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Abstract
Purpose of Review Recent technological advances have identified distinct subpopulations and roles of the cardiac innate 
immune cells, specifically macrophages and neutrophils. Studies on distinct metabolic pathways of macrophage and neutro-
phil in cardiac injury are expanding. Here, we elaborate on the roles of cardiac macrophages and neutrophils in concomitance 
with their metabolism in normal and diseased hearts.
Recent Findings Single-cell techniques combined with fate mapping have identified the clusters of innate immune cell 
subpopulations present in the resting and diseased hearts. We are beginning to know about the presence of cardiac resident 
macrophages and their functions.
Summary Resident macrophages perform cardiac homeostatic roles, whereas infiltrating neutrophils and macrophages 
contribute to tissue damage during cardiac injury with eventual role in repair. Prior studies show that metabolic pathways 
regulate the phenotypes of the macrophages and neutrophils during cardiac injury. Profiling the metabolism of the innate 
immune cells, especially of resident macrophages during chronic and acute cardiac diseases, can further the understanding 
of cardiac immunometabolism.
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Introduction

Immune cells make up to 5–10% of total cells in the adult 
myocardium with myeloid cells (granulocytes, monocytes, 
macrophages, and dendritic cells) being 80% of these cardiac 
immune cells and the rest being non-myeloid/lymphoid cells 
(B cells and T cells) [1, 2]. Cardiac immune cells can either 
be residing cells of embryonic origin, such as macrophage, 
or infiltrating cells from circulation, such as T cells, B cells, 
neutrophils, mast cells, monocytes, and macrophages [2, 3•, 
4–6]. Both normal and diseased hearts contain immune cells, 
but the quantity and types of immune cells change drasti-
cally depending on different (patho)physiological conditions 
[7•, 8, 9]. Technology advances that improved resolution 
of immune cell subpopulations within myocardium and 
vascular spaces have substantially increased the knowledge 

of cardiac immunology. This review will focus on innate 
immune cell subpopulations, specifically neutrophils and 
macrophages, and their role in cardiac homeostasis and 
disease.

In the last decade, there has been a paradigm shift in mac-
rophage research. Tissue macrophages, including cardiac 
macrophage, have been shown to have two distinct origins. 
Majority of resident macrophages in normal adult hearts 
derives from yolk sac or fetal liver, and they are maintained 
throughout adulthood by self-renewal [10–13]. A smaller 
fraction of cardiac macrophage is monocyte derived under 
normal conditions, but this fraction can increase substantially 
during injury [4, 14–16]. The two populations of cardiac 
macrophages can be distinguished by the expression of C–C 
chemokine receptor 2 (CCR2). Macrophages derived from 
monocytes are  CCR2+Ly6Chi while macrophages of embry-
onic origin are  CCR2− and express low level of Ly6C [10].

Neutrophils are originated from bone marrow. Imma-
ture neutrophils in humans show surface markers of 
 CD15+CD11b+CD16+CD10+ while mature, circulating neu-
trophils are classified as  CD16hiCXCR2hiCXCR4loCD62Lhi. 
Mouse neutrophils have distinct markers from humans 
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characterized by  CD11b+CD45+Ly6G+F4/80−/CD115− with 
alterable CD62L expression [17–20]. Minimum neutrophils 
are found in normal adult hearts, although one study reported 
actively infiltrate neutrophil in naïve heart [21, 22]. Some 
reports have shown the presence of other resident innate 
immune cells in human hearts and healthy mice, such as den-
dritic cells (DCs) [23, 24]. Neutrophil infiltration is an impor-
tant response to cardiac injury. After myocardial infarction, 
infiltration of pro-inflammatory N1 neutrophil occurs in the 
initial stages, whereas at the later stage of resolution and tissue 
repair, the N2 phenotype is more dominant [25, 26].

It is known that activation of immune cells is associ-
ated with marked metabolic changes [27, 28]. The role of 
metabolism in modulating cardiac immune cell function has 
been emerging. Metabolic alterations in the cardiomyocytes 
during various cardiac diseases have been widely implicated 
[29]. Metabolism of non-myocyte is also increasingly recog-
nized to modulate cardiac repair and remodeling [30]. While 
adult cardiomyocytes can switch from fatty acid oxidation 
to utilization of other substrates based on their availability 
and ATP demand, immune cells reprogram their metabolism 
to switch phenotypes [28, 31, 32]. In the present review, 
we discuss recent advances in understanding metabolic 
programs in the innate immune cells, in particular neutro-
phils and macrophages, in conjunction with their role in the 
healthy and diseased heart.

The Role of Innate Immune Cells in Cardiac 
Homeostasis

Recent studies revealed novel functions of resident mac-
rophages, somewhat unexpected from immune cells, in 
healthy hearts. Cardiac macrophages contribute to electri-
cal conduction, angiogenesis, and vascular development, and 
maintain mitochondrial homeostasis [3•, 33, 34] (Fig. 1). 

Primitive embryonic  CCR2− macrophages participate coro-
nary maturation, and they are required for coronary plexus 
remodeling [35]. In developing hearts, resident macrophages 
are found adhering to newly developed blood and lymphatic 
vessels and expressing genes that promote angiogenesis, 
lymphangiogenesis, and ECM remodeling [34]. In adult 
hearts under stress, cardiac resident macrophage promotes 
angiogenesis as an adaptive response [13, 36, 37].

Abundant cardiac resident macrophages were also found 
in the conduction system facilitating cardiac electrical con-
duction through the distal atrioventricular (AV) node, via the 
connexin 43 expressed by elongated macrophages in contact 
with myocytes, both in human and mice [33]. Amphiregulin 
(AREG) produced by cardiac macrophages has been recently 
shown to regulate cardiac impulse conduction and may be 
a potential therapeutic target in sudden death from severe 
arrhythmias [38].

A recent study showed that cardiac resident macrophages 
took up ejected mitochondria in double layered vesicles 
called “exophers,” derived from cardiomyocytes, in healthy 
hearts. This likely provided a mechanism for maintaining 
mitochondrial homeostasis in cardiomyocytes. Depletion 
of resident macrophages led to accumulation of defective 
mitochondria inside cardiomyocytes leading to inflamma-
some activation, metabolic dysregulation, and cardiac dys-
function [3•].

Metabolism of innate immune cells is mostly stud-
ied using bone marrow derived primary cells or cell lines 
[39–41]. Metabolism of cardiac resident macrophages is 
poorly understood. It is unknown whether they are meta-
bolically distinct although they possess unique functions 
compared to bone marrow derived macrophages. With 
increasing knowledge of the genetic identify of cardiac resi-
dent macrophages, targeting metabolism in this specific cell 
population becomes feasible, which should provide valuable 
information to the field.

Fig. 1  Function of cardiac 
resident macrophages in the 
steady-state heart. Cardiac resi-
dent macrophages or cMACs 
are mostly embryonic in origin 
and perform homeostatic func-
tions in the resting heart. CM 
cardiomyocyte, cMAC cardiac 
macrophage, AV atrioventricu-
lar. Created with BioRender.
com
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Metabolism and Function of Innate Immune 
Cell During Acute Cardiac Injury

Neutrophils

In the blood, neutrophils are the most abundant leukocytes 
and the first responders to infection, injury, and cellular 
stress-induced inflammation [42–44]. During tissue damage 
or injury such as viral myocarditis and myocardial infarc-
tion, pathogens and necrotic tissue resident cells release the 
pathogen-associated molecular patterns (PAMPS) or dam-
age-associated molecular patterns (DAMPs) and cytokines 
(such as TNFα, produced by dying cardiomyocytes) and 
chemokines like CXCL1/IL8, CXCL2, and CCL2 to recruit 
neutrophils through their surface receptors, i.e., CXCR2 and 
CCR2 [45–47]. Infiltrating neutrophils clear dead cell debris 
via phagocytosis and at same time releasing ROS, granular 
components, proteolytic enzymes, and inflammatory media-
tors [25, 48–50]. Neutrophils undergo apoptosis shortly after 
infiltration and lose their IL6 receptors, thereby augmenting 
the inflammatory signal by stimulating endothelial cells to 
recruit more inflammatory immune cells [42, 47, 51]. Forma-
tion of neutrophil extracellular trap (NETosis), a network of 
decondensed chromatin or DNA released from activated or 
dying neutrophils, contributes to inflammation and throm-
bosis [52, 53]. However, studies also show that neutrophils 
exert anti-inflammatory, pro-angiogenic, and pro-reparative 
effects and promote tissue repair post-myocardial infarction 
by polarizing macrophages towards their reparative phenotype 
and depletion of neutrophils worsens heart failure pathologies 
[54–56]. Timely cell death of neutrophil by apoptosis and 
NETosis have also shown benefit in tissue repair post-MI by 
scavenging chemokines and cytokines [57].

Immature neutrophils show robust oxidative metabolism 
during differentiation and are rich in mitochondria compared 
to mature neutrophils [58–60]. Fatty acid oxidation (FAO) 
and mitochondrial respiration regulate neutrophil differen-
tiation [59, 60]. On the other hand, mature and active neu-
trophils have fewer mitochondria and prefer glycolysis for 
energy production [39, 61, 62]. Activated neutrophils pri-
marily depend on glycolysis for phagocytic functions and in 
the formation of NET [61]. While not a major player in ATP 
production, mitochondrial release of proapoptotic factors is 
an important mechanism regulating apoptosis in neutrophil 
[62, 63]. A recent study has also shown that neutrophils 
can use the mitochondrial network for ROS production to 
stabilize HIF-1α during hypoxia. This study showed that 
neutrophils shuttled electrons generated from glycolysis via 
glycerol 3-phosphate pathway to fuel mitochondrial mem-
brane potential for ROS production [64].

Apart from ROS production, mitochondrial function 
regulates chemotaxis and mTOR signaling [65, 66]. ATP 

release and mitochondrial purinergic signaling via P2Y2 
receptor-mediated mTOR signaling are essential for neu-
trophil chemotaxis [67, 68]. During acute inflammation, 
activated neutrophils stimulate mTOR, which then phos-
phorylates HIF and NF-κB, enhancing the production and 
release of the inflammatory cytokines such as TNFα and 
IL6. Cytokine release further promotes accumulation of 
neutrophil in the injured tissue and enlarge the tissue dam-
age [69, 70]. Migration of neutrophils also has been shown 
significantly impaired in severe sepsis, which was attributed 
to activation of PPAR-gamma [71, 72]. Furthermore, sepsis-
induced cardiac dysfunction was significantly attenuated by 
administration of 2-deoxyglucose (2-DG), a glucose ana-
logue that cannot be metabolized via glycolysis, suggesting a 
contribution of glycolytic metabolism to cardiac dysfunction 
in sepsis [73].

Monocytes/Macrophages

After acute myocardial infarction (MI), a majority of 
resident macrophages in the infarct zone die. The injury site 
is populated with infiltrating neutrophils and macrophages 
derived from circulating myeloid cells.  Ly6Chi monocytes 
infiltrate the infarct tissue as early as 30 min after coronary 
ligation in animal studies, and they polarize to  CCR2+ 
pro-inflammatory macrophages [74, 75]. The infiltrating 
 CCR2+ macrophages can recruit more monocytes to the 
injured heart through a myeloid differentiation primary 
response 88 (MYD88)-dependent pathway [12]. In 
3–5 days after MI in mice, a shift to  Ly6Clo dominant 
macrophage population and decrease in neutrophil number 
in the infarcted area marks the transition to resolving 
phase after tissue injury. During this phase, macrophages 
engulf dead cells in their surroundings via a process call 
“efferocytosis” and producing anti-inflammatory and 
reparative factors such as IL10, vascular endothelial growth 
factor C (VEGFC), and transforming growth factor beta 
(TGFβ) [76, 77]. These factors are critical for tissue repair 
and angiogenesis at the injury site. Depletion of reparative 
macrophages is associated with left ventricular contractile 
dysfunction, impaired tissue repair, infarct enlargement, 
and increased inflammation in the infarct zone [78–80]. 
A study using inducible deletion strategy to specifically 
target self-renewing  CCR2− resident macrophage found that 
the loss of this macrophage population resulted in adverse 
remodeling of the peri-infarcted zone and exacerbate 
cardiac dysfunction post-MI [81]. While MI sharply reduces 
cardiac resident macrophages, this population recovers 
within 1 week after MI in mouse hearts [82]. Together, 
these studies suggest that cardiac resident macrophages 
have cardioprotective function nonredundant of reparative 
macrophages recruited from circulation.
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Viral infections and autoimmune diseases can trigger myo-
carditis and recruitment of  Ly6ChiCCR2+ monocytes differen-
tiating into MHC-IIhiCCR2+ macrophages in the heart [83, 84]. 
Clodronate-mediated depletion of monocytes and macrophages 
have been shown to increase mortality in viral myocarditis, 
whereas improves cardiac function in experimental autoim-
mune myocarditis [85–87]. In a cardiomyocyte-macrophage co-
culture system, it was found that macrophages induced ROS and 
apoptosis in after severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2) exposure [88]. Recently, a subpopulation of 
cardiac resident macrophages identified as  CD163+RETNLA+ 
(Mac1) with high TREM2 expression was reported to undergo 
self-renewal and scavenge ejected mitochondria from cardiomyo-
cytes in septic hearts. This subpopulation, when injected into 
pericardial space, could improve cardiac function of septic hearts 
[89•]. These observations highlight the functional heterogene-
ity and divergent roles of monocytes and macrophages in dif-
ferent models of myocarditis. Therefore, future immunotherapy 
for myocarditis requires better understanding of subpopulation-
specific function of immune cells.

Macrophage phenotypes are closely linked to their meta-
bolic profile. Pro-inflammatory macrophages, often referred 
to as M1 macrophages, are glycolytic, while pro-reparative 
M2 macrophages rely on oxidative metabolism and fatty acid 
oxidation [27, 32, 90, 91]. Gene expression profiling showed 
a shift from highly glycolytic to increased expression of mito-
chondrial oxidative genes in cardiac macrophages isolated 
from infarcted region which coincided with the transition from 
pro-inflammation to reparative phase after MI [92]. Upregu-
lation of glycolysis activates the pentose phosphate pathway 
(PPP), which increases NADPH-oxidase production of ROS 
(hydrogen peroxide and superoxide); thus, apart from ATP 
production, glycolysis also generates ROS in M1 macrophages 
[93–95]. Glycolytic metabolism also fuels cytoskeletal remod-
eling allowing macrophage migration to injury sites [96]. Mac-
rophages  (CD11b+Ly6G−) isolated from the infarcted region 
of the myocardium show significant upregulation of glyco-
lytic, pro-inflammatory, and hypoxia-related (HIF-1α) genes 
as early as 1 day after MI [92, 97]. In vitro studies showed that 
macrophages lacking glucose transporter, GLUT1, or PDK1 
(pyruvate dehydrogenase kinase 1) presented with decreased 
glycolysis and a phenotypic shift towards pro-resolving M2 
macrophages [98, 99]. Using hyperpolarized magnetic reso-
nance, it was shown that inhibiting glycolysis by 2-DG adminis-
tration could reduce cardiac macrophage glycolysis and inflam-
mation, improving LV function in a rat model of MI [100].

Macrophages upregulate its fatty acid oxidation upon 
efferocytosis, which is necessary to dispose engulfed lipid 
cargo as well as to produce anti-inflammatory and pro-
resolving mediators [101, 102]. Mitochondrial dysfunc-
tion in macrophages impairs efferocytosis or fatty acid 
oxidation resulting in poor wound healing after MI [103]. 
Potential mechanisms linking mitochondrial function to 

efferocytosis response include oxidative stress, calcium 
homeostasis, and redox imbalance [103, 104].

A new study reports that during MI, HIF2α could sup-
press mitochondrial metabolism of anti-inflammatory 
macrophage, while HIF1α caused macrophage glycolytic 
reprogramming and suppressed cardio-protection [105]. In 
addition, involvement of mitochondrial function in mac-
rophage activation via production of mitochondrial ROS 
during MI has been studied [97]. Also, the role of metabo-
lites in the metabolic and thereafter, functional rewiring 
of macrophages in response to inflammatory stimuli have 
been widely studied [106–109].

Contribution of Macrophage to Cardiac 
Regeneration

It has been shown that cardiac macrophages are required for 
the regeneration of mammalian neonatal hearts [110]. Fur-
thermore, immune cells respond differently in neonatal versus 
adult mouse hearts. Resident  MHCIIloCCR2− macrophages 
expand in neonatal hearts after injury whereas, the adult heart 
selectively recruits the  MHCIIhiCCR2+ monocyte-derived 
macrophages [4]. Similarly, zebrafish, which can regenerate 
its heart, shows distinct macrophage dynamics after cardiac 
injury compared to medaka, another teleost which is incapable 
of cardiac regeneration [111]. A study reported improvement 
of cardiac repair when murine neonatal cardiac macrophages 
were transplanted to injured adult hearts [112]. These findings 
indicate a novel role of macrophage in cardiac regeneration 
which can be harnessed for therapy.

Mechanisms by which macrophages promote cardiac 
regeneration are not fully understood. One potential mech-
anism is neovascularization as the role of cardiac resident 
macrophages in coronary development and angiogenesis 
has been documented [34, 35]. Regenerative macrophages 
have a unique polarization phenotype and secrete numer-
ous soluble factors that may facilitate the formation of 
new myocardium [110]. Drivers of such phenotype are not 
revealed. It is hypothesized that macrophage metabolism 
can be a contributing factor to their regenerative and pro-
liferative potential [113]. The links between macrophage 
metabolism and cardiac regeneration are prospective; 
future studies are required.

Macrophages and Neutrophils in Chronic 
Cardiac Remodeling

Although prior studies of innate immune cells in the heart 
focused on acute injury, more recent studies showed an 
important role of these cell in chronic remodeling and 
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heart failure. Furthermore, it is now recognized that resi-
dent macrophages play distinct roles compared to infil-
trating macrophages in hearts under chronic stress. Acti-
vation of cardiac resident macrophages led to increased 
expression of pro-angiogenesis and pro-cardiac growth 
factors [11, 13, 114•]. A study identified  CCR2− cardiac 
resident macrophage as a source of IGF-1(insulin-like 
growth factor-1) in response to hypertension in mice and 
in hypertensive human failing hearts [115]. Depletion of 
resident macrophages led to reduced cardiac contractility, 
impaired cardiac remodeling, and accelerated mortality 
in the setting of dilated cardiomyopathy [11]. Pressure 
overload by transverse aortic constriction (TAC) in mice 
triggered early expansion of  CCR2− resident macrophages 
or  Ly6Clo macrophages that peaked at 1 week [13, 114•, 
116]. Depletion of cardiac resident macrophages decreased 
angiogenesis and enhanced fibrosis after pressure overload 
and aggravated pathological remodeling [13, 114•]. These 
observations collectively indicate an adaptive role of car-
diac resident macrophage during chronic stress.

Increased proliferation of  CCR2− cardiac resident 
macrophages has been observed at early stage of path-
ological hypertrophy, but the triggering mechanism 
are poorly understood [13, 114•]. In mice with dilated 

cardiomyopathy, resident  CCR2− cardiac macrophages 
were activated by the mechanic stretch through a transient 
receptor potential vanilloid 4 (TRPV4) dependent path-
ways [11]. Another study found that class A1 scavenger 
receptor (SR-A1) was required for proliferation of cardiac 
resident macrophage in doxorubicin-induced cardiomyo-
pathy [117]. Ligands of SR-A1 under this condition are 
unknown.

In contrast to resident macrophages, infiltrating mac-
rophages recruited from circulation appeared to be pro-
inflammatory and contributed to adverse remodeling 
of the heart. A study showed that  CCR2+Ly6Chi mac-
rophages, derived from infiltrating monocytes, began to 
increase in the heart one week following pressure over-
load, and this M1-like macrophage population activated 
T-cells, recruited more inflammatory macrophages, and 
upregulated TNFα and TGFβ expression leading to late-
stage left ventricular remodeling and dysfunction and 
transition to heart failure [118]. Increased infiltration of 
MHC-IIhiCCR2+ macrophages in mouse hearts was shown 
to exacerbate cardiac remodeling [119]. Blockade of the 
infiltrating macrophages post-TAC could improve myo-
cardial angiogenesis, prevent fibrosis, and preserve car-
diac function [13]. Single-cell analysis demonstrated that 

Fig. 2  Function and metabolism of macrophages and neutrophils in 
diseased hearts. During acute cardiac injury, neutrophils infiltrate as 
first responders and recruit monocytes causing further inflammation 
in heart. Infiltrating macrophages are pro-inflammatory at early-stage 
cardiac injury and cause further inflammatory cell recruitment while 
at later stage perform inflammation resolving functions. Resident 
macrophages are anti-inflammatory and carry out reparative functions 
after cardiac injury. Infiltrating neutrophils induce monocyte recruit-

ment during chronic cardiac remodeling. Resident macrophages pre-
serve cardiac function during chronic cardiac remodeling and promote 
angiogenesis while infiltrating macrophages cause fibrosis and cardiac 
dysfunction. While the infiltrating neutrophils and pro-inflammatory  
macrophages are glycolytic in the setting of acute cardiac injury, the resolving 
macrophages depend on mitochondrial oxidative phosphorylation or 
OXPHOS. Created with BioRender.com
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macrophage activation and subtype switching was closely 
correlated with cardiac function and fibrosis which can 
be targeted in mouse models of heart failure models by 
pharmacological treatment [7•].

In spite the growing knowledge of differential gene 
expression and phenotypic profiles in cardiac resident mac-
rophages versus infiltrating macrophages [7•], their respec-
tive metabolic profiles have not been defined. Thus, further 
studies connecting the role of immunometabolism among 
the various cardiac diseases with specific roles of mac-
rophage subpopulations are needed. So far, studies focusing 
on the role of macrophage metabolism in cardiac remodeling 
or cardiac metabolic role in modulating macrophage phe-
notype during the development of heart failure are lacking.

There are emerging pieces of evidence that neutrophil con-
tributes to cardiac hypertrophy, dysfunction, and development 
of heart failure in mice through NET formation [120, 121]. 
In mice with pressure overload, Wnt5a-mediated neutrophil 
infiltration worsened pathological hypertrophy, inflamma-
tion, and cardiac dysfunction. Furthermore, neutrophil deple-
tion could reverse the aggravated pathological hypertrophy by 
Wnt5a overexpression in pressure overload mouse hearts [122]. 
Neutrophils were also found to promote thrombosis in small 
myocardial vessels in response to angiotensin II stimulation via 
KLF2/NETosis pathway leading to myocardial hypoxia, cell 
death, and pathological hypertrophy [120]. Metabolic status 
of infiltrating neutrophils in the chronically remodeled heart is 
unknown. NET formation in cultured neutrophil is dependent 
on glycolysis and PPP [123–125]. Further studies are required 
to determine the relationship between neutrophil metabolism 
and its function in the failing heart.

Conclusion

Macrophages contribute to cardiac development, homeostasis, 
repair and regeneration after injury, and cardiac remodeling 
during chronic stress (Fig. 2). While barely present in normal 
hearts, neutrophil infiltration causes inflammation and tissue 
damage in diseased hearts but also contributes to the even-
tual healing after cardiac injury. Prior studies have identified 
important metabolic mechanisms in regulating macrophage 
and neutrophil function in cardiac injury and repair which 
provided potential therapeutic targets. Recent advances in the 
heterogeneity of cardiac macrophages, especially the distinct 
roles of resident and infiltrating macrophages in myocardium 
in normal and diseased myocardium, have opened newer 
study avenues. Metabolic profile of resident macrophages 
performing homeostatic or cardioprotective functions are yet 
to be defined. Filling this knowledge gap will advance cardio-
immunology and guide future metabolic interventions.
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