established that if solutions arise from odd

initial data u0 that are convex on (0, 1/2) and concave on (1/2, 1), then, for as long

as solutions exist, they will preserve their initial concavity profile. In this article, we

suppose throughout that u′
0(x) is bounded and, at least, C0(0, 1) a.e. Then, for λ > 0,

we will assume there are constants q,M0 ∈ R
+ and C1 ∈ R

−, and a finite number of

points αi ∈ [0, 1] such that, near αi,

u′
0(α) ∼ M0 + C1 |α− αi|q . (1.3)

Analogously, for λ < 0, we suppose there are constants C2 ∈ R
+, m0 ∈ R

−, and a finite

number of locations αj �= αi in [0, 1] such that, in a neighbourhood of αj ,

u′
0(α) ∼ m0 + C2

∣∣α− αj

∣∣q . (1.4)

We refer to §3.2 for specifics of the above. For now, we simply mention that αi and αj

represent those locations in [0, 1] where u′
0(α) attains its greatest and respectively least

values M0 > 0 > m0. Also, it is worth mentioning that, for q ∈ (0, 1), the above local

estimates may lead to cusps in the graph of u′
0, therefore possible jump discontinuities

in u′′
0 of infinite magnitude across αi and/or αj . In contrast, a jump discontinuity of

finite magnitude in u′′
0 may occur if q = 1. As we will see in the coming sections, the

finite or infinite character in the size of this jump plays a decisive role, particularly in

the formation of spontaneous singularities for the special case of stagnation point-form

solutions to the three dimensional incompressible Euler equations.

2. Outline of the paper and summary of results. In this section we give a

brief outline for the remainder of the paper. Also, in Theorems 2.1 and 2.2 below, as

well as in Corollary 2.1, we summarize some of the main results in this work. In §3.1,
we give an outline for the derivation of the representation formulae established in [20],

while in §3.2, further details on the class of initial data to be considered in this article

are provided. Then new blow-up results are stated and proved in §4. In §4.1, we start

with the case where λ ∈ R and u′
0 satisfies (1.3) and/or (1.4), for q = 1. This instance

is treated separately because estimates on the solution formula are rather simple to
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58 A. SARRIA AND R. SAXTON

derive; therefore, this particular case seems appropriate for introducing the reader to the

main techniques used in this paper before treating the slightly more complicated case of

arbitrary q ∈ R
+. More particularly, for q = 1, L∞(0, 1) regularity of ux is examined

in detail in Theorem 4.4 of §4.1.1, whereas the time-evolution of ‖ux‖p for finite p ≥ 1

is studied in Theorem 4.6 of §4.1.2. The main results are summarized in Theorem 2.1

below. The reader may refer to the individual theorems for more detailed regularity

properties and additional results.

Theorem 2.1. Suppose u′
0(α) satisfies, for q = 1, either (1.3) when λ > 0 or (1.4) if

λ < 0. Then for λ ∈ [0, 1/2], ‖ux‖∞ remains bounded for all time; otherwise, there exists

a finite t∗ > 0 such that:

(1) For λ ∈ (1/2,+∞), ux diverges as t ↑ t∗ everywhere in the domain, whereas for

λ ∈ (−∞, 0), ux blows up at finitely many locations in [0, 1].

(2) For λ ∈ (1/2,+∞) and p > 1, limt↑t∗ ‖ux‖p = +∞.

(3) For λ ∈ (−∞, 0), ux remains integrable for t ∈ [0, t∗], while if 1
1−p < λ < 0 and

p > 1, ux ∈ Lp for all t ∈ [0, t∗].

The main results of this paper are found in §4.2, where we use the representation

formula for ux to examine its Lp regularity for p ∈ [1,+∞], q ∈ R
+ and λ ∈ R. With

this goal in mind, in §4.2.1 we derive some useful integral estimates describing the as-

ymptotic behaviour of particular time-dependent terms in the solution formula. Then

Theorem 4.10 in §4.2.2 studies the behaviour of ‖ux‖∞ for λ ∈ [0,+∞). In this sec-

tion, we also examine regularity of stagnation point-form solutions to the two and three

dimensional incompressible Euler equations (see Table 2). Furthermore, for p ≥ 1 and

λ ∈ [0,+∞), Theorem 4.12 in §4.2.3 is concerned with Lp regularity of ux. Then, finite-

time blow-up, or global-in-time existence, for λ ∈ (−∞, 0) and q ∈ R
+ is examined in

sections 4.2.4 and 4.2.5. More particularly, in Theorem 4.13 of §4.2.4, we study L∞

regularity of ux, whereas Theorem 4.14 of §4.2.5 is concerned with the time-evolution of

‖ux‖p for p ≥ 1. The main results from Theorems 4.10 and 4.12 are summarized below in

Theorem 2.2(1)-(5), whereas parts (6)-(8) of Theorem 2.2 correspond to Theorems 4.13

and 4.14. We direct the reader to the individual theorems for more detailed properties

of blow-up, or global existence in time, as well as additional results.

Theorem 2.2. For q ∈ R
+, assume u′

0 satisfies (1.3) when λ > 0 or (1.4) if λ < 0. Then:

(1) For λ ∈ [0, q/2], ‖ux‖∞ remains bounded for all time.

(2) For λ > q/2, there exists a finite t∗ > 0 such that ‖ux‖∞ diverges as t ↑ t∗.

(3) Let p > 1. Then for all q ∈ R
+ and λ ∈ (q/2, q), limt↑t∗ ‖ux‖p = +∞. Similarly

when λ > q > 1 or 1
2 < λ < q

1−q , q ∈ (1/3, 1/2).

(4) For all q ∈ (0, 1/2), λ > 1
2−p and p ∈ [1, 2), limt↑t∗ ‖ux‖p < +∞.

(5) Suppose q ∈ (1/2, 1). Then limt↑t∗ ‖ux‖p = +∞ for q < λ < q
1−q and p > 1,

whereas if λ > q
1−pq and p ∈ [1, 1/q), limt↑t∗ ‖ux‖p < +∞.

(6) For λ ∈ (−∞, 0), there exists a finite t∗ > 0 such that ‖ux‖∞ diverges as t ↑ t∗.

(7) For q ∈ (0, 1/2) and t∗ as in (6) above, limt↑t∗ ‖ux‖p < +∞ for either λ < 0 and

p ∈ [1, 2] or 1
2−p < λ < 0 and p > 2, whereas for q ∈ (1/2, 1), limt↑t∗ ‖ux‖p < +∞

for either λ < 0 and p ∈ [1, 1/q] or q
1−pq < λ < 0 and p > 1/q.
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GENERALIZED INVISCID PROUDMAN-JOHNSON EQUATION 59

Table 1. Lp(0, 1) Regularity of ux as t ↑ t∗

q p λ ux

R
+ ≥ 1 [0, q/2] ∈ Lp

R
+ > 1 (q/2, q) /∈ Lp

(1,+∞) > 1 (q,+∞) /∈ Lp

(1/3, 1/2) > 1
(

1
2 ,

q
1−q

)
/∈ Lp

(1/2, 1) > 1
(
q, q

1−q

)
/∈ Lp

(0, 1/2) [1, 2)
(

1
2−p ,+∞

)
∈ Lp

(1/2, 1) [1, 1/q)
(

q
1−pq ,+∞

)
∈ Lp

R
+ +∞ (−∞, 0) /∈ Lp

(1,+∞) > 1
(
−∞, q

p(1−q)

)
/∈ Lp

(0, 1/2) [1, 2] (−∞, 0) ∈ Lp

(0, 1/2) > 2
(

1
2−p , 0

)
∈ Lp

(1/2, 1) [1, 1/q] (−∞, 0) ∈ Lp

(1/2, 1) > 1/q
(

q
1−pq , 0

)
∈ Lp

(1,+∞) ≥ 1
(

q
1−pq , 0

)
∈ Lp

(8) Let q > 1. Then limt↑t∗ ‖ux‖p < +∞ for q
1−pq < λ < 0 and p ≥ 1, while for

p > 1 and λ < q
p(1−q) , limt↑t∗ ‖ux‖p = +∞.

For the convenience of the reader, we have summarized the above results in Table 1.

There, t∗ = +∞ only in the first row, i.e. for λ ∈ [0, q/2]. For the remaining entries,

t∗ > 0 represents the finite L∞ blow-up time for ux (see (2) and (6) in Theorem 2.2).

Lastly, in Corollary 4.2 of §4.2.6 we study a large class of smooth initial data comprised

of functions u0 such that u′′
0 has a zero of order k ≥ 1 (see Definition 4.15 in §4.2.6) at

each αi and/or αj . The main results from the corollary are summarized below. For

details and additional results refer to §4.2.6.

Corollary 2.1. Suppose u0 is periodic, smooth, and has mean zero in [0, 1]. Moreover,

(1) Suppose u′′
0(α) has a zero of order k ≥ 1 at every αi, i = 1, 2, . . . ,m. Then:

• For 0 ≤ λ ≤ 1+k
2 , solutions exist globally in time. More particularly, these

vanish as t → +∞ for 0 < λ < 1+k
2 but converge to a nontrivial steady-

state if λ ∈
{
0, 1+k

2

}
. In contrast, for 1+k

2 < λ < +∞, there exists a finite

t∗ > 0 such that ux diverges at every x ∈ [0, 1] as t ↑ t∗. Additionally,

limt↑t∗ ‖ux‖p = +∞ for all p > 1.

(2) Suppose u′′
0(α) has a zero of order k ≥ 1 at each αj , j = 1, 2, . . . , n. Then:
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60 A. SARRIA AND R. SAXTON

• For − 1+k
k < λ < 0, there is a finite t∗ > 0 such that ux blows up as t ↑ t∗

at finitely many points in [0, 1], whereas for 1+k
1−p(1+k) < λ < 0 and p ≥ 1,

limt↑t∗ ‖ux‖p < +∞. Further, for λ < − 1+k
k , ux diverges at every point in

the domain, as t ↑ t∗, and limt↑t∗ ‖ux‖p = +∞ for λ < − 1+k
pk and p > 1.

We conclude the paper by providing specific examples in §5.

3. Preliminaries.

3.1. The general solution. In [20], we used the method of characteristics to derive a

representation formula for periodic solutions to (1.1). This was possible, in part, due to

the following local-in-time well-posedness result established in [18].

Theorem 3.1 ([18]). For u′
0(x) ∈ Hs(0, 1), s ≥ 1, there exists T > 0 and a unique

solution to (1.1)-(1.2) in the class

ux ∈ C([0, T ], Hs) ∩ C1
w([0, T ], H

s−1),

where w implies weak topology.

From (1.3) or (1.4), note that q ∈ (1/2,+∞) is required for u′′
0 to be square integrable

in a small neighbourhood of α. For a local well-posedness result that includes q ∈ (0, 1/2],

we direct the reader to Theorem 4.1 in [22]. Next, for the convenience of the reader, we

give a brief outline of the derivation of the solution formula established in [20].

Define the characteristics, γ, as the solution to the initial value problem

γ̇(α, t) = u(γ(α, t), t), γ(α, 0) = α ∈ [0, 1], (3.1)

so that

γ̇α(α, t) = ux(γ(α, t), t) · γα(α, t). (3.2)

Then, using (1.1) i), iii) and the above, we obtain

γ̈α = (uxt + uuxx) ◦ γ · γα + (ux ◦ γ) · γ̇α
= (uxt + uuxx) ◦ γ · γα + u2

x ◦ γ · γα

= (λ+ 1)

(
u2
x ◦ γ −

∫ 1

0

u2
xdx

)
· γα

= (λ+ 1)

(
(γ−1

α · γ̇α)2 −
∫ 1

0

u2
xdx

)
· γα ,

(3.3)

which for λ �= 0, I(t) = −(λ+ 1)
∫ 1

0
u2
xdx, and ω(α, t) = γα(α, t)

−λ can be written as

ω̈(α, t) + λI(t)ω(α, t) = 0. (3.4)

Assume we have two linearly independent solutions φ1(t) and φ2(t) to (3.4) satisfying

φ1(0) = φ̇2(0) = 1 and φ̇1(0) = φ2(0) = 0. Then, since ω̇ = −λγ
−(λ+1)
α γ̇α and γα(α, 0) =

1, we deduce that

ω(α, t) = φ1(t) (1− λη(t)u′
0(α)) , η(t) =

∫ t

0

ds

φ2
1(s)

. (3.5)
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Now, uniqueness of solution to (3.1) and periodicity imply that

γ(α+ 1, t)− γ(α, t) = 1 (3.6)

for as long as u is defined. Consequently, simplifying and integrating (3.5) i) with respect

to α gives

γα = K0/K̄0 (3.7)

where we define

Ki(α, t) =
1

J (α, t)i+
1
λ

, K̄i(t) =

∫ 1

0

dα

J (α, t)i+
1
λ

, (3.8)

for i ∈ N ∪ {0}, and

J (α, t) = 1− λη(t)u′
0(α), J (α, 0) = 1. (3.9)

As a result, (3.2) and (3.9) i) yield, after further simplification,

ux(γ(α, t), t) =
1

λη(t)K̄0(t)
2λ

(
1

J (α, t)
− K̄1(t)

K̄0(t)

)
. (3.10)

The strictly increasing function η(t) satisfies the initial value problem

η̇(t) = K̄0(t)
−2λ

, η(0) = 0, (3.11)

from which the existence of an eventual finite blow-up time t∗ > 0 for (3.10) will depend,

in turn, upon the existence of a finite, positive limit

t∗ ≡ lim
η↑η∗

∫ η

0

(∫ 1

0

dα

(1− λμu′
0(α))

1
λ

)2λ

dμ (3.12)

for η∗ > 0 to be defined. Moreover, assuming sufficient smoothness, (3.7) and (3.10)

imply that

uxx(γ(α, t), t) =
u′′
0(α)

J (α, t)2−
1
λ

K̄0(t)
1−2λ, (3.13)

so that, for as long as it exists, u maintains its initial concavity profile.

3.2. The data classes. Suppose solutions exist for t ∈ [0, t∗), 0 < t∗ ≤ +∞. Define

M(t) ≡ sup
α∈[0,1]

{ux(γ(α, t), t)}, M(0) = M0 (3.14)

and

m(t) ≡ inf
α∈[0,1]

{ux(γ(α, t), t)}, m(0) = m0, (3.15)

where αi, i = 1, 2, . . . ,m, and αj , j = 1, 2, . . . , n, denote the finite1 number of locations

in [0, 1] where u′
0(α) attains its greatest and least values M0 > 0 > m0, respectively.

Then, it follows from (3.10) ([20]) that

M(t) = ux(γ(αi, t), t), m(t) = ux(γ(αj , t), t) (3.16)

1One possibility for having an infinite number of these points will be considered later via a limiting
argument.
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62 A. SARRIA AND R. SAXTON

for 0 ≤ t < t∗. Now, the results of Theorems 1.1-1.3 suggest that the curvature of u′
0

near αi and/or αj plays a decisive role in the regularity of solutions to (1.1). Therefore,

in the following sections, we further examine this interaction by considering a large class

of functions in which u′
0(x) is assumed to be bounded, at least C0(0, 1) a.e., and has

arbitrary curvature near the location(s) in question. More particularly, for λ > 0, we

will assume there are constants q ∈ R
+ and C1 ∈ R

− such that

u′
0(α) ∼ M0 + C1 |α− αi|q (3.17)

for 0 ≤ |α− αi| ≤ r, and small enough 0 < r ≤ 1, r ≡ min1≤i≤m{ri}. In (3.17) above,

we use the notation

f(α) ∼ L+ g(α), (3.18)

valid for 0 ≤ |α−β| ≤ r, to mean that there exists a function h(α) defined on (β−r, β+r)

such that

f(α)− L = g(α)(1 + h(α)) where lim
α→β

h(α) = 0. (3.19)

Similarly, for λ < 0, we suppose there is C2 ∈ R
+ such that

u′
0(α) ∼ m0 + C2

∣∣α− αj

∣∣q (3.20)

for 0 ≤
∣∣α− αj

∣∣ ≤ s and 0 < s ≤ 1, s ≡ min1≤j≤n{sj}. See Figure 1 below. Now, for r

and s as above, define

Di ≡ [αi − r, αi + r], Dj ≡ [αj − s, αj + s].

Then, below we list some of the data classes that admit the asymptotic behaviour (3.17)

and/or (3.20) for particular values of q > 0.

• u0(x) ∈ C∞(0, 1) for q = 2k and k ∈ Z
+ (see Definition 4.15).

• If q = 1, u′′
0(x) ∈ PC(Di) for λ > 0, or u′′

0(x) ∈ PC(Dj) if λ < 0.

• In the limit as q → +∞, u′
0(x) ∈ PC(Di) for λ > 0, or u′

0(x) ∈ PC(Dj) if λ < 0.

• From (3.17), we see that the quantity

[u′
0]q;αi

= sup
α∈Di

|u′
0(α)− u′

0(αi)|
|α− αi|q

(3.21)

is finite. As a result, for 0 < q ≤ 1 and λ > 0, u′
0 is Hölder continuous at αi.

Analogously for λ < 0, since

[u′
0]q;αj

= sup
α∈Dj

|u′
0(α)− u′

0(αj)|
|α− αj |q

(3.22)

is defined by (3.20).

• For λ > 0 and either N < q < N + 1, N ∈ N, or q > 0 odd, u′
0(α) ∈ C

N+1

(Di).

Similarly for λ < 0.
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Fig. 1. Local behaviour of u′
0(α) satisfying (3.17) for several values

of q > 0, α = 1/2, M0 = 1 and C1 = −1.

4. Blow-up. In this section, we study regularity properties in solutions to (1.1)-(1.2)

which, according to the sign of λ, arise from initial data satisfying (3.17) and/or (3.20).

More particularly, finite-time blow-up and global existence in time are examined using

Lp(0, 1) Banach spaces for p ∈ [1,+∞]. Set

η∗ =

{
1

λM0
, λ > 0,

1
λm0

, λ < 0.
(4.1)

Then, as η ↑ η∗, the space-dependent term in (3.10) will diverge for certain choices of α

and not at all for others. Specifically, for λ > 0, J (α, t)−1 blows up earliest as η ↑ η∗ at

α = αi, since

J (αi, t)
−1 = (1− λη(t)M0)

−1 → +∞ as η ↑ η∗ =
1

λM0
.

Similarly for λ < 0, J (α, t)−1 diverges first at α = αj and

J (αj , t)
−1 = (1− λη(t)m0)

−1 → +∞ as η ↑ η∗ =
1

λm0
.

However, blow-up of (3.10) does not necessarily follow from this; we will need to estimate

the behaviour of the time-dependent integrals

K̄0(t) =

∫ 1

0

dα

J (α, t)
1
λ

, K̄1(t) =

∫ 1

0

dα

J (α, t)1+
1
λ

as η ↑ η∗. To this end, in some of the proofs we find convenient the use of the Gauss

hypergeometric series ([1], [9], [12])

2F1 [a, b; c; z] ≡
∞∑
k=0

(a)k (b)k
(c)k k!

zk, |z| < 1, (4.2)

for c /∈ Z
− ∪ {0} and (x)k, k ∈ N ∪ {0}, the Pochhammer symbol (x)0 = 1, (x)k =

x(x+ 1) . . . (x+ k − 1). Also, we will make use of the following results:

Lemma 4.1. Suppose |arg (−z)| < π and a, b, c, a−b /∈ Z. Then the analytic continuation

for |z| > 1 of the series (4.2) is given by

2F1[a, b; c; z] =
Γ(c)Γ(a− b)(−z)−b

2F1[b, 1 + b− c; 1 + b− a; z−1]

Γ(a)Γ(c− b)

+
Γ(c)Γ(b− a)(−z)−a

2F1[a, 1 + a− c; 1 + a− b; z−1]

Γ(b)Γ(c− a)

(4.3)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



64 A. SARRIA AND R. SAXTON

where Γ(·) denotes the standard gamma function.

Proof. See for instance [9], [12]. �

Lemma 4.2. Suppose b < 2, 0 ≤ |β − β0| ≤ 1 and ε ≥ C0 for some C0 > 0. Then

1

εb
d

dβ

(
(β − β0) 2F1

[
1

q
, b; 1 +

1

q
;−C0 |β − β0|q

ε

])
= (ε+ C0 |β − β0|q)−b (4.4)

for all q ∈ R
+ and b �= 1/q.

Lemma 4.2 above is a generalization of Lemma 4.5 in [20]. Its proof follows similar

reasoning. Finally, the next lemma provides us with additional tools for estimating the

behaviour, as η ↑ η∗, of time-dependent integrals of the type K̄i(t). Its proof is deferred

to §4.2.

Lemma 4.3. For some q ∈ R
+, suppose u′

0(α) satisfies (3.17) when λ ∈ R
+ or (3.20) if

λ ∈ R
−. The following hold:

1. If λ ∈ R
+ and b > 1

q , ∫ 1

0

dα

J (α, t)b
∼ CJ (αi, t)

1
q−b (4.5)

for η∗ − η > 0 small and positive constants C given by

C =
2mΓ

(
1 + 1

q

)
Γ
(
b− 1

q

)
Γ (b)

(
M0

|C1|

) 1
q

. (4.6)

Here, m ∈ N denotes the finite number of locations αi in [0, 1].

2. If λ ∈ R
− and b > 1

q , ∫ 1

0

dα

J (α, t)b
∼ CJ (αj , t)

1
q−b (4.7)

for η∗ − η > 0 small and positive constants C determined by

C =
2nΓ

(
1 + 1

q

)
Γ
(
b− 1

q

)
Γ (b)

(
|m0|
C2

) 1
q

. (4.8)

Above, n ∈ N represents the finite number of points αj in [0, 1].

3. Suppose q > 1/2 and b ∈ (0, 1/q) or q ∈ (0, 1/2) and b ∈ (0, 2) satisfy 1
q , b,

b− 1
q /∈ Z. Then for λ �= 0 and η∗ as defined in (4.1),∫ 1

0

dα

J (α, t)b
∼ C (4.9)

for η∗ − η > 0 small and positive constants C that depend on the choice of λ, b and q.

Similarly, the integral remains bounded, and positive, for all η ∈ [0, η∗] and λ �= 0 when

b ≤ 0 and q ∈ R
+.

The outline of this section is as follows. In §4.1, we examine Lp, p ∈ [1,+∞] regularity

of solutions arising from initial data satisfying (3.17) and/or (3.20) for q = 1. Then, in

§4.2 the case of arbitrary q ∈ R
+ is studied. Also, regularity results concerning a class
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of smooth initial data larger than the one studied in [20] are discussed. We remark that

the case q = 1 is considered separately from the more general argument in §4.2, due to

the assumptions in Lemma 4.3.

4.1. Global estimates and blow-up for q = 1. In [20], we showed that for a particular

choice of piecewise linear u′
0(α), a special class of solutions to the 2D Euler equations

(λ = 1) could develop a singularity in finite-time, whereas, for the corresponding 3D

problem (λ = 1/2), solutions may converge to a nontrivial steady-state as t → +∞.2

Therefore, it is of particular interest to determine how these results generalize to initial

data satisfying (3.17) for q = 1. In fact, in this section we will examine Lp regularity in

ux for λ ∈ R and p ∈ [1,+∞].

4.1.1. L∞ regularity for q = 1.

Theorem 4.4. Consider the initial boundary value problem (1.1)-(1.2) with u′
0(α) sat-

isfying, for q = 1, either (3.17) when λ > 0 or (3.20) if λ < 0. The following hold:

(1) For λ > 1/2, there exists a finite t∗ > 0 such that both the maximum M(t) and

the minimum m(t) diverge to +∞ and respectively to −∞ as t ↑ t∗. Moreover,

for every α /∈
⋃

i,j{αi}∪{αj}, limt↑t∗ ux(γ(α, t), t) = −∞ (two-sided, everywhere

blow-up).

(2) For λ ∈ [0, 1/2], solutions exist globally in time. More particularly, these vanish

as t ↑ t∗ = +∞ for λ ∈ (0, 1/2), but converge to a nontrivial steady-state if

λ ∈ {1/2, 0}.
(3) For λ < 0, there is a finite t∗ > 0 such that only the minimum diverges, m(t) →

−∞, as t ↑ t∗ (one-sided, discrete blow-up).

Proof. Let C denote a positive constant which may depend on λ �= 0.

Proofs of statements (1) and (2). For simplicity, we prove (1) and (2) for the case

where M0 occurs at a single location α ∈ (0, 1)3. By (3.17), there exists 0 < r ≤ 1 small

enough such that ε+M0 − u′
0(α) ∼ ε−C1 |α− α| for 0 ≤ |α− α| ≤ r, C1 < 0 and ε > 0.

Then ∫ α+r

α−r

dα

(ε+M0 − u′
0(α))

1
λ

∼
∫ α+r

α−r

dα

(ε− C1 |α− α|) 1
λ

=
2λ

|C1| (1− λ)

(
ε1−

1
λ − (ε+ |C1| r)1−

1
λ

) (4.10)

for λ ∈ (0,+∞)\{1}. Consequently, setting ε = 1
λη −M0 in (4.10) gives

K̄0(t) ∼
{
C, λ > 1,

2λM0

|C1|(1−λ)J (α, t)1−
1
λ , λ ∈ (0, 1)

(4.11)

for η∗− η > 0 small, η∗ = 1
λM0

and J (α, t) = 1−λη(t)M0. Following a similar argument

or using Lemma 4.3(1) with b = 1 + 1
λ and q = 1, we estimate

K̄1(t) ∼
2λM0

|C1|
J (α, t)−

1
λ (4.12)

2See Theorem 1.3 in §1.
3The case of finitely many αi ∈ [0, 1] follows similarly.
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for any λ > 0. Suppose λ > 1. Then, (3.10), (4.11) i) and (4.12) give

ux(γ(α, t), t) ∼ C

(
1

J (α, t)
− C

J (α, t)
1
λ

)
(4.13)

for η∗ − η > 0 small. Setting α = α into (4.13) and using (3.16) i) implies that

M(t) ∼ C

J (α, t)
→ +∞

as η ↑ η∗. However, if α �= α, the second term in (4.13) dominates and

ux(γ(α, t), t) ∼ − C

J (α, t)
1
λ

→ −∞.

The existence of a finite t∗ > 0 for all λ > 1 follows from (3.11) and (4.11) i), which

imply

t∗ − t ∼ C(η∗ − η).

Now let λ ∈ (0, 1). Using (4.11) ii) and (4.12) on (3.10) yields

ux(γ(α, t), t) ∼ C

(
1

J (α, t)
− 1− λ

J (α, t)

)
J (α, t)2(1−λ) (4.14)

for η∗ − η > 0 small. Setting α = α in (4.14) implies

M(t) ∼ CJ (α, t)1−2λ →
{
0, λ ∈ (0, 1/2),

+∞, λ ∈ (1/2, 1)
(4.15)

as η ↑ η∗. If instead α �= α, then

ux(γ(α, t), t) ∼ −CJ (α, t)1−2λ →
{
0, λ ∈ (0, 1/2),

−∞, λ ∈ (1/2, 1)
(4.16)

as η ↑ η∗. For the threshold parameter λ = 1/2, we keep track of the constants and find

that, as η ↑ η∗,

ux(γ(α, t), t) →
{

|C1|
4 , α = α,

− |C1|
4 , α �= α.

(4.17)

Finally, (3.11) and (4.11) ii) imply that dt ∼ CJ (α, t)2(λ−1)dη, so that

t∗ = lim
η↑η∗

t(η) ∼
{

C
2λ−1

(
C − limη↑η∗(η∗ − η)2λ−1

)
, λ ∈ (0, 1)\{1/2},

−C limη↑η∗ log(η∗ − η), λ = 1/2.

As a result, t∗ = +∞ if λ ∈ (0, 1/2] but 0 < t∗ < +∞ for λ ∈ (1/2, 1). Lastly,

K̄0(t) ∼ −2M0

|C1|
log(η∗ − η) (4.18)

for 0 < η∗ − η � 1 small and λ = 1. Then, two-sided, everywhere blow-up in finite-time

follows just as above from (3.10), (3.11), (4.12) and (4.18). Finally, in [20] we derived,

for λ = 0, the representation formula

ux(γ(α, t), t) = u′
0(α)−

I2(t)

I1(t)
, (4.19)
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where I1(t) =
∫ 1

0
etu

′
0(α)dα and I2(t) =

∫ 1

0
u′
0(α)e

tu′
0(α)dα. Then a standard steepest

descent argument implies that, for t > 0 large, I1 ∼ C√
t
etM0 , while I2 = C√

t
etM0(M0 +

O(t−1)) as t → +∞. Therefore, for t > 0 large, I2
I1

∼ M0 +O(t−1) so that∣∣∣∣I2I1 −M0

∣∣∣∣ ≤ C

t
. (4.20)

Letting t → +∞ in (4.20), we obtain limt→+∞
I2
I1

= M0, and so, for λ = 0, (4.19)

converges to a nontrivial (and nonpositive) steady-state,

lim
t→+∞

ux(γ(α, t), t) = u′
0(α)−M0. (4.21)

Proof of statement (3). For λ < 0, set η∗ = 1
λm0

. Then K̄0(t) remains finite and

positive, for all η ∈ [0, η∗]. In fact, one can easily show that

1 ≤ K̄0(t) ≤
(
1 +

M0

|m0|

) 1
|λ|

(4.22)

if λ ∈ [−1, 0), while

0 <

∫ 1

0

(
1 +

u′
0(α)

|m0|

) 1
|λ|

dα ≤ K̄0(t) ≤ 1 (4.23)

for λ < −1. Similarly, when λ ∈ [−1, 0) and η ∈ [0, η∗],

1 ≤ K̄1(t) ≤
(

|m0|
M0 + |m0|

)1+ 1
λ

. (4.24)

However, if λ < −1, we need to estimate K̄1(t) for η∗ − η > 0 small. To do so, we

proceed analogously to the derivation of (4.11). For simplicity, assume u′
0(α) achieves

its least value m0 < 0 at a single point α ∈ (0, 1). Then (3.20) with q = 1 implies that

u′
0(α) ∼ m0 + C2 |α− α| for 0 ≤ |α− α| ≤ s, C2 > 0 and 0 < s ≤ 1. It follows that∫ α+s

α−s

dα

(ε+ u′
0(α)−m0)1+

1
λ

∼
∫ α+s

α−s

dα

(ε+ C2 |α− α|)1+ 1
λ

=
2 |λ|
C2

(
(ε+ C2s)

1
|λ| − ε

1
|λ|

) (4.25)

for ε > 0. By substituting ε = m0 − 1
λη into (4.25), we find that K̄1(t) has a finite,

positive limit as η ↑ η∗ for λ < −1. This implies that for λ < 0, both time-dependent

integrals in (3.10) remain bounded and positive for all η ∈ [0, η∗]. Consequently, blow-up

of (3.10), as η ↑ η∗, will follow from the space-dependent term, J (α, t)−1, evaluated at

α = α. In this way, we set α = α into (3.10) and use (3.16) ii) to obtain

m(t) ∼ Cm0

J (α, t)
→ −∞

as η ↑ η∗. In contrast, for α �= α, the definition of m0 implies that the space-dependent

term now remains bounded for η ∈ [0, η∗]. Finally, the existence of a finite blow-up time
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t∗ > 0 for the minimum follows from (3.11) and the estimates on K̄0(t). In fact, by

(3.11), t∗ = η∗ for λ = −1, while ([20])⎧⎨
⎩
η∗ ≤ t∗ < +∞, λ < −1,

η∗

(
1− M0

m0

)−2

≤ t∗ ≤ η∗, λ ∈ (−1, 0).
(4.26)

See §5 for examples. �
Remark 4.5. From Figure 1, note that u′

0 satisfying (3.17) (and/or (3.20)) for q = 1

generalizes the class of initial data where u′
0 is piecewise linear in the whole interval [0, 1].

In fact, the reader may check that Theorem 4.4 above generalizes the results established

in Theorem 2.14 of [20], where a simple example with piecewise linear u′
0 was studied. Of

course this comes as no surprise, since, in both cases, the local behaviour of u′
0 near each

αi (and/or αj), which as η ↑ η∗ is responsible for the behaviour of the time-dependent

integrals in (3.10), is the same for q = 1.

In preparation for the next section, we recall some formulas, as well as upper and

lower bounds, derived in [20] for the Lp norm of ux. For as long as a solution exists,

(3.7) and (3.10) imply that

‖ux(·, t)‖pp =
1

|λη(t)|p K̄0(t)
1+2λp

∫ 1

0

∣∣∣∣∣ 1

J (α, t)
1+ 1

λp

− K̄1(t)

K̄0(t)J (α, t)
1
λp

∣∣∣∣∣
p

dα

for λ �= 0 and p ∈ [1,+∞). Using the above and some standard inequalities yields

‖ux(·, t)‖pp ≤ 2p−1

|λη(t)|p K̄0(t)
1+2λp

(∫ 1

0

dα

J (α, t)
p+ 1

λ

+
K̄1(t)

p

K̄0(t)
p−1

)
(4.27)

and

‖ux(·, t)‖p ≥ 1

|λη(t)| K̄0(t)
2λ+1

p

∣∣∣∣∣
∫ 1

0

dα

J (α, t)
1+ 1

λp

− K̄1(t)

K̄0(t)

∫ 1

0

dα

J (α, t)
1
λp

∣∣∣∣∣ . (4.28)

Moreover, the energy function E(t) ≡ ‖ux(·, t)‖22 is explicitly given by

E(t) =
(
λη(t)K̄0(t)

1+2λ
)−2 (K̄0(t)K̄2(t)− K̄1(t)

2
)
. (4.29)

Lastly, multiplying (1.1) i) by ux, integrating by parts, and using (1.2), (3.7) and (3.10)

gives

Ė(t) = (1 + 2λ)

∫ 1

0

ux(x, t)
3dx = (1 + 2λ)

∫ 1

0

ux(γ(α, t), t)
3γα(α, t) dα

=
1 + 2λ

(λη(t))3

[
K̄3(t)

K̄1(t)
− 3K̄2(t)

K̄0(t)
+ 2

(
K̄1(t)

K̄0(t)

)2
]

K̄1(t)

K̄0(t)1+6λ
.

(4.30)

The reader may refer to [20] for details on the above.
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4.1.2. Further Lp regularity for λ �= 0, q = 1 and p ∈ [1,+∞). In the previous section,

we established the existence of a finite t∗ > 0 such that ‖ux‖∞ diverges as t ↑ t∗ for all

λ ∈ R\[0, 1/2] and initial data satisfying (3.17) and/or (3.20) for q = 1 relative to the

sign of λ. If instead, λ ∈ [0, 1/2], we proved that solutions remain in L∞ for all time.

In this section, we examine further Lp regularity of ux, as t ↑ t∗, for λ ∈ R\[0, 1/2] and
p ∈ [1,+∞).

Theorem 4.6. For the initial boundary value problem (1.1)-(1.2), let t∗ > 0 denote the

finite L∞ blow-up time for ux in Theorem 4.4. Further, for q = 1, suppose u′
0(α) satisfies

(3.17) when λ > 0 or (3.20) if λ < 0.

(1) For λ > 1/2 and p > 1, limt↑t∗ ‖ux‖p = +∞.

(2) For λ < 0 and t ∈ [0, t∗], ux remains integrable; moreover, if 1
1−p < λ < 0 and

p > 1, then ux ∈ Lp for all t ∈ [0, t∗].

(3) The energy E(t) = ‖ux‖22 diverges if λ ∈ (−∞,−1] ∪ (1/2,+∞) as t ↑ t∗ but

remains finite for t ∈ [0, t∗] if λ ∈ (−1, 0). Also, limt↑t∗ Ė(t) = +∞ when

λ ∈ (−∞,−1/2) ∪ (1/2,+∞), whereas Ė(t) ≡ 0 if λ = −1/2 while Ė(t) stays

bounded for t ∈ [0, t∗] if λ ∈ (−1/2, 0).

Proof. Let C denote a positive constant that may depend on the choice of λ and

p ∈ [1,+∞).

Proof of statement (1). First, suppose λ > 0 and set η∗ = 1
λM0

. For simplicity, we

prove part (1) under the assumption that M0 > 0 occurs at a single point α ∈ (0, 1).

Using Lemma 4.3(1) with b = 1 + 1
λp , q = 1 and p ≥ 1 yields

∫ 1

0

dα

J (α, t)1+
1
λp

∼ 2λpM0

|C1|
J (α, t)−

1
λp (4.31)

for η∗ − η > 0 small. Similarly, taking b = p+ 1
λ we find that

∫ 1

0

dα

J (α, t)p+
1
λ

∼ 2λM0

|C1| (λ(p− 1) + 1)
J (α, t)1−p− 1

λ . (4.32)

Moreover, following the argument that led to estimate (4.11), with 1
λp instead of 1

λ , gives

∫ 1

0

dα

J (α, t)
1
λp

∼
{

2λpM0

|C1|(1−λp)J (α, t)1−
1
λp , λ ∈ (0, 1/p),

C, λ > 1/p
(4.33)

for p ≥ 1 and η∗ − η > 0 small. Suppose λ, p > 1 so that λ > 1/p. Then, using (4.11) i),

(4.12), (4.31) and (4.33) ii) in (4.28) implies that

‖ux(·, t)‖p ≥ 1

|λη(t)| K̄0(t)
2λ+1

p

∣∣∣∣∣
∫ 1

0

dα

J (α, t)
1+ 1

λp

− K̄1(t)

K̄0(t)

∫ 1

0

dα

J (α, t)
1
λp

∣∣∣∣∣
∼ C

∣∣∣CJ (α, t)−
1
λp − J (α, t)−

1
λ

∣∣∣
∼ CJ (α, t)−

1
λ → +∞
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as η ↑ η∗. Next, let p ∈ (1, 2) and λ ∈ (1/2, 1/p) ⊂ (1/2, 1). Then, using (4.11) ii),

(4.12), (4.31) and (4.33) i) in (4.28) gives

‖ux(·, t)‖p ≥ 1

|λη(t)| K̄0(t)
2λ+1

p

∣∣∣∣∣
∫ 1

0

dα

J (α, t)
1+ 1

λp

− K̄1(t)

K̄0(t)

∫ 1

0

dα

J (α, t)
1
λp

∣∣∣∣∣
∼ C

∣∣∣∣1− 1− λ

1− λp

∣∣∣∣J (α, t)ρ(λ,p)

= CJ (α, t)ρ(λ,p)

for η∗ − η > 0 small and ρ(λ, p) = 2(1− λ)− 1
p . However, for λ and p as prescribed, we

see that ρ(λ, p) < 0 for 1− 1
2p < λ < 1

p and p ∈ (1, 3/2). Therefore, for any λ ∈ (1/2, 1)

there is 1 − p > 0 arbitrarily small such that ‖ux‖p → +∞ as η ↑ η∗. Finally, if λ = 1

we have λ > 1/p for p > 1; as a result, (4.12), (4.18), (4.31) and (4.33) iii) imply that

‖ux(·, t)‖p ≥ 1

|λη(t)| K̄0(t)
2λ+1

p

∣∣∣∣∣
∫ 1

0

dα

J (α, t)
1+ 1

λp

− K̄1(t)

K̄0(t)

∫ 1

0

dα

J (α, t)
1
λp

∣∣∣∣∣
∼ CJ (α, t)−1(− log(η∗ − η))−3− 1

p

for 0 < η∗ − η � 1 small, and so ‖ux‖p → +∞ as η ↑ η∗. The existence of a finite

blow-up time t∗ > 0 follows from Theorem 4.4.

Proof of statement (2). Suppose λ < 0 and set η∗ = 1
λm0

. First, recall from the

proof of Theorem 4.4 that K̄i(t), i = 0, 1, remain finite and positive for all η ∈ [0, η∗].

Furthermore, in Theorem 4.4 we established the existence of a finite blow-up time t∗ > 0

for the minimum m(t). Consequently, the upper bound (4.27) implies that

lim
t↑t∗

‖ux(·, t)‖p < +∞ ⇔ lim
t↑t∗

∫ 1

0

dα

J (α, t)p+
1
λ

< +∞ (4.34)

for λ < 0 and p ≥ 1. However, if p = 1, (4.34) ii) is just K̄1(t), which remains finite

as t ↑ t∗. As a result, ux ∈ L1 for all t ∈ [0, t∗] and λ < 0. If p > 1, we recreate the

argument in (4.25), with p+ 1
λ instead of 1+ 1

λ , and find that for 1
1−p < λ < 0 and p > 1,

the integral remains finite and positive as η ↑ η∗. Consequently, (4.34) implies that

lim
t↑t∗

‖ux(·, t)‖p < +∞

for all 1
1−p < λ < 0 and p > 1. We remark that the lower bound (4.28) yields no

information regarding Lp blow-up of ux, as t ↑ t∗, for parameter values −∞ < λ < 1
1−p ,

p > 1. Nonetheless, we can use (4.29) and (4.30) to obtain additional blow-up information

on energy-related quantities.

Proof of statement (3). For λ > 1/2, blow-up of E(t) and Ė(t) to +∞ as t ↑ t∗ is

a consequence of part (1) above. Further, setting p = 2 in part (2) implies that E(t)

remains bounded for all λ ∈ (−1, 0) and t ∈ [0, t∗]. Now, (4.30) i) yields∣∣∣Ė(t)
∣∣∣ ≤ |1 + 2λ| ‖ux(·, t)‖33 , (4.35)

and so setting p = 3 in part (2) implies that Ė(t) remains finite for λ ∈ [−1/2, 0) and

t ∈ [0, t∗]. According to these results, we have yet to determine the behaviour of E(t) as
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t ↑ t∗ for λ ≤ −1 and Ė(t) when λ < −1/2. To do so, we will use formulas (4.29) and

(4.30). From Lemma 4.3(2) with b = 3 + 1
λ , q = 1 and λ < −1/2, we find that

K̄3(t) ∼
2λ |m0|

C2(1 + 2λ)
J (α, t)−2− 1

λ (4.36)

for η∗ − η > 0 small. Also, following the argument in (4.25), with 2+ 1
λ instead of 1+ 1

λ ,

we derive

K̄2(t) ∼

⎧⎪⎪⎨
⎪⎪⎩

2λ|m0|
C2(1+λ)J (α, t)−1− 1

λ , λ < −1,

−C log(η∗ − η), λ = −1,

C, λ ∈ (−1, 0).

(4.37)

Since both K̄i(t), i = 0, 1, stay finite and positive for all η ∈ [0, η∗] and λ < 0, (4.29)

tells us that blow-up in K̄2(t) leads to a diverging E(t). Then, (4.37) i) implies that for

λ < −1,

E(t) ∼ CJ (α, t)−1− 1
λ → +∞

as η ↑ η∗. Similarly for λ = −1 by using (4.37) ii) instead. Clearly, this also implies

blow-up of Ė(t) to +∞ as t ↑ t∗ for all λ ≤ −1. Finally, from (4.30) ii), (4.36) and (4.37)

iii),

Ė(t) ∼ Cm3
0(1 + 2λ)

J (α, t)2+
1
λ

→ +∞

as η ↑ η∗ for all λ ∈ (−1,−1/2). The existence of a finite t∗ > 0 follows from Theorem 4.4

(3). �
From the results established thus far, we are able to obtain a complete description of

the L3 regularity for ux: if λ ∈ [0, 1/2], limt→+∞ ‖ux‖3 = C where C ∈ R
+ for λ = 1/2

but C = 0 if λ ∈ (0, 1/2), while for t∗ > 0, the finite L∞ blow-up time for ux in Theorem

4.4,

lim
t↑t∗

‖ux(·, t)‖3 =

{
+∞, λ ∈ (−∞,−1/2] ∪ (1/2,+∞),

C ∈ R
+, λ ∈ (−1/2, 0).

(4.38)

Remark 4.7. For t∗ > 0, the finite L∞ blow-up time for ux in Theorem 4.4, we may

use (4.30), (4.36) and (4.37), as well as Theorem 4.6, to establish a global bound on∫ 1

0
u3
xdx if λ ∈ [0, 1/2] or for t ∈ [0, t∗] when λ ∈ (−1/2, 0), whereas

lim
t↑t∗

∫ 1

0

ux(x, t)
3dx =

{
+∞, λ > 1/2,

−∞, λ ≤ −1/2.
(4.39)

We also note that, unlike the result in Theorem 1.2(3) of §1, (4.39) and the change in

sign through λ = −1/2 of the term 1 + 2λ in (4.30) prevent the possibility of blow-up

of Ė(t) towards −∞, which might otherwise have played a role in the study of weak

solutions from the point of view of energy dissipation.

Remark 4.8. In [18] the authors showed, for initial data satisfying certain integral

conditions, the existence of a finite upper bound T ∗ > 0 such that E(t) = ‖ux‖22 → +∞ as

t ↑ T ∗ for λ ∈ (−∞,−1/2). They also showed that blow-up of Ė(t), as t ↑ T ∗, is possible

instead. Comparing this result to Theorem 4.6(3), we note that there appears to be a

discrepancy between the two results concerning the behaviour of E(t) for, particularly,

λ ∈ (−1,−1/2); namely, we have established, for such values of λ, the existence of a
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finite t∗ > 0 such that Ė(t) → +∞ as t ↑ t∗, whereas E(t) stays finite for t ∈ [0, t∗]. We

remark that this is due to T ∗ in [18] representing an upper bound for the blow-up time

of E(t), while t∗ in Theorem 4.6(3), satisfying 0 < t∗ < T ∗, describes the exact blow-up

time for Ė(t). Due to (4.35), it follows that a diverging Ė(t) leads to breakdown of ux

in the L3 norm. Therefore ux blows up the earliest in the L3, not L2, norm. The reader

may refer to Remark 4.81 in [20] for additional details on the above, a more rigorous

argument, and a simple example where 0 < t∗ < T ∗.

Remark 4.9. Notice that the two-sided, everywhere blow-up found in Theorem 4.4

for λ > 1/2 corresponds, in Theorem 4.6, to Lp blow-up of ux for any p > 1. On the

other hand, ux remains integrable for all λ < 0 and t ∈ [0, t∗] but, as t ↑ t∗, undergoes

an L∞ blow-up of the one-sided, discrete type for λ < 0. Then, as the magnitude of

λ < 0 decreases, ux is guaranteed to remain, for t ∈ [0, t∗], in smaller Lp spaces with

p ∈ (1,+∞). In the coming sections, we will find that a similar correspondence between

the “strengths” of the L∞ and Lp, p ∈ [1,+∞), blow-up in ux, as t ↑ t∗, also holds for

other q > 0.

4.2. Global estimates and blow-up for λ ∈ R and q > 0. In this section, we study the

case of arbitrary q > 0. As in the previous sections, Lp regularity of ux for λ ∈ R and

p ∈ [1,+∞] is examined. In addition, the behaviour of the jacobian (3.7) is considered.

Particularly, we will show that if q ≥ 1, no blow-up occurs in stagnation point-form

solutions to the 3D incompressible Euler equations, whereas, for the corresponding 2D

case, no spontaneous singularity forms when q ≥ 2. Finally, a class of smooth, periodic

initial data larger than the one considered in [20] is studied. Before stating and proving

our results, we first establish Lemma 4.3 and obtain estimates on K̄0(t) and K̄1(t).

Proof of Lemma 4.3(1). For simplicity, we prove statement (1) for functions u′
0 that

attain their greatest value M0 > 0 at a single location α ∈ (0, 1). The case of several

αi ∈ [0, 1] follows similarly. From (3.17), there is 0 < r ≤ 1 such that ε+M0 − u′
0(α) ∼

ε− C1 |α− α|q for q ∈ R
+, ε > 0 and 0 ≤ |α− α| ≤ r. Therefore∫ α+r

α−r

dα

(ε+M0 − u′
0(α))

b
∼

∫ α+r

α−r

dα

(ε− C1 |α− α|q)b

= ε−b

[∫ α

α−r

(
1 +

|C1|
ε

(α− α)
q

)−b

dα +

∫ α+r

α

(
1 +

|C1|
ε

(α− α)
q

)−b

dα

]

for b ∈ R. Making the change of variables√
|C1|
ε

(α− α)
q
2 = tan θ,

√
|C1|
ε

(α− α)
q
2 = tan θ

in the first and second integrals inside the bracket, respectively, we find that∫ α+r

α−r

dα

(ε+M0 − u′
0(α))

b
∼ 4

q |C1|
1
q εb−

1
q

∫ π
2

0

(cos θ)
2b− 2

q
−1

(sin θ)
1− 2

q

dθ (4.40)

for small ε > 0. Suppose b > 1
q ; then setting ε = 1

λη −M0 in (4.40) implies∫ 1

0

dα

J (α, t)b
∼ C

J (α, t)
b− 1

q
(4.41)
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for η∗ − η > 0 small, η∗ = 1
λM0

and

C =
4

q

(
M0

|C1|

) 1
q
∫ π

2

0

(cos θ)
2b− 2

q
−1

(sin θ)
1− 2

q

dθ. (4.42)

Now, since the beta function satisfies (see for instance [11])

B(p, s) =

∫ 1

0

tp−1(1− t)s−1dt =
Γ(p)Γ(s)

Γ(p+ s)
, Γ(1 + y) = yΓ(y) (4.43)

for p, s, y > 0, then, letting t = sin2 θ, p = 1
q and s = b− 1

q into (4.43) i) and using (4.43)

ii), one has

2

∫ π
2

0

(cos θ)
2b− 2

q
−1

(sin θ)
1− 2

q

dθ =
q Γ

(
1 + 1

q

)
Γ
(
b− 1

q

)
Γ(b)

, b >
1

q
. (4.44)

The result follows from (4.41), (4.42) and (4.44).

Proof of Lemma 4.3(2). Follows from an analogous argument using (3.20) and η∗ =
1

λm0
instead.

Proof of Lemma 4.3(3). The last claim in (3) follows trivially if b ≤ 0 and q ∈ R
+

due to the “almost everywhere” continuity and boundedness of u′
0. To establish the

remaining claims, we make use of Lemmas 4.1 and 4.2. However, in order to use the

latter, we require that b ∈ (0, 2) and b �= 1/q. Since the case b > 1/q was established in

parts (1) and (2) above, suppose that b ∈ (0, 1/q) and b ∈ (0, 2) or, equivalently, q > 1/2

and b ∈ (0, 1/q) or q ∈ (0, 1/2) and b ∈ (0, 2). First, for q and b as prescribed, consider

λ > 0 and, for simplicity, assume M0 occurs at a single point α ∈ (0, 1). Then, (3.17)

and Lemma 4.2 imply that∫ α+r

α−r

dα

(ε+M0 − u′
0(α))

b
∼

∫ α+r

α−r

dα

(ε− C1 |α− α|q)b

= 2rε−b
2F1

[
1

q
, b, 1 +

1

q
,
C1r

q

ε

] (4.45)

for ε ≥ |C1| ≥ |C1| rq > 0 and 0 ≤ |α− α| ≤ r. Now, the restriction on ε implies that

−1 ≤ C1r
q

ε < 0. However, our ultimate goal is to let ε vanish so that, eventually, the

argument C1r
q

ε of the series in (4.45) ii) will leave the unit circle, particularly C1r
q

ε < −1.

At that point, Equation 4.2 for the series no longer holds, and we turn to its analytic

continuation in Lemma 4.1. Accordingly, taking ε > 0 small enough such that |C1| rq >

ε > 0, we apply Lemma 4.1 to (4.45) and obtain

2r

εb
2F1

[
1

q
, b, 1 +

1

q
,
C1r

q

ε

]
=

2r1−qb

(1− bq) |C1|b
+

2Γ
(
1 + 1

q

)
Γ
(
b− 1

q

)
Γ(b) |C1|

1
q εb−

1
q

+ ψ(ε) (4.46)

for ψ(ε) = o(1) as ε → 0, and either q > 1/2 and b ∈ (0, 1/q) or q ∈ (0, 1/2) and b ∈ (0, 2).

In addition, due to the assumptions in Lemma 4.1 we require that 1
q , b, b−

1
q /∈ Z. Finally,

since b− 1
q < 0, substituting ε = 1

λη −M0 into (4.45) and (4.46) implies that∫ 1

0

dα

J (α, t)b
∼ C (4.47)
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for η∗ − η > 0 small, η∗ = 1
λM0

, and positive constants C that depend on λ > 0, b and

q. An analogous argument follows for λ < 0 by using (3.20) instead of (3.17). �
Using Lemma 4.3, we now derive estimates for K̄i(t), i = 0, 1, which will be used in

subsequent regularity theorems.

4.2.1. Estimates for K̄0(t) and K̄1(t).

For parameters λ > 0. For λ > 0, we set b = 1
λ into Lemma 4.3(1)-(3) to obtain

K̄0(t) ∼
{
C, λ > q > 1

2 or q ∈ (0, 1/2), λ > 1
2 ,

C3J (αi, t)
1
q−

1
λ , q > 0, λ ∈ (0, q)

(4.48)

for η∗ − η > 0 small and positive constants C3 given by

C3 =
2mΓ

(
1 + 1

q

)
Γ
(

1
λ − 1

q

)
Γ
(
1
λ

) (
M0

|C1|

) 1
q

. (4.49)

Also, in (4.48) i) we assume that λ and q satisfy, whenever applicable,

λ �= q

1− nq
, q �= 1

n
∀n ∈ N. (4.50)

We note that corresponding estimates for the missing values may be obtained via a simple

continuity argument.

Similarly, taking b = 1 + 1
λ we find

K̄1(t) ∼
{
C, q ∈ (1/2, 1), λ > q

1−q or q ∈ (0, 1/2), λ > 1,

C4J (αi, t)
1
q−

1
λ−1, q ∈ (0, 1), 0 < λ < q

1−q or q ≥ 1, λ > 0
(4.51)

with positive constants C4 determined by

C4 =
2mΓ

(
1 + 1

q

)
Γ
(
1 + 1

λ − 1
q

)
Γ
(
1 + 1

λ

) (
M0

|C1|

) 1
q

. (4.52)

Additionally, for (4.51) i) we assume that λ and q satisfy (4.50).

For parameters λ < 0. For λ < 0 and b = 1
λ , Lemma 4.3(3) implies that

K̄0(t) ∼ C (4.53)

for η∗ − η > 0 small. Similarly, parts (2) and (3), now with b = 1 + 1
λ , yield

K̄1(t) ∼ C (4.54)

for either ⎧⎪⎪⎨
⎪⎪⎩
q > 0, λ ∈ [−1, 0),

q ∈ (0, 1), λ < −1 satisfying (4.50),

q > 1, q
1−q < λ < −1,

(4.55)

whereas

K̄1(t) ∼ C5J (αj , t)
1
q−

1
λ−1 (4.56)

for q > 1, λ < q
1−q and positive constants C5 determined by

C5 =
2nΓ

(
1 + 1

q

)
Γ
(
1 + 1

λ − 1
q

)
Γ
(
1 + 1

λ

) (
|m0|
C2

) 1
q

. (4.57)
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4.2.2. L∞ regularity for λ ∈ R
+ ∪ {0}, q ∈ R

+. In this section, we use the estimates

in §4.2.1 to examine the L∞ regularity of ux for λ ∈ R
+ ∪ {0} and u′

0 satisfying (3.17)

for some q ∈ R
+. Furthermore, the behaviour of the jacobian (3.7) is also studied.

Theorem 4.10. Consider the initial boundary value problem (1.1)-(1.2) for u′
0(α) satis-

fying (3.17).

(1) If q ∈ R
+ and λ ∈ [0, q/2], solutions exist globally in time. More particularly,

these vanish as t ↑ t∗ = +∞ for λ ∈ (0, q/2) but converge to a nontrivial steady-

state if λ ∈ {0, q/2}.
(2) If q ∈ R

+ and λ ∈ (q/2, q), there exists a finite t∗ > 0 such that both the

maximum M(t) and the minimum m(t) diverge to +∞ and respectively to −∞
as t ↑ t∗. Moreover, limt↑t∗ ux(γ(α, t), t) = −∞ for α /∈

⋃
i,j{αi} ∪ {αj} (two-

sided, everywhere blow-up).

(3) For q ∈ (0, 1/2) and λ > 1 such that q �= 1
n and λ �= q

1−nq for all n ∈ N, there is a

finite t∗ > 0 such that only the maximum blows up, M(t) → +∞, as t ↑ t∗ (one-

sided, discrete blow-up). Further, if 1
2 < λ < q

1−q for q ∈ (1/3, 1/2), a two-sided,

everywhere blow-up (as described in (2) above) occurs at a finite t∗ > 0.

(4) Suppose q ∈ (1/2, 1). Then for q < λ < q
1−q , there exists a finite t∗ > 0 such

that, as t ↑ t∗, a two-sided, everywhere blow-up develops. If instead λ > q
1−q ,

only the maximum diverges, M(t) → +∞, as t ↑ t∗ < +∞.

(5) For λ > q > 1, there is a finite t∗ > 0 such that ux undergoes a two-sided,

everywhere blow-up as t ↑ t∗.

Proof. Suppose λ, q > 0, let C denote a positive constant which may depend on λ and

q, and set η∗ = 1
λM0

.

Proof of statements (1) and (2). Suppose λ ∈ (0, q) for some q > 0.4 Then, for

η∗ − η > 0 small K̄0(t) satisfies (4.48) ii) while K̄1(t) obeys (4.51) ii). Consequently,

(3.10) implies that

ux(γ(α, t), t) ∼
M0

C
2λ

3

(
J (αi, t)

J (α, t)
− C4

C3

)
J (αi, t)

1− 2λ
q (4.58)

for positive constants C3 and C4 given by (4.49) and (4.52). But for y1 = 1
λ − 1

q and

y2 = 1
λ , (4.43) ii), (4.49) and (4.52) yield

C4

C3
=

Γ(y1 + 1) Γ(y2)

Γ(y1) Γ(y2 + 1)
=

y1
y2

= 1− λ

q
∈ (0, 1), λ ∈ (0, q). (4.59)

As a result, setting α = αi in (4.58) and using (3.16) i) implies that

M(t) ∼ M0

C
2λ

3

(
λ

q

)
J (αi, t)

1− 2λ
q (4.60)

for η∗ − η > 0 small, whereas if α �= αi, then

ux(γ(α, t), t) ∼ −
(
1− λ

q

)
M0

C
2λ

3

J (αi, t)
1− 2λ

q . (4.61)

4See Theorem 4.4 for the case λ = 0.
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Clearly, when λ = q/2,

M(t) → M0

2C q
3

> 0

as η ↑ η∗, while for α �= αi,

ux(γ(α, t), t) → − M0

2C q
3

< 0.

If λ ∈ (0, q/2), (4.60) now implies that

M(t) → 0+

as η ↑ η∗, whereas, using (4.61) for α �= αi,

ux(γ(α, t), t) → 0−.

In contrast, if λ ∈ (q/2, q), then 1− 2λ
q < 0. Then (4.60) and (4.61) yield

M(t) → +∞ (4.62)

as η ↑ η∗, but

ux(γ(α, t), t) → −∞ (4.63)

for α �= αi. Lastly, rewriting (3.11) as

dt = K̄0(t)
2λdη (4.64)

and using (4.48) ii), we obtain

t∗ − t ∼ C

∫ η∗

η

(1− λμM0)
2λ
q −2dμ (4.65)

or equivalently

t∗ − t ∼

⎧⎨
⎩

C
2λ−q

(
C(η∗ − η)

2λ
q −1 − limμ↑η∗(η∗ − μ)

2λ
q −1

)
, λ ∈ (0, q)\{q/2},

C (log(η∗ − η)− limμ↑η∗ log(η∗ − μ)) , λ = q/2.
(4.66)

Consequently, t∗ = +∞ for λ ∈ (0, q/2], while 0 < t∗ < +∞ if λ ∈ (q/2, q). Lastly, the

case λ = 0 follows from the results in [20].

Proof of statement (3). First, suppose q ∈ (0, 1/2) and λ > 1 satisfy (4.50). Then

K̄0(t) and K̄1(t) satisfy (4.48) i) and (4.51) i), respectively. Therefore, (3.10) implies

that

ux(γ(α, t), t) ∼ C

(
1

J (α, t)
− C

)
(4.67)

for η∗ − η > 0 small. Setting α = αi into (4.67) and using (3.16) i) gives

M(t) ∼ C

J (αi, t)
→ +∞

as η ↑ η∗, while if α �= αi, ux(γ(α, t), t) remains finite for all η ∈ [0, η∗] due to the

definition of M0. The existence of a finite blow-up time t∗ > 0 for the maximum is

guaranteed by (4.48) i) and (4.64), which leads to

t∗ − t ∼ C(η∗ − η). (4.68)
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Next, suppose 1
2 < λ < q

1−q for q ∈ (1/3, 1/2), so that q
1−q ∈ (1/2, 1). Then, using (4.48)

i) and (4.51) ii) in (3.10), we find that

ux(γ(α, t), t) ∼ C

(
C

J (α, t)
− J (αi, t)

1
q
− 1

λ
−1
)

(4.69)

for η∗ − η > 0 small. Set α = αi into the above and use λ > q to obtain

M(t) ∼ C

J (αi, t)
→ +∞ (4.70)

as η ↑ η∗. On the other hand, for α �= αi, the space-dependent in (4.69) now remains

finite for all η ∈ [0, η∗]. As a result, the second term dominates and

ux(γ(α, t), t) ∼ −CJ (αi, t)
1
q
− 1

λ
−1

→ −∞ (4.71)

as η ↑ η∗. The existence of a finite blow-up time t∗ > 0 follows, as in the previous case,

from (4.64) and (4.48) i).

Proof of statement (4). Part (4) follows from an argument analogous to the one above.

Briefly, if q < λ < q
1−q for q ∈ (1/2, 1), we use estimates (4.48) i) and (4.51) ii) on (3.10)

to get (4.69), with different positive constants C. Two-sided, everywhere blow-up in

finite-time then follows just as above. If instead λ > q
1−q for q ∈ (1/2, 1), then (4.48)

i) still holds, but K̄1(t) now remains bounded for all η ∈ [0, η∗]; it satisfies (4.51) i).

Therefore, up to different positive constants C, (3.10) leads to (4.67), and so only the

maximum diverges, M(t) → +∞, as t approaches some finite t∗ > 0 whose existence is

guaranteed by (4.68).

Proof of statement (5). For λ > q > 1, (4.48) i), (4.51) ii) and (3.10) imply (4.69).

Then, we follow the argument used to establish the second part of (3) to show that

two-sided, everywhere finite-time blow-up occurs. See §5 for examples. �

Remark 4.11. Theorems 4.4 and 4.10 allow us to predict the regularity of stagnation

point-form (SPF) solutions to the two (λ = 1) and three (λ = 1/2) dimensional incom-

pressible Euler equations assuming we know something about the curvature of the initial

data u0 near αi. Setting λ = 1 into Theorem 4.10(1) implies that SPF solutions in the

2D setting persist for all time if u′
0 satisfies (3.17) for arbitrary q ≥ 2. On the contrary,

Theorems 4.4 and 4.10(2)-(4) tell us that if q ∈ (1/2, 2), two-sided, everywhere finite-time

blow-up occurs. Analogously, solutions to the corresponding 3D problem exist globally

in time for q ≥ 1, whereas two-sided, everywhere blow-up develops when q ∈ (1/2, 1).

See Table 2 below. Finally, we remark that finite-time blow-up in ux is expected for both

the two and three dimensional equations if q ∈ (0, 1/2]. See for instance §5 for a blow-up

example in the 3D case with q = 1/3.

Table 2. Regularity of SPF solutions to Euler equations

q 2D Euler 3D Euler

(1/2, 1) Finite time blow-up Finite time blow up

[1, 2) Finite time blow-up Global in time

[2,+∞) Global in time Global in time
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Corollary 4.1 below briefly examines the behaviour, as t ↑ t∗, of the jacobian (3.7) for

t∗ > 0 as in Theorem 4.10.

Corollary 4.1. Consider the initial boundary value problem (1.1)-(1.2) with u′
0(α)

satisfying (3.17) for q ∈ R
+, and let t∗ > 0 be as in Theorem 4.10. Then:

(1) For q > 0 and λ ∈ (0, q),

lim
t↑t∗

γα(α, t) =

{
+∞, α = αi,

0, α �= αi,
(4.72)

where t∗ = +∞ for λ ∈ (0, q/2], while 0 < t∗ < +∞ if λ ∈ (q/2, q).

(2) Suppose λ > q > 1/2 or q ∈ (0, 1/2) and λ > 1/2 satisfy (4.50). Then, there

exists a finite t∗ > 0 such that

lim
t↑t∗

γα(α, t) =

{
+∞, α = αi,

C(α), α �= αi,
(4.73)

where C(α) ∈ R
+ depends on the choice of λ, q and α �= αi.

Proof. The limits (4.72) and (4.73) follow straightforwardly from (3.7) and estimates

(4.48) ii) and (4.48) i), respectively, whereas the finite or infinite character of t∗ > 0 is a

consequence of Theorem 4.10. �
4.2.3. Further Lp regularity for λ ∈ [0,+∞), q ∈ R

+ and p ∈ [1,+∞). From Theorem

4.10, if λ ∈ [0, q/2] for q ∈ R
+, solutions remain in L∞ for all time; otherwise ‖ux‖∞

diverges as t approaches some finite t∗ > 0. In this section, we study further properties

of Lp regularity in ux, as t ↑ t∗, for λ > q/2, p ∈ [1,+∞) and initial data u′
0(α) satisfying

(3.17). To do so, we will use the upper and lower bounds (4.27) and (4.28). Consequently,

for η∗ − η > 0 small and η∗ = 1
λM0

, estimates on the behaviour of the time-dependent

integrals ∫ 1

0

dα

J (α, t)
1
λp

,

∫ 1

0

dα

J (α, t)1+
1
λp

,

∫ 1

0

dα

J (α, t)p+
1
λ

(4.74)

are required. Since these may be obtained directly from Lemma 4.3(1)-(3), we omit the

details and state our findings below. For p ∈ [1,+∞),∫ 1

0

dα

J (α, t)
1
λp

∼
{
C, q ∈ (0, 1/2), λ > 1

2p or q > 1
2 , λ > q

p ,

C6J (α, t)
1
q−

1
λp , q > 0, λ ∈ (0, q/p)

(4.75)

with positive constants

C6 =
2Γ

(
1 + 1

q

)
Γ
(

1
λp − 1

q

)
Γ
(

1
λp

) (
M0

|C1|

) 1
q

. (4.76)

Also ∫ 1

0

dα

J (α, t)1+
1
λp

∼ C (4.77)

for either {
q ∈ (0, 1/2), λ > 1

p ,

q ∈ (1/2, 1), λ > q
p(1−q) ,

(4.78)
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whereas ∫ 1

0

dα

J (α, t)1+
1
λp

∼ C7J (α, t)
1
q−

1
λp−1 (4.79)

for {
q ∈ (0, 1), 0 < λ < q

p(1−q) ,

q ≥ 1, λ > 0.
(4.80)

The positive constants C7 in (4.79) are obtained by replacing every 1
λp term in (4.76)

by 1 + 1
λp . Also, due to Lemma 4.3, (4.75) i) and (4.77) are valid for

λ �= q

p(1− nq)
, q �= 1

n
∀n ∈ N ∪ {0}, (4.81)

where a simple continuity argument may again be used (see (4.50)) to obtain estimates

for the missing values. Finally ∫ 1

0

dα

J (α, t)p+
1
λ

∼ C (4.82)

for either {
q ∈ (0, 1/2), p ∈ [1, 2), λ > 1

2−p ,

q ∈ (1/2, 1), p ∈ [1, 1/q), λ > q
1−pq ,

(4.83)

while ∫ 1

0

dα

J (α, t)p+
1
λ

∼ CJ (α, t)
1
q−

1
λ−p (4.84)

if ⎧⎪⎪⎨
⎪⎪⎩

q ∈ (0, 1], p ∈ [1, 1/q), 0 < λ < q
1−pq ,

q ∈ (0, 1], p ≥ 1
q , λ > 0,

q > 1, p ≥ 1, λ > 0.

(4.85)

Estimate (4.82) is in turn valid for

λ �= q

1 + q(n− p)
, q �= 1

n
∀n ∈ N. (4.86)

In what follows, t∗ > 0 will denote the L∞ blow-up time for ux in Theorem 4.10. Also,

we will assume that (4.50), (4.81) and (4.86) hold whenever their corresponding estimates

are used. We begin by considering the lower bound (4.28). In particular, we will show

that two-sided, everywhere blow-up in Theorem 4.10 corresponds to a diverging ‖ux‖p
for all p > 1. Then, by studying the upper bound (4.27), we will find that if q ∈ R

+

and λ > q are such that only the maximum diverges at a finite t∗ > 0, then ux remains

integrable for all t ∈ [0, t∗], whereas its regularity in smaller Lp spaces for t ∈ [0, t∗] will

vary according to the value of the parameter λ as a function of either p, q, or both.

Suppose q/2 < λ < q/p for q ∈ R
+ and p ∈ (1, 2). Then (4.75) ii) holds as well as

(4.48) ii), since (q/2, q/p) ⊂ (0, q). Now, if q ∈ (0, 1), then 0 < q
2 < λ < q

p < q < q
1−q ,

and so (4.51) ii) applies; otherwise (4.51) ii) also holds for q ≥ 1 and λ > 0. Similarly for

q ∈ (0, 1), we have that 0 < q
2 < λ < q

p < q
p(1−q) so that (4.79) is valid. Alternatively,
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this last estimate also holds if q ≥ 1 for λ > 0. Accordingly, using these estimates in

(4.28) yields, after simplification,

‖ux(·, t)‖p ≥ 1

|λη(t)| K̄0(t)
2λ+1

p

∣∣∣∣∣
∫ 1

0

dα

J (α, t)
1+ 1

λp

− K̄1(t)

K̄0(t)

∫ 1

0

dα

J (α, t)
1
λp

∣∣∣∣∣
∼ C(p− 1)J (α, t)σ(p,q,λ)

for η∗−η > 0 small and σ(p, q, λ) = 1+ 1
q

(
1− 1

p − 2λ
)
. Consequently, ‖ux‖p will diverge

as η ↑ η∗ if σ(p, q, λ) < 0 or equivalently for p(1 + q − 2λ)− 1 < 0. Since q/2 < λ < q/p

for q > 0 and p ∈ (1, 2), we find this to be the case as long as

q ∈ R
+, 1 < p < 1 +

q

1 + q
,

1

2

(
q + 1− 1

p

)
< λ <

q

p
.

Therefore, by taking p− 1 > 0 arbitrarily small, we find that

lim
t↑t∗

‖ux(·, t)‖p = +∞

for λ ∈ (q/2, q) and q > 0. The existence of a finite blow-up time t∗ > 0 follows from

Theorem 4.10(2), while the embedding

Ls ↪→ Lp, s ≥ p, (4.87)

yields Lp blow-up for any p > 1. Next, for q ∈ (1/3, 1/2) we consider values of λ

lying between stagnation point-form solutions to the 2D (λ = 1) and 3D (λ = 1/2)

incompressible Euler equations. Suppose 1
2 < λ < q

p(1−q) for 1 < p < 2q
1−q and q ∈

(1/3, 1/2). The condition on p simply guarantees that q
p(1−q) > 1

2 for q as specified.

Furthermore, we have that

0 <
1

2p
<

1

2
< λ <

q

p(1− q)
<

q

1− q
∈ (1/2, 1),

so that relative to our choice of λ and q, λ ∈ (1/2, 1). Using the above, we find that

(4.48) i), (4.51)i i), (4.75) i) and (4.79) hold, and so (4.28) leads to

‖ux(·, t)‖p ≥ 1

|λη(t)| K̄0(t)
2λ+1

p

∣∣∣∣∣
∫ 1

0

dα

J (α, t)
1+ 1

λp

− K̄1(t)

K̄0(t)

∫ 1

0

dα

J (α, t)
1
λp

∣∣∣∣∣
∼ C

∣∣∣CJ (α, t)
1
q−

1
λp−1 − J (α, t)

1
q−

1
λ−1

∣∣∣
∼ CJ (α, t)

1
q−

1
λ−1

(4.88)

for η∗ − η > 0 small. Therefore, as η ↑ η∗, ‖ux‖p will diverge for all 1
2 < λ < q

p(1−q) ,

q ∈ (1/3, 1/2) and 1 < p < 2q
1−q . Here, we can take p − 1 > 0 arbitrarily small and

use (4.87) to conclude the finite-time blow-up, as t ↑ t∗, of ‖ux‖p for all 1
2 < λ < q

1−q ,

q ∈ (1/3, 1/2) and p > 1. The existence of a finite blow-up time t∗ > 0 is guaranteed by

the second part of Theorem 4.10(3). Now suppose q ∈ (1/2, 1) and q < λ < q
p(1−q) for

1 < p < 1
1−q . This means that λ > q > 1/2 and

0 <
q

p
< q < λ <

q

p(1− q)
<

q

1− q
. (4.89)
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Consequently, using (4.48) i), (4.51) ii), (4.75) i) and (4.79) in (4.28) implies (4.88),

possibly with distinct positive constants C. Then, as η ↑ η∗,

‖ux‖p → +∞

for all q < λ < q
p(1−q) , q ∈ (1/2, 1) and 1 < p < 1

1−q . Similarly, if q and p are as above,

but q
p(1−q) < λ < q

1−q , (4.48) i), (4.51) ii), (4.75) i) and (4.77) imply

‖ux(·, t)‖p ≥ 1

|λη(t)| K̄0(t)
2λ+1

p

∣∣∣∣∣
∫ 1

0

dα

J (α, t)
1+ 1

λp

− K̄1(t)

K̄0(t)

∫ 1

0

dα

J (α, t)
1
λp

∣∣∣∣∣
∼ C

∣∣∣C − J (α, t)
1
q−

1
λ−1

∣∣∣
∼ CJ (α, t)

1
q−

1
λ−1 → +∞

as η ↑ η∗. From these last two results and (4.87), we see that, as η ↑ η∗, ‖ux‖p → +∞
for all q < λ < q

1−q , q ∈ (1/2, 1) and p > 1. The existence of a finite t∗ > 0 follows from

Theorem 4.10(4). Lastly, suppose λ > q > 1 and p > 1. Then, estimates (4.48) i), (4.51)

ii), (4.75) i) and (4.79) hold for η∗−η > 0 small. As a result, (4.28) implies (4.88), which

in turn leads to Lp blow-up of ux for any λ > q > 1 and p > 1, as η ↑ η∗. The existence

of a finite t∗ > 0 is due to Theorem 4.10(5).

Notice from the results established so far that some values of λ > q/2 for q > 0 are

missing. These are precisely the cases for which the lower bound (4.28) yields inconclusive

information about the Lp regularity of ux for p ∈ (1,+∞). To examine some aspects

of the Lp regularity of ux for t ∈ [0, t∗] and p ∈ [1,+∞) in these particular cases, we

consider the upper bound (4.27). First, suppose q ∈ (0, 1/2) and λ > 1
2−p for p ∈ [1, 2).

Then λ > 1
2−p > 1 > q

1−q > q, so that (4.48) i), (4.51) i) and (4.82) imply that the

integral terms in (4.27) remain bounded, and nonzero, for η ∈ [0, η∗]. We conclude that

lim
t↑t∗

‖ux(·, t)‖p < +∞ (4.90)

for all λ > 1
2−p , q ∈ (0, 1/2) and p ∈ [1, 2). Here, t∗ > 0 denotes the finite L∞

blow-up time for ux established in the first part of Theorem 4.10(3). Particularly, this

result implies that even though limt↑t∗ ‖ux‖∞ = +∞ for all λ > 1 when q ∈ (0, 1/2),

ux remains integrable for t ∈ [0, t∗]. Finally, suppose q ∈ (1/2, 1) and λ > q
1−pq for

p ∈ [1, 1/q). Then λ > q
1−pq ≥ q

1−q > 1 > q > 1
2 , and so (4.48) i), (4.51) i) and

(4.82) hold. Consequently, (4.27) implies that limt↑t∗ ‖ux‖p < +∞ for all λ > q
1−pq ,

q ∈ (1/2, 1) and p ∈ [1, 1/q). This time, t∗ > 0 stands as the finite L∞ blow-up time for

ux established in the second part of Theorem 4.10(4). Furthermore, this result tells us

that even though limt↑t∗ ‖ux‖∞ = +∞ for λ > q
1−q and q ∈ (1/2, 1), ux stays integrable

for all t ∈ [0, t∗]. These last two results on the integrability of ux, for t ∈ [0, t∗], become

more apparent if we set p = 1 in (4.27) to obtain

‖ux(·, t)‖1 ≤ 2K̄1(t)

|λη(t)| K̄0(t)1+2λ
.

The result then follows from the above inequality and estimates (4.48) i) and (4.51)i).

Theorem 4.12 below summarizes the above results.
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Theorem 4.12. Consider the initial boundary value problem (1.1)-(1.2) for u′
0(α) satis-

fying (3.17), and let t∗ > 0 be as in Theorem 4.10.

(1) For q > 0 and λ ∈ [0, q/2], limt→+∞ ‖ux‖p < +∞ for all p ≥ 1. More particularly,

limt→+∞ ‖ux‖p = 0 for λ ∈ (0, q/2), while as t → +∞, ux converges to a

nontrivial L∞ function when λ ∈ {0, q/2}.
(2) Let p > 1. Then, there exists a finite t∗ > 0 such that for all q > 0 and

λ ∈ (q/2, q), limt↑t∗ ‖ux‖p = +∞. Similarly for λ > q > 1 or 1
2 < λ < q

1−q ,

q ∈ (1/3, 1/2).

(3) For all q ∈ (0, 1/2), λ > 1
2−p and p ∈ [1, 2), there exists a finite t∗ > 0 such that

limt↑t∗ ‖ux‖p < +∞ (see Theorem 4.10(3)).

(4) Suppose q ∈ (1/2, 1). Then, there exists a finite t∗ > 0 such that limt↑t∗ ‖ux‖p =

+∞ for q < λ < q
1−q and p > 1, whereas if λ > q

1−pq and p ∈ [1, 1/q),

limt↑t∗ ‖ux‖p < +∞ (see Theorem 4.10(4)).

4.2.4. L∞ regularity for λ < 0 and q ∈ R
+. We now examine the L∞ regularity of ux

for parameters λ < 0 and initial data satisfying (3.20) for arbitrary q ∈ R
+. We prove

Theorem 4.13 below.

Theorem 4.13. Consider the initial boundary value problem (1.1)-(1.2) for u′
0(α) satis-

fying (3.20). Furthermore,

(1) Suppose λ ∈ [−1, 0) and q > 0. Then, there exists a finite t∗ > 0 such that only

the minimum diverges, m(t) → −∞, as t ↑ t∗ (one-sided, discrete blow-up).

(2) Suppose λ < −1 and q ∈ (0, 1) satisfy λ �= q
1−nq and q �= 1

n ∀n ∈ N. Then, a

one-sided discrete blow-up, as described in (1), occurs in finite time. Similarly

for q
1−q < λ < −1 and q > 1.

(3) Suppose λ < q
1−q and q > 1. Then, there is a finite t∗ > 0 such that both

the maximum M(t) and the minimum m(t) diverge to +∞ and respectively to

−∞ as t ↑ t∗. Moreover, limt↑t∗ ux(γ(α, t), t) = +∞ for α /∈
⋃

i,j{αi} ∪ {αj}
(two-sided, everywhere blow-up).

Finally, for λ < 0, q > 0 and t∗ > 0 as above, the jacobian (3.7) satisfies

lim
t↑t∗

γα(α, t) =

{
0, α = αj ,

C(α), α �= αj ,
(4.91)

where C(α) ∈ R
+ depends on the choice of λ, q and α �= αj .

Proof. Throughout, let C denote a positive constant that may depend on λ < 0, q > 0

and recall that η∗ = 1
λm0

.

Proof of statement (1). Suppose λ ∈ [−1, 0) and assume u′
0(α) satisfies (3.20) for

some q > 0. Then (4.53) and (4.54) imply that both integral terms in (3.10) remain

finite and nonzero as η ↑ η∗.
5 More particularly, one can show that (4.22) and (4.24)

hold for all η ∈ [0, η∗]. Therefore, blow-up of (3.10) depends, solely, on the behaviour

of the space-dependent term J (α, t)−1. Accordingly, we set α = αj into (3.10) and use

(3.16)ii) to find that the minimum diverges, m(t) → −∞, as η ↑ η∗. However, if α �= αj ,

the definition of m0 implies that the space-dependent term now remains bounded, and

5Recall that u′
0 is assumed to be bounded and, at least, C0(0, 1) a.e.
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positive, for η ∈ [0, η∗]. The existence of a finite blow-up time t∗ > 0 for the minimum

follows from (3.11) and (4.53). In fact, we may use (3.11) and (4.22) to obtain the

estimate

|m0|
|λ| (m0 −M0)2

≤ t∗ ≤ η∗. (4.92)

Proof of statements (2) and (3). Now suppose λ < −1. As in the previous case, the

term K̄0(t) remains finite, and positive, for all η ∈ [0, η∗]. Particularly, K̄0(t) satisfies

(4.23) for all η ∈ [0, η∗]. On the other hand, K̄1(t) now either converges or diverges, as

η ↑ η∗, according to (4.54) or (4.56), respectively. If λ < −1 and q > 0 are such that

(4.54) holds, then part (2) follows just as part (1). However, if q > 1 and λ < q
1−q , we

use (4.53) and (4.56) on (3.10) to obtain

ux(γ(α, t), t) ∼ Cm0

(
1

J (α, t)
− CJ (αj , t)

1
q−

1
λ−1

)

for η∗ − η > 0 small. Setting α = αj into the above implies that

m(t) ∼ Cm0

J (α, t)
→ −∞

as η ↑ η∗, whereas, for α �= αi, the space-dependent term now remains bounded. As a

result, the second term dominates and

ux(γ(α, t), t) ∼ C |m0| J (αj , t)
1
q−

1
λ−1 → +∞

as η ↑ η∗. The existence of a finite blow-up time t∗ > 0 follows as in the case λ ∈ [−1, 0).

In fact, (3.11) and (4.23) yield the lower bound η∗ ≤ t∗.
6 Finally, (4.91) is derived

straightforwardly from (3.7) and (4.53). See §5 for examples. �

4.2.5. Further Lp regularity for λ ∈ R
−, q ∈ R

+ and p ∈ [1,+∞). Let t∗ > 0 denote

the finite L∞ blow-up time for ux in Theorem 4.13 above. In this last section, we briefly

examine the Lp regularity of ux, as t ↑ t∗, for λ ∈ R
−, p ∈ [1,+∞) and u′

0 satisfying

(3.20) for some q ∈ R
+. As in §4.2.3, we will make use of (4.27) and (4.28). First of all,

by the last part of Lemma 4.3(3), we have that for q > 0 and p ≥ 1,∫ 1

0

dα

J (α, t)
1
λp

∼ C (4.93)

for η∗ − η > 0 small, η∗ = 1
λm0

and λ < 0. Similarly

∫ 1

0

dα

J (α, t)p+
1
λ

∼ C (4.94)

for − 1
p ≤ λ < 0. Moreover, due to the first part of (3) in the lemma, estimate (4.94)

is also seen to hold, with different positive constants C, for λ < − 1
p , p ≥ 1 and q > 0

6Which we may compare to (4.92). From (3.11), we see that the two coincide, t∗ = η∗, in the case of
Burgers’ equation λ = −1.
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satisfying any of the following:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

q ∈ (0, 1/2), p ∈ [1, 2], λ < − 1
p ,

q ∈ (0, 1/2), p > 2, 1
2−p < λ < − 1

p ,

q ∈ (1/2, 1), p ∈ [1, 1/q], λ < − 1
p ,

q ∈ (1/2, 1), p > 1
q ,

q
1−pq < λ < − 1

p ,

q > 1, p ≥ 1, q
1−pq < λ < − 1

p ,

(4.95)

as well as

λ /∈
{

q

1− q(p+ n)
,

1

1− p

}
, q �= 1

n
∀n ∈ N. (4.96)

We remark that in the cases where (4.94) diverges, it dominates the other terms in

(4.27), regardless of whether these converge or diverge, and so no information on the

behaviour of ‖ux‖p is obtained. Consequently, we will omit those instances. Finally,

using Lemma 4.3(2), one finds that∫ 1

0

dα

J (α, t)1+
1
λp

∼ CJ (αj , t)
1
q−

1
λp−1 (4.97)

for q > 1, p ≥ 1 and λ < q
p(1−q) . Analogously, if (4.97) converges, the lower bound (4.28)

yields no information on the Lp regularity of ux. For the remainder of this section, we

will assume that (4.50) holds whenever (4.54) is used for λ < −1 and q ∈ (0, 1). Also,

(4.96) will be valid in those cases where estimate (4.94) is considered for λ, p and q as

in (4.95). Suppose q
1−q < λ < q

p(1−q) for q > 1 and p > 1. Then, using (4.53), (4.54),

(4.93) and (4.97), in the lower bound (4.28), implies that

lim
t↑t∗

‖ux(·, t)‖p = +∞.

If instead, λ < q
1−q for q > 1 and p > 1, then (4.53), (4.56), (4.93) and (4.97) give

‖ux(·, t)‖p ≥ 1

|λη(t)| K̄0(t)
2λ+1

p

∣∣∣∣∣
∫ 1

0

dα

J (α, t)
1+ 1

λp

− K̄1(t)

K̄0(t)

∫ 1

0

dα

J (α, t)
1
λp

∣∣∣∣∣
∼ C

∣∣∣CJ (α, t)
1
q−

1
λp−1 − J (α, t)

1
q−

1
λ−1

∣∣∣
∼ CJ (α, t)

1
q−

1
λp−1 → +∞

as η ↑ η∗. For the upper bound (4.27), we simply mention that estimates (4.53), (4.54)

and (4.94) lead to several instances where ‖ux‖p remains finite for all t ∈ [0, t∗]. This

can be shown, just as above, by using the appropriate estimates. For simplicity, we omit

the details and summarize the results in Theorem 4.14 below.

Theorem 4.14. Consider the initial boundary value problem (1.1)-(1.2) for u′
0(α) sat-

isfying (3.20), and let t∗ > 0 denote the finite L∞ blow-up time for ux as described in

Theorem 4.13.

(1) Let q ∈ (0, 1/2). Then, limt↑t∗ ‖ux‖p < +∞ for either λ < 0 and p ∈ [1, 2] or
1

2−p < λ < 0 and p > 2.

(2) Let q ∈ (1/2, 1). Then, limt↑t∗ ‖ux‖p < +∞ for either λ < 0 and p ∈ [1, 1/q] or
q

1−pq < λ < 0 and p > 1/q.
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(3) Let q > 1. Then limt↑t∗ ‖ux‖p < +∞ for q
1−pq < λ < 0 and p ≥ 1, whereas

limt↑t∗ ‖ux‖p = +∞ for λ < q
p(1−q) and p > 1.

When applicable, (4.50) and (4.96) apply to (1) and (2) above.

4.2.6. Further regularity results for smooth initial data.

Definition 4.15. Suppose a smooth function f(x) satisfies f(x0) = 0, but f is not

identically zero. We say f has a zero of order k ∈ N at x = x0 if

f(x0) = f ′(x0) = ... = f (k−1)(x0) = 0, f (k)(x0) �= 0.

In [20], we examined a class of smooth, mean-zero, periodic initial data characterized

by u′′
0(α) having zeroes of order k = 1 at the finite number of locations αi for λ > 0 or at

αj if λ < 0, that is, u′′′
0 (αi) < 0 or u′′′

0 (αj) > 0. Consequently, in each case, we were able

to use an appropriate Taylor expansion up to quadratic order to account for the local

behaviour of u′
0 near these points. This approach, in turn, led to the results summarized

in Theorems 1.1 and 1.2 of §1. Assuming the order k of these particular zeroes, αi or

αj of u′′
0 is the same regardless of location, and noticing that k ≥ 1 must be odd due to

u′
0 being even in a small neighbourhood of these points, we may use Definition 4.15 to

generalize the results in [20] to a larger class of smooth, mean-zero, periodic initial data

characterized by u′′
0 having zeroes of higher orders, k = 1, 3, 5, . . . , at every αi if λ > 0 or

αj for λ < 0. Since this corresponds to replacing q in (3.17) or (3.20) by k+1, we obtain

our results simply by substituting q in Theorems 4.10, 4.12, 4.13 and 4.14 by 1 + k in

those cases where q ≥ 2. The results are summarized in Corollary 4.2 below.

Corollary 4.2. Consider the initial boundary value problem (1.1)-(1.2) for smooth,

mean-zero, periodic initial data. Furthermore,

(1) Suppose u′′
0(α) has a zero of order k ≥ 1 at every αi, i = 1, 2, . . . ,m. Then

• For 0 ≤ λ ≤ 1+k
2 , solutions exist globally in time. More particularly, these

vanish as t ↑ t∗ = +∞ for 0 < λ < 1+k
2 but converge to a nontrivial steady

state if λ ∈
{
0, 1+k

2

}
.

• For 1+k
2 < λ < +∞, there exists a finite t∗ > 0 such that both the maximum

M(t) and the minimum m(t) diverge to +∞ and respectively to −∞ as

t ↑ t∗. Furthermore, limt↑t∗ ux(γ(α, t), t) = −∞ if α /∈
⋃

i,j{αi} ∪ {αj} and

limt↑t∗ ‖ux‖p = +∞ for all p > 1.

(2) Suppose u′′
0(α) has a zero of order k ≥ 1 at each αj , j = 1, 2, . . . , n. Then

• For − 1+k
k < λ < 0, there exists a finite t∗ > 0 such that only the minimum

diverges, m(t) → −∞, as t ↑ t∗, whereas for 1+k
1−p(1+k) < λ < 0 and p ≥ 1,

limt↑t∗ ‖ux‖p < +∞.

• For λ < − 1+k
k , there is a finite t∗ > 0 such that both M(t) and m(t) diverge

to +∞ and respectively to−∞ as t ↑ t∗. Additionally, limt↑t∗ ux(γ(α, t), t) =

+∞ for α /∈
⋃

i,j{αi}∪{αj} and limt↑t∗ ‖ux‖p = +∞ if λ < − 1+k
pk and p > 1.

Remark 4.16. It can be easily shown, by replicating the arguments used in this

paper, that most of the results established for the periodic setting (1.2) can be extended

to solutions satisfying Dirichlet boundary conditions

u(0, t) = u(1, t) = 0. (4.98)
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The only main distinction between the two settings arises when the initial data u0

is smooth and such that u′
0 attains its greatest value M0 > 0, for λ > 0, or its least

value m0 < 0, when λ < 0, at a boundary point. Consider the following prototype

example. Let u0(α) = α(1 − α), so that u′
0(α) = 1 − 2α attains M0 = 1 at α = 0 and

m0 = −1 when α = 1. Clearly u0 is smooth on [0, 1], and since periodicity requires

that u′
0(0) = u′

0(1), the above choice of data is valid only for the Dirichlet setting (4.98).

Furthermore, for such choice of smooth data we have that u′′
0(0) and u′′

0(1) are both

nonzero; therefore, a Taylor expansion about α = 0 or α = 1, which we would use while

deriving the corresponding integral estimates, retain its linear terms. This, it turns out,

is not possible for smooth periodic initial data due to the restrictions u′
0(0) = u′

0(1)

and u′′
0(0) = u′′

0(1), which would ultimately require that u′′
0(0) = u′′

0(1) = 0. Further,

and using the notation introduced in Definition 4.15, the above could be rephrased in

terms of the order k of the zero, say α = 0, of u′′
0 ; namely, for periodic smooth data, k

must be at least one, which is not necessarily the case in the Dirichlet setting, where, for

the above choice of data, α = 0 is not even a zero of u′′
0 . For details on the above, we

refer the reader to [21], where we exploit this simple observation to show that, starting

from smooth initial data, finite-time blow-up in stagnation point-form solutions to the

2D incompressible Euler equations (λ = 1) can only occur under Dirichlet, not periodic,

boundary conditions. This agrees with part (1) of Corollary 4.2, where setting k = 0

implies finite-time blow-up for 1/2 < λ < +∞. Lastly, notice that letting q → +∞ in

either (3.17) or (3.20) implies that u′
0 ∼ M0 near αi or u

′
0 ∼ m0 for α ∼ αj , respectively.

Then, letting k → +∞ in Corollary 4.2(1) implies that for this particular class of locally

constant u′
0, a solution that exists locally in time for any λ ∈ R will persist for all time.

5. Examples. Examples for Theorems 4.4, 4.10 and 4.13 are now presented. For

simplicity, we consider initial data satisfying Dirichlet boundary conditions (4.98),7 and

we note that (3.10) is equivalent to the representation formula (see [20])

ux(γ(α, t), t) =
1

K̄0(t)
2λ

(
u′
0(α)

J (α, t)
− 1

K̄0(t)

∫ 1

0

u′
0(α)dα

J (α, t)1+
1
λ

)
. (5.1)

For several choices of λ ∈ R, the time-dependent integrals in (5.1) are evaluated and

pointwise plots are generated using Mathematica. Whenever possible, plots in the

Eulerian variable x, instead of the Lagrangian coordinate α, are provided. For practical

reasons, details of the computations in most examples are omitted. Also, due to the

difficulty in solving for the time variable t through the IVP (3.11) for η(t), most plots

for ux(γ(α, t), t) are against the variable η rather than t.

Example 5.1 below applies to stagnation point-form (SPF) solutions to the incom-

pressible 3D Euler equations (λ = 1/2). We consider two types of data: one satisfying

(3.17) for q ∈ (0, 1), and the other having q > 1. Recall from Table 2 that if q ≥ 1, global

existence in time follows, while for q ∈ (1/2, 1), finite-time blow-up occurs. Below, we

see that a spontaneous singularity may also form if q = 1/3.

7The reader may refer to [20] for examples involving periodic, mean-zero data satisfying (3.17) and/or
(3.20), for q = 2 or in the limit as q → +∞.
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Example 5.1. Regularity of SPF solutions to 3D Euler for q = 1/3 and q = 6/5.

First, for λ = 1/2 and α ∈ [0, 1], let

u0(α) = α(1− α
1
3 ). (5.2)

Then u′
0(α) = 1 − 4

3α
1
3 achieves its maximum M0 = 1 at α = 0. Also, q = 1/3, η∗ = 2,

and u′
0(α) /∈ C1(0, 1), i.e. limα↓0 u

′′
0(α) = −∞, a jump discontinuity of infinite magnitude

in u′′
0 . Evaluating the integrals in (5.1), we obtain

K̄0(t) = −
54(η(t)− 6)η(t)− 81(2− η(t))(6 + η(t)) arctanh

(
2η(t)
η(t)−6

)
4(6 + η(t))η(t)3

(5.3)

and

∫ 1

0

u′
0(α) dα

J (α, t)3
= −

27
(
9(2− η(t))(6 + η(t))2 log

(
24

η(t)+6 − 3
))

8(6 + η(t))2η(t)4

−
27

(
8η(t)(54− (η(t)− 9)η(t)) + 6η(t)(6 + η(t))2 arctanh

(
2η(t)
η(t)−6

))
8(6 + η(t))2η(t)4

(5.4)

for 0 ≤ η < 2. Furthermore, in the limit as η ↑ η∗ = 2, K̄0(t∗) = 27/16, whereas∫ 1

0
u′
0(α) dα
J (α,t)3 → +∞. Also, (3.11) and (5.3) yield

t(η) = −
9
(
2η(6− 5η) + 9(η − 2)2arctanh

(
2η
η−6

))
16η2

,

so that t∗ = limη↑2 t(η) = 9/4. Using (5.3) and (5.4) on (5.1), we find that ux(γ(α, t), t)

undergoes a two-sided, everywhere blow-up as t ↑ 9/4.

Next, replace q = 1/3 in (5.2) by q = 6/5. Then, u′
0(α) = 1 − 11

5 α
6
5 so that u′′

0 is

now defined as α ↓ 0. Also, for this data, both integrals now diverge to +∞ as η ↑ 2.

Particularly, this causes a balancing effect amongst the terms in (5.1) that was previously

absent when q = 1/3. Ultimately, we find that as t → t∗ = +∞, ux(γ(α, t), t) → 0 for

every α ∈ [0, 1]. See Figure 2 below.

Fig. 2. Example 1 for λ = 1/2 and q ∈ {1/3, 6/5}. Figure A depicts
two-sided, everywhere blow-up of ux(γ(α, t), t) for q = 1/3 as η ↑ 2
(t ↑ 9/4), whereas, for q = 6/5, Figure B represents its vanishing as
η ↑ 2 (t → +∞).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



88 A. SARRIA AND R. SAXTON

Fig. 3. For Example 5.2, Figure A represents the vanishing of
ux(γ(α, t), t) as η ↑ 1/2 (t → +∞) for λ = 2 and q = 5, whereas
Figure B illustrates its convergence to a nontrivial steady-state as
η ↑ 4/5 (t → +∞) if q = 5/2 and λ = 5/4 = q/2.

In [20] (see Theorem 1.1 in §1), we showed that for a class of smooth, periodic initial

data (q = 2), finite-time blow-up occurs for all λ > 1. Example 5.2 below is an instance

of Theorem 4.10(1). For λ ∈ {2, 5/4}, we consider initial data satisfying (3.17) for q ∈
{5, 5/2}, respectively, and find that solutions persist globally in time. Also, the example

illustrates the two possible global behaviours: convergence of solutions, as t → +∞, to

nontrivial or trivial steady-states.

Example 5.2. Global existence for λ = 2, q = 5 and λ = 5/4, q = 5/2. First, let

λ = 2 and

u0(α) = α(1− α5). (5.5)

Then u′
0(α) = 1 − 6α5 achieves its greatest value M0 = 1 at α = 0 and η∗ = 1/2.

Since λ = 2 ∈ [0, 5/2) = [0, q/2), Theorem 4.10(1) implies global existence in time.

Particularly, ux(γ(α, t), t) → 0 as t → +∞. See Figure 3(A). Now, suppose λ = 5/4 and

replace q = 5 in (5.5) by q = 5/2. Then, u′
0(α) = 1 − 7

2α
5/2 attains M0 = 1 at α = 0

and η∗ = 4/5. Because λ = 5/4 = q/2, Theorem 4.10(1) implies that ux converges to a

nontrivial steady-state as t → +∞. See Figure 3(B).

Example 5.3. Two-sided, everywhere blow-up for λ = 11
2 and q = 6. Suppose

λ = 11/2 and u0(α) = α
11 (1 − α6). Then, u′

0(α) = 1
11 (1 − 7α6) attains its greatest

value M0 = 1/11 at α = 0. Also, η∗ = 2 and λ = 11/2 ∈ (q/2, q). According to

Theorem 4.10(2), two-sided, everywhere finite-time blow-up occurs. The estimated blow-

up time is t∗ ∼ 22.5. See Figure 4(A).

Example 5.4. One-sided, discrete blow-up for λ = −5/2 and q = 3/2. Let λ = −5/2

and u0(α) = α(α
3
2 − 1). Then u′

0 attains its minimum m0 = −1 at α = 0 and η∗ = 2/5.

Since q
1−q < λ < −1, Theorem 4.13(2) implies one-sided, discrete finite-time blow-up and

t∗ ∼ 0.46. See Figure 4(B). We remark that in [20], the same value for λ with smooth,

periodic initial data and q = 2 led to two-sided, everywhere blow-up instead.

In these last two examples, we consider smooth data with either mixed local behaviour

near two distinct locations αj for λ = −1/3 or M0 occurring at both endpoints for λ = 1.
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Fig. 4. Figure A for Example 5.3 depicts two-sided, everywhere
blow-up of ux(γ(α, t), t) as η ↑ 2 (t ↑ 22.5) for λ = 11/2 and q = 6,
while Figure B for Example 5.4 illustrates one-sided, discrete blow-
up, m(t) = ux(0, t) → −∞, as η ↑ 2/5 (t ↑ t∗ ∼ 0.46) for λ = −5/2
and q = 3/2.

Example 5.5. One-sided, discrete blow-up for λ = −1/3 and q = 1, 2. For λ = −1/3,

let

u0(α) = α(1− α)(α− 3

4
)

(
α− 1 + 4

√
22

36

)
.

Then m0 ∼ −0.113 occurs at both α1 = 1 and α2 = 4+
√
22

24 ∼ 0.36. Now, near α2,

u′
0 behaves quadratically (q = 2), whereas for 1 − α > 0 small, it behaves linearly

(q = 1). The quadratic behaviour is due to u′′
0 having zero of order one at α2 ∼ 0.36;

thus, Corollary 4.2 implies a discrete, one-sided blow-up. Similarly in the case of linear

behaviour according to Theorem 4.4. After evaluating the integrals, we find that m(t) →
−∞ as t ↑ t∗ ∼ 17.93. Due to the Dirichlet boundary conditions, we have that γ(0, t) ≡ 0

and γ(1, t) ≡ 1 for as long as u is defined. Then, one blow-up location is given by the

boundary x1 = 1, while the interior blow-up location, x2, is obtained by integrating (3.7).

This yields the characteristics:

γ(α, t) =

∫ α

0

dy

J (y, t)
1
λ

(∫ 1

0

dα

J (α, t)
1
λ

)−1

.

Setting α = α2 and letting η ↑ η∗ = 3
|m0| , we find that x2 ∼ 0.885. See Figure 5(A).

Example 5.6. Two-sided, everywhere blow-up of SPF solutions to 2D Euler (λ = 1)

for q = 1. For λ = 1, let u0(α) = α(α − 1)(α − 1/2). Then, M0 = 1/2 occurs at both

endpoints αi = {0, 1}. Also η∗ = 2 and since

u′
0(α) = M0 − 3α+ 3α2 = M0 − 3 |α− 1|+ 3(α− 1)2,

the local behaviour of u′
0 near both endpoints is linear (q = 1). The integrals in (5.1)

evaluate to

K̄0(t) =
2 arctanh(y(t))√
3η(t)(4 + η(t))

,

∫ 1

0

u′
0(α) dα

J (α, t)2
=

dK̄0(t)

dη

for 0 ≤ η < 2 and y(t) =

√
3η(t)(4+η(t))

2(1+η(t)) . Using the above on (5.1), we find that M(t) =

ux(0, t) = ux(1, t) → +∞ as η ↑ 2, while ux(x, t) → −∞ for all x ∈ (0, 1). The blow-up

time is estimated from (3.11) and K̄0(t) above as t∗ ∼ 2.8. See Figure 5(B).
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Fig. 5. Figure A for Example 5.5 with λ = −1/3 and q = 1, 2,
depicts one-sided, discrete blow-up m(t) → −∞, as t ↑ 17.93. The
blow-up locations are x1 = 1 and x2 ∼ 0.885. Then, Figure B for
Example 5.6 with λ = 1 and q = 1, represents two-sided, everywhere
blow-up of ux(x, t), as t ↑ 2.8.

References

[1] E. W. Barnes, A New Development of the Theory of the Hypergeometric Functions, Proc. London
Math. Soc. S2-6, no. 1, 141, DOI 10.1112/plms/s2-6.1.141. MR1575118

[2] Alberto Bressan and Adrian Constantin, Global solutions of the Hunter-Saxton equation, SIAM J.

Math. Anal. 37 (2005), no. 3, 996–1026, DOI 10.1137/050623036. MR2191785 (2006j:35203)
[3] F. Calogero, A solvable nonlinear wave equation, Stud. Appl. Math. 70 (1984), no. 3, 189–199.

MR742587 (85f:35170)
[4] S. Childress, G. R. Ierley, E. A. Spiegel, and W. R. Young, Blow-up of unsteady two-dimensional

Euler and Navier-Stokes solutions having stagnation-point form, J. Fluid Mech. 203 (1989), 1–22,
DOI 10.1017/S0022112089001357. MR1002875 (90e:76054)

[5] Chien-Hong Cho and Marcus Wunsch, Global and singular solutions to the generalized
Proudman-Johnson equation, J. Differential Equations 249 (2010), no. 2, 392–413, DOI
10.1016/j.jde.2010.03.013. MR2644121 (2011e:35392)

[6] Chien-Hong Cho and Marcus Wunsch, Global weak solutions to the generalized Proudman-Johnson
equation, Commun. Pure Appl. Anal. 11 (2012), no. 4, 1387–1396, DOI 10.3934/cpaa.2012.11.1387.
MR2900790

[7] Adrian Constantin and Marcus Wunsch, On the inviscid Proudman-Johnson equation, Proc. Japan
Acad. Ser. A Math. Sci. 85 (2009), no. 7, 81–83, DOI 10.3792/pjaa.85.81. MR2548017 (2010i:35318)

[8] Constantine M. Dafermos, Generalized characteristics and the Hunter-Saxton equation, J. Hy-
perbolic Differ. Equ. 8 (2011), no. 1, 159–168, DOI 10.1142/S0219891611002366. MR2796054
(2012f:35460)
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