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In this review, we discuss spatiotemporal kinetics and in�ammatory signatures of innate 

immune cells speci�cally found in response to SARS-CoV-2 compared to in�uenza virus 

infection. Importantly, we cover the current understanding on the mechanisms by which 

SARS-CoV-2 may fail to engage a coordinated type I response and instead may lead to 

exaggerated in�ammation and death. This knowledge is central for the understanding of 

available data on specialized pro-resolving lipid mediators in severe SARS-CoV-2 infection 

pointing toward inhibited E-series resolvin synthesis in severe cases. By investigating a 

publicly available RNA-seq database of bronchoalveolar lavage cells from patients affected 

by COVID-19, we moreover offer insights into the regulation of key enzymes involved in 

lipid mediator synthesis, critically complementing the current knowledge about the 

mediator lipidome in severely affected patients. This review �nally discusses different 

potential approaches to sustain the synthesis of 3-PUFA-derived pro-resolving lipid 

mediators, including resolvins and lipoxins, which may critically aid in the prevention of 

acute lung injury and death from COVID-19.

Keywords: innate immunity, COVID-19, lipid mediator, metabololipidomics, in�uenza virus, macrophages and 

neutrophils

INTRODUCTION: GENERAL CONCEPTS OF SARS-CoV-2 
INFECTION AND ASSOCIATED INFLAMMATION

COVID-19, the infectious disease caused by the novel coronavirus SARS-CoV-2, currently 
represents a worldwide medical, economic, social, and political challenge (Mahase, 2020). SARS-
CoV-2 was discovered in Wuhan, China, in December 2019 and has rapidly spread all over 
the world. In January 2020, the World Health Organization has declared a “Public Health Event 
of International Concern” and since March 11, 2020, COVID-19 has been characterized as a 
worldwide pandemic. Overall mortality rates are highly variable and range from 0.5 to 7%, very 
much depending on the stringency of testing in a given region, age, comorbidities of the patient, 
and access to medical treatment. When focusing on hospitalized patients, 20–40% were admitted 
to the intensive care unit (ICU) due to severe lung pathology needing ventilatory assists.  
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Of these, >50% required invasive mechanical ventilation 
(Karagiannidis et  al., 2021) and 15–22% of these patients were 
reported to die in hospital, highlighting the potential threat 
to public health (Huang et  al., 2020).

As of March 2021, the number of global deaths due to COVID-19 
exceeds already 2,700,000 people (Johns Hopkins Coronavirus 
Resource Center, 2021). In the 2002–2003 SARS-CoV-1 outbreak, 
the clinical course was characterized by fever, cough, myalgia, 
and other systemic symptoms that generally improved a�er a 
few days, followed by a second phase with recurrence of fever 
and severe pneumonia, associated with a high case fatality rate 
of 11% (Peiris et  al., 2003; Hui et  al., 2005). SARS-CoV-1 and 
SARS-CoV-2 are phylogenetically closely related and cause a similar 
biphasic clinical course, but they are phylogenetically closely related 
(Walls et  al., 2020). From a structural point of view, both 
coronaviridae share high homology for their transmembrane spike 
(S) glycoprotein, a viral surface protein crucial for entry into 
host cells and for initiation of immune response (Jaimes et  al., 
2020; Monteil et  al., 2020; Walls et  al., 2020). Speci�cally, both 
SARS-CoV interact directly with angiotensin-converting enzyme 
2 (ACE2) via the S protein to enter alveolar cells and are believed 
to induce acute respiratory distress syndrome (ARDS) through 
ACE2 downregulation and shedding (Imai et al., 2005, 2008; Kuba 
et  al., 2005, 2006; Blanco-Melo et  al., 2020; Fu et  al., 2020). 
Intrapulmonary loss of ACE2 leads to accumulation of angiotensin 
II, which appears to play a central role in the release of in�ammatory 
cytokines, resulting in the activation of the IL-6 ampli�er, which 
describes stimulation of the NF-κB and the JAK-STAT3 pathways 
resulting in in�ammatory cytokine formation (Imai et  al., 2005, 
2008; Kuba et  al., 2005, 2006; Blanco-Melo et  al., 2020; Fu et  al., 
2020; Moore and June, 2020).

SARS-CoV-2 patients su�ering from a complicated course 
of infection either fail to exert a robust, interferon (IFN)-mediated 
anti-viral response in the early phase of infection and present 
with an overwhelming immune activation termed as “cytokine 
storm” (Blanco-Melo et  al., 2020; Fu et  al., 2020). �e latter 
is de�ned by increased levels of circulating cytokines accompanied 
by systemic and pulmonary immune cell activation in a similar 
setting as described in subjects su�ering from ARDS or sepsis 
(Wilson et al., 2020). Importantly, patients with severe COVID-19 
show loss-of-function variants in Toll-like receptor (TLR)- and 
IFN-dependent genes, or neutralizing antibodies to type I  IFN 
(α and ω; Bastard et al., 2020; Zhang et al., 2020a). In addition, 
there are marked variance and temporal changes in the IFN 
gene signature during the course of COVID-19, possibly driving 
immunopathology (Nienhold et  al., 2020).

Since its appearance in late 2019, COVID-19 has been 
repeatedly compared to other viral infections and among 
others mainly to in�uenza. From an epidemiological perspective, 
it seems reasonable to compare seasonal �u with COVID-19, 
given that they are respiratory diseases with similar modes 
of transmission. However, patients a�ected by COVID-19 
exert strikingly di�erent predisposing comorbidities and a 
more severe clinical course with higher morbidity and mortality 
rates as compared to seasonal in�uenza (Piroth et  al., 2021). 
Patients a�ected by COVID-19 are more frequently obese 
or overweight, and show higher incidences of diabetes, 

hypertension, and dyslipidemia compared to patients with 
severe in�uenza (Piroth et al., 2021). �e most obvious reason 
for the marked di�erences observed in epidemiology and 
fatality rates relies on the fact that SARS-CoV-2 engages 
immunological and thrombo-in�ammatory circuits (Bösmüller 
et  al., 2021) that di�er from the well-known IFN-based 
response to in�uenza virus. �erefore, this review will initially 
focus on innate immunity in in�uenza and in SARS-CoV-2 
infection comparing the respective host immune signatures, 
and subsequently depict recent �ndings on the mediator 
lipidome in COVID-19.

INNATE IMMUNITY IN INFLUENZA 
VIRUS INFECTION

Despite both bearing the potential of causing a severe infection 
of the lung, in�uenza and SARS-CoV-2 elicit several pathways 
of innate immunity that di�er in many aspects. �e main 
immunological di�erences between the “classical” immune 
response to in�uenza virus and the aberrant, “SIRS-like” response 
to SARS-CoV-2 important for this review will be  outlined 
as follows:

Immunological responses to in�uenza are mainly driven by 
coordinated type I  and III IFN release following TLR3, TLR7, 
and TLR8 activation. Besides TLR3 and TLR7/8, RIG-I-like 
receptors as well as nucleotide-binding oligomerization domain 
(NOD)-like receptors (NLRs) are known to initiate the immune 
response to in�uenza virus. Whereas endosomal TLR3 detects 
double-stranded RNA (dsRNA), TLR7 and TLR8 sense single-
stranded RNA (ssRNA); RIG-I speci�cally recognizes 
5'-triphosphate RNA; and NLRs may directly recognize viral 
products, leading to the formation of in�ammasomes (Biondo 
et  al., 2019). RIG-I and NLRs have been comprehensively 
reviewed elsewhere (Root-Bernstein, 2021) and will not 
be  covered in more detail here.

TLR3 di�ers from other TLRs in using TRIF (TIR domain-
containing adaptor protein-inducing IFN-β) as signal adaptor, 
leading to synthesis of type I IFN mainly through the activation 
of NF-κB and IRF3 (Kawai and Akira, 2010; Ullah et al., 2016). 
In addition, dsRNA released from damaged cells may also 
activate TLR3  in resident or recruited macrophages in the 
lungs, which actively phagocytose dying and apoptotic cells 
(Schulz et  al., 2005; Gosu et  al., 2019). TLR3 appears to play 
an important role in in�uenza A virus (or seasonal in�uenza, 
H1N1)-induced innate host defense: Mice de�cient in TLR3 
had an unexpected survival advantage in the H1N1 infection 
model, despite a higher viral load in the lungs (Le Go�c 
et  al., 2006). Mechanistically, TLR3-induced secretion of type 
I IFNs promotes the expression of the so-called IFN-stimulated 
genes (ISGs) within infected cells, including the serine–threonine 
kinase protein kinase R, IFITM3, and the myxovirus resistance 
protein 1 (MX1; Iwasaki and Pillai, 2014; Schoggins, 2014). 
ISGs inhibit viral entry into the cytosol as well as virus 
replication in the di�erent cellular compartments of the lung. 
Moreover, type I  IFNs potently activate natural killer (NK) 
cells, which kill virus-infected cells. Besides NK cells, also 
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neutrophils play an important role in response to acute 
H1N1 infection.

�e contribution of neutrophils to the pathology conferred 
by in�uenza is exempli�ed by the 1918 pandemic virus, which 
induces a massive neutrophil recruitment to the lungs (Kobasa 
et  al., 2004). Neutrophils may be  protective at low virus titers 
by ingesting apoptotic cells, whereas they may further destroy 
the lung parenchyma when recruited at high numbers. Speci�cally, 
the release of reactive oxygen species and neutrophil extracellular 
traps may aid in the development of ARDS (Tate et  al., 2009; 
Narasaraju et  al., 2011).

Finally, alveolar macrophages appear to play a pivotal role 
in the host defense against in�uenza. Alveolar macrophages, 
together with epithelial and dendritic cells, were found to 
produce anti-viral type I IFNs, but also several proin�ammatory 
cytokines and chemokines capable of attracting neutrophils 
and monocytes (De Jong et  al., 2006; Jayasekera et  al., 2006; 
Narasaraju et  al., 2011). Recruited monocytes di�erentiate into 
in�ammatory macrophages, which greatly amplify cytokine 
production. Both macrophages and neutrophils can ingest 
H1N1-infected cells, particularly when they are damaged or 
apoptotic, thereby promoting viral clearance and elimination 
of cell debris (Tumpey et  al., 2005; Watanabe et  al., 2005).

INNATE IMMUNITY IN SARS-CoV-2 
INFECTION

In contrast to in�uenza virus, SARS-CoV-2 was found to 
activate TLR4 (Figure  1) and TLR4-related pathways through 
binding of its spike protein in human and murine macrophages, 
resulting in IL-6-mediated hyperin�ammation (Shirato and 
Kizaki, 2021). TLR4 activation by SARS-CoV-2 spike subunit 
S1 can be  suppressed by selective inhibitors of NF-κB and 
JNK pathways (Shirato and Kizaki, 2021). Interestingly, in silico 
studies had predicted TLR4 to recognize molecular patterns 
of SARS-CoV-2 (Choudhury and Mukherjee, 2020). Direct 
activation of the TLR4 may switch the anti-viral response of 
a cell from a response otherwise dominated by type I  IFNs 
to the release of mainly pro-in�ammatory mediators, explaining 
at least in part the hyperin�ammation associated with severe 
COVID-19. In addition, type I  IFN response may further 
be  blunted by changes in the Fc component of SARS-CoV-2-
directed antibodies, as a recent study suggested (Combes et al., 
2021). During the course of a disease, the characteristics of 
newly produced antibodies may �ne-tune the immune response. 
One aspect of these changes is an alteration in the antibody 
Fc component that determines which Fc receptors will be engaged 
(Gentili and Hacohen, 2021). In this regard, engagement with 
the Fc receptors CD64, CD16, and CD32 can determine how 
the immune system combats viral infections. Using immune 
cells from healthy donors exposed to IFN-α and plasma from 
patients with severe COVID-19, Combes et  al. individually 
blocked CD64, CD16, and CD32 Fc receptors and found that 
CD32 blockade enabled the expression of IFN-regulated genes 
(Combes et al., 2021; Gentili and Hacohen, 2021). Importantly, 
the CD32 Fc receptor exists in the two forms, CD32A and 

CD32B, respectively. CD32A engagement activates the immune 
system, whereas CD32B dampens immune responses (Gentili 
and Hacohen, 2021). Combes and colleagues showed that the 
inhibition of IFN-regulated genes, including IFITM3 and MX1, 
in severe COVID-19 cases was due to CD32B engagement. 
�ese data indicate that patients with severe COVID-19 may 
develop antibodies that interact with CD32B Fc receptors and 
thereby blunt IFN-mediated host defense (Combes et al., 2021). 
Accordingly, a subset of ISG-expressing monocytes and 
neutrophils was identi�ed only in blood samples of patients 
with moderate disease and was almost absent in patients with 
severe COVID-19 (Combes et  al., 2021).

Corroborating a failure in IFN response in severe COVID-19 
cases, Casanova and coworkers recently identi�ed patients with 
severe COVID-19 that bear mutations in genes involved in 
the regulation of type I  and III IFN immunity. Speci�cally, 
loss-of-function mutations were found in genes that govern 
TLR3- and IFN regulatory factor 7 (IRF7)-dependent type 
I  IFN immunity to in�uenza virus (Zhang et  al., 2020a). In 
addition, another study by this laboratory identi�ed individuals 
with high titers of neutralizing autoantibodies against type 
I  IFN-α2 and IFN-ω in about 10% of patients with severe 
COVID-19 pneumonia (Bastard et al., 2020). �ese autoantibodies 
were found neither in infected people who were asymptomatic 
nor in those with mild infection or in healthy individuals 
(Bastard et  al., 2020).

Further evidence for a dysregulated type I  IFN response 
in severe SARS-CoV-2 infection comes from studies in patients 
previously infected with phylogenetically closely related SARS-
CoV-1 and MERS-CoV, where blunted IFN response was 
associated with severe pathology and disease (Cameron et  al., 
2007; Channappanavar et al., 2016; Kindler et al., 2016). Overall, 
patients with severe COVID-19 infection may present with 
typical features of macrophage activation syndrome which is 
partly resulting from overwhelming IFNγ formation (Webb 
et  al., 2020) as re�ected by higher levels of the IFNγ-inducible 
macrophage-derived biomarker neopterin in subjects with severe 
COVID-19 (Bellmann-Weiler et  al., 2021).

COMPARISON OF INNATE IMMUNITY 
IN INFLUENZA AND SARS-CoV-2 
INFECTION

Altogether, mild-to-moderate SARS-CoV-2 infections appear 
to resolve at least in part due to an adequate anti-viral 
IFN-mediated response. In contrast, severe cases of COVID-19 
not only fail to build up a robust type I  IFN response in the 
initial phase but also show an uncontrolled hyperin�ammatory 
response in the subsequent course of infection leading to multi-
organ damage and death. Some reports moreover suggest that 
in severe COVID-19 patients, uncoordinated IFN response may 
further amplify TNF/IL-1β-centered hyperin�ammatory 
signatures (Lee et  al., 2020). �is is per se not contradictory 
to the total absence of IFNs in patients born with loss-of-
function mutations in type I IFN pathways. In the latter setting, 
patients will experience a delayed clearance of virus together 
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with an exaggerated immune response further ampli�ed by 
IFNs. On the other hand, in patients with inborn errors in 
IFN-related genes unrestrained viral replication will end up 
in an overwhelming infection leading to an exaggerated myeloid 
cell activation. �e initial failure to mount an e�cient anti-
viral immune response is also supported by the �nding of 
low lymphocyte and speci�cally CD4+ counts to be  associated 
with higher cytokine levels and a more severe course of the 
infection (Zhang et  al., 2020b).

Again emphasizing the di�erence between in�uenza and 
COVID-19, a recent report shows that in circulating leukocytes 
of COVID-19 patients, ISGs are expressed at a higher level 
than in healthy subjects but are more muted than seen with 
seasonal coronaviruses and much lower than seen in in�uenza 
infection (McClain et al., 2020). Shedding light on the impact 
of dysregulated immune responses on the recruitment of 

innate immune cells, Blanco-Melo et al. showed that COVID-19 
patients exhibit elevated serum levels of pro-in�ammatory 
cytokines: Increased levels of CXCL9 and CXCL16 may serve 
to attract NK cells, CCL8 and CCL2 to recruit monocytes 
and macrophages, and CXCL8 to recruit neutrophils 
(Blanco-Melo et al., 2020). Interestingly, using a comprehensive 
single-cell RNA sequencing approach, Blish and coworkers 
showed that during COVID-19 infection, several innate immune 
cell subsets are depleted, including γδ T cells, plasmacytoid 
dendritic cells (pDCs), and NK cells (Wilk et  al., 2020). 
Loss of pDCs and NK cells may hamper viral elimination 
�rst by absent IFN I  signal ampli�cation via IRF7 (Zhang 
et  al., 2020a) and second by reduced elimination of virus-
infected cells. Moreover, the authors showed a signi�cant 
loss of anti-in�ammatory CD16+ non-classical monocytes 
which are recognized as the �rst line of defense in recognition 

FIGURE 1 | Innate immunity in in�uenza and SARS-CoV-2 infection. The graph summarizes the current knowledge on innate immunity responses in in�uenza virus 

and in SARS-CoV-2 infection of the lung. *refers to anti-SARS-Cov-2 antibodies engaging with CD32B Fc receptors (Combes et al., 2021).
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and clearance of pathogens (Narasimhan et  al., 2019;  
Winkler et  al., 2021).

Finally, a novel cell population annotated as “developing 
neutrophils” was signi�cantly increased only in COVID-19 
patients with ARDS, which seems to represent emergency 
granulopoiesis (Yvan-Charvet and Ng, 2019; Wilk et  al., 2020). 
Single-cell RNA sequencing of immune cells retrieved from 
bronchoalveolar lavage �uid (BALF) indicated loss of alveolar 
macrophages in severe cases accompanied by recruitment of 
in�ammatory monocytes and neutrophils, resulting in a highly 
proin�ammatory microenvironment in the lung (Liao et  al., 
2020). Corroborating the results by Blish and coworkers (Wilk 
et  al., 2020), the latter study described reduced pDCs and NK 
cell numbers also in BALF of severe COVID-19 cases, inferring 
a systemic depletion of these leukocyte subsets rather than 
intrapulmonary exhaustion (Liao et  al., 2020). Similar to what 
was described in humans with severe COVID-19, macrophages 
were found to drive in�ammation within the lungs also in 
African green monkeys subjected to SARS-CoV-2 infection. 
Monocyte-derived newly recruited rather than resident alveolar 
macrophages were found to clear infected cells and debris, 
aiding in the resolution of infection (Speranza et  al., 2021). 
Loss of alveolar macrophages during SARS-CoV-2 infection 
was present also in K18-hACE2-transgenic mice, with 
intrapulmonary neutrophil and Ly6C+ monocyte [the murine 
equivalent to CD14+CD16− classical monocytes in men (Ziegler-
Heitbrock et  al., 2010)] numbers increasing over 7  days post-
infection (Winkler et  al., 2020; �e main mechanisms of 
in�ammation in in�uenza as opposed to SARS-CoV-2 infection 
are summarized in Figure  1).

BIOACTIVE LIPID MEDIATORS IN VIRUS 
INFECTION, FROM INFLUENZA VIRUS 
TO SARS-CoV-2

With respect to alveolar in�ammation, bioactive lipids are of 
highest signi�cance. �is is exempli�ed by the fact that 
eicosanoid metabolism has taken center stage as druggable 
axis in asthmatic disease. Activation of immune cells of myeloid 
and monocytic origin results in the release of arachidonic 
acid (AA) mediated by phospholipases (Demetz et  al., 2014). 
Subsequent metabolism of AA with 5-lipoxygenase (5-LOX) 
as central enzyme results in the formation of leukotrienes, 
such as leukotriene B4 (LTB4) or the cysteinyl-leukotrienes 
as, for example, leukotriene D4 (Haeggström, 2018). Leukotrienes 
act via the BLT and cysteinyl leukotrienes (CysLT) receptors. 
LTB4 is a pivotal chemotactic agent for neutrophils in the 
initial phase of in�ammation, which under physiological 
conditions is followed by a temporal switch in lipid mediators 
�nally leading to resolution and tissue homeostasis (Spite et al., 
2014). While maximal levels of LTB4 are reached as neutrophils 
in�ltrate the infected lung, other eicosanoids, including the 
prostaglandins PGE2 and PGD2, lead to a lipid mediator class 
switch (Levy et al., 2001). �is class switch initiates translational 
regulation of the enzymes required for the production of 

pro-resolving lipid mediators, including lipoxin A4 (LXA4; 
Spite et  al., 2014) and inhibition of platelets (Braune et  al., 
2020). LXA4 serves as endogenous regulator of neutrophil 
tra�cking, and its production is associated with cessation of 
neutrophil in�ltration during the in�ammatory response (Levy 
et  al., 2001). �e resolution phase of in�ammation is 
characterized by the recruitment of monocytes to the injured 
tissue which then di�erentiate into macrophages and actively 
clear apoptotic cells (Spite et  al., 2014). Besides LXA4, further 
so-called specialized pro-resolving lipid mediators (SPMs) are 
synthetized during this phase of in�ammation, including 
resolvins, protectins, and maresins. SPMs blunt neutrophil 
in�ltration, decrease pro-in�ammatory mediator production, 
and stimulate macrophage-dependent uptake of apoptotic 
leukocytes as well of cell debris (Levy et  al., 2001; Spite et  al., 
2014). Failure of such a tightly orchestrated resolution will 
end up in chronic in�ammation and tissue damage.

In�ammatory stimuli of the lung may moreover lead to 
the production of CysLT, such as LTD4 mainly causing smooth 
muscle cell contraction in the respiratory tract (Gentile et  al., 
2003; Haeggström, 2018). �is �nding has led to the development 
of the CysLT 1 receptor antagonists (e.g., montelukast) as well 
as the 5-LOX inhibitor zileuton, highly useful drugs in the 
management of asthmatic disease (Wenzel and Kamada, 1996; 
Hon et  al., 2014; �eron et  al., 2014; Dahlin et  al., 2016). A 
combination therapy has recently also been suggested for the 
use in patients infected with SARS-CoV-2 (Funk and Ardakani, 
2020). Finally, eicosanoid metabolism is well known to play 
an important role in platelet activation which may be  an 
additional link to the observed frequent thrombotic complications 
during SARS-CoV-2 infection (Gupta et  al., 2020; Bösmüller 
et al., 2021). In turn, lipid and in particular eicosanoid metabolism 
deserve increased attention, as possible druggable pathways in 
SARS-CoV-2. For additional information, please refer to a 
recent overview of eicosanoid metabolism in SARS-CoV-2 
(Hoxha, 2020).

Upon viral infection of the lung, SPMs appear to be involved 
in immunopathology, which include docosahexaenoic acid 
(DHA)-derived protectins and D-series resolvins (RvD1-RvD6), 
and the eicosapentaenoic acid (EPA)-derived E-series resolvins 
(Serhan et  al., 2002, 2006, 2015; Du�eld et  al., 2006; Schwab 
et  al., 2007; Serhan, 2007; Serhan and Petasis, 2011; Arita, 
2012; Isobe et  al., 2012; Imai, 2015; Libreros et  al., 2021). In 
a systems biology approach, Imai and colleagues identi�ed 
protectin D1 (PD1) to protect from lethal H5N1 in�uenza 
infection in mice by impairing virus replication via the RNA 
export machinery (Morita et  al., 2013). Interestingly, by 
comparing PR8/H1N1 with the low-pathogenicity in�uenza 
strain X31/H3N2, Tam et  al. showed that 5-LOX metabolites 
correlated with the pathogenic phase of infection, whereas 
12/15-LOX metabolites were associated with the resolution 
phase (Tam et  al., 2013).

In her review Role of omega-3 PUFA-derived mediators, the 
protectins, in influenza virus infection, Yumiko Imai concluded 
that despite their main limitation of a short half-life, omega-
3-derived PUFA, including PD1 and stable analogs, may represent 
an attractive strategy to treat in�uenza infection (Imai, 2015).

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Sahanic et al. Lipid Mediators in COVID-19

Frontiers in Physiology | www.frontiersin.org 6 July 2021 | Volume 12 | Article 688946

Besides being implicated in the synthesis of lipoxins, 5-LOX 
main action lies in the production of omega-6 PUFA-derived 
leukotrienes and prostaglandins upon infection, driving leukocyte 
recruitment and activation, vasodilation, bronchoconstriction, 
and vasopermeability, as outlined above. �us, increasing omega-3 
PUFA and decreasing omega-6 PUFA levels may represent a 
possible mean to skew the immune response toward resolution 
of in�ammation, which led to the conception of the COVID-
Omega-F Trial with the aim of resolving the cytokine storm 
in COVID-19 patients by supplementation of hospitalized 
patients with high-dose omega-3 PUFA i.v. over 5  days 
(Arnardottir et  al., 2021), ClinicalTrials.gov Identi�er: 
NCT04647604, estimated study termination date April 30, 2021. 
However, the situation seems more complex than a simpli�ed 
omega-3/omega-6 classi�cation would re�ect. For example, 
while prostaglandin E2 is frequently regarded as pro-in�ammatory 
mediator, several recent studies have underlined its anti-
in�ammatory and tissue regenerative functions (FitzGerald, 
2015; Du�n et  al., 2016). Along these lines, a recent phase 
II trial by Haeberle et  al. is testing the synthetic prostacyclin 
(PGI2) analog iloprost for the treatment of ARDS (Haeberle 
et al., 2020). Moreover, just recently, the omega-6 PUFA adrenic 
acid and its derivatives have been shown to exert anti-
in�ammatory properties (Brouwers et  al., 2020). Additionally, 
linolenic acid has been reported as potential substrate for 
15-LOX, producing trihydroxyoctadecenoic acids in eosinophils 
with potential anti-in�ammatory/pro-resolving functions (Fuchs 
et  al., 2020). Overall, cell-speci�c as well as spatiotemporal 
e�ects will ultimately sketch a detailed picture of SARS-CoV-2-
related changes in lipid mediator biosynthesis; up to now, only 
a limited number of studies have addressed such changes, as 
outlined below.

Due to the striking di�erences in the response of the innate 
immune system, lipidomics data derived from lethal in�uenza 
infection may not directly be  applicable to a severe infection 
with SARS-CoV-2. However, lipid mediators, including PD1, 
RvDs, and RvEs, exert strong anti-in�ammatory activity. In 
this regard, supplementation with omega-3 PUFA showed 
controversial results in patients a�ected by ARDS. While IV 
emulsions with DHA and EPA were shown to be  protective 
(Pontes-Arruda and Hirasawa, 2011), dietary supplementation 
with �shoil or with n-3 fatty acids, γ-linolenic acid, and 
antioxidants did not show a clear bene�t in ARDS (Rice et  al., 
2011; Stapleton et  al., 2011). On the other hand, independent 
meta-analyses indicated that supplementation with omega-3 
PUFA in patients with ARDS would associate with improvements 
in the PaO2/FiO2 ratio, with a shorter ICU stay, a shorter 
duration of mechanical ventilation, and a trend toward reduced 
mortality (Dushianthan et  al., 2019; Langlois et  al., 2019; 
Arnardottir et  al., 2021).

Up to date, little is known about changes in the mediator 
lipidome during acute SARS-CoV-2 infection. There is however 
one comprehensive analysis showing that serum from patients 
with a moderate and severe COVID-19 course displays 
specific differences in abundance of immune regulatory and 
pro-inflammatory lipid mediators (Schwarz et al., 2021). The 
authors show that moderate versus severe infections were 

characterized by unique lipidomic profiles. Of particular 
interest was the observation that specific pro-resolving 
mediators, including RvE3 and RvD4, were increased in 
serum from patients with moderate COVID-19 compared 
to subjects with severe disease. Moderate disease furthermore 
was associated with increased levels of PGs, particularly 
PGE2. In contrast, severe COVID-19 was associated with 
a trend to increased serum levels of D-series resolvins RvD1-3 
and LXA4 (Schwarz et  al., 2021). Bioactive lipid mediators 
are generated by sequential activity of different enzymes, 
namely, 5-LOX, 12-LOX, 15-LOX, COX, and cytochrome 
p450 (Cyp450). Grouping according to different enzymatic 
pathways showed that moderate disease was characterized 
by higher levels of lipid mediators that require COX and 
12-LOX activity, whereas severe disease was characterized 
by lipid mediators that require activity of 5-LOX and Cyp450 
(Schwarz et  al., 2021). By mining a published single-cell 
RNA sequencing dataset in PBMCs from severe COVID-19 
patients, the authors found increased ALOX5 expression in 
CD14+ and CD16+ monocytes and in neutrophils reflecting 
emergency granulopoiesis (Schwarz et  al., 2021).

In a similar approach, our group interrogated a published 
single-cell RNA sequencing dataset from BALF in patients 
affected by COVID-19 (Liao et  al., 2020) and found ALOX5 
to be  downregulated in BALF macrophages and DCs from 
patients affected by severe COVID-19, compared to healthy 
individuals and to patients with moderate COVID-19. Vice 
versa, ALOX5 expression was increased in BALF neutrophils 
in severe disease, although at an overall low expression 
level (Figure  2). 5-LOX requires a set of stimulatory factors 
for full activity and is supported by accessory proteins, 
including 5-LOX-activating protein (FLAP; ALOX5AP; 
Haeggström, 2018). Importantly, we  found a decrease in 
ALOX5AP expression levels in macrophages and DCs in 
BALF from severe COVID-19 patients, whereas RNA 
expression of this central activating protein tended to 
be  increased in neutrophils of patients affected by severe 
disease (Figure 3). Finally, the expression of a LOX involved 
in the synthesis of pro-resolving lipid mediators, namely, 
ALOX15, was found highest in lung epithelia of patients 
affected by moderate COVID-19, potentially conferring an 
anti-inflammatory role to this cellular lung compartment 
upon SARS-CoV-2 infection (Figure  4). These data indicate 
differences in expression and potentially activity of 5-LOX 
between pulmonary macrophages and circulating monocytes 
in patients with severe COVID-19. Moreover, the differences 
in expression of ALOX5 and ALOX5AP in cells of myeloid 
origin found in the lungs of patients with moderate and 
severe disease may contribute to the specific differences in 
abundance and immune-modulatory functions of resolvins 
and lipoxins (Schwarz et  al., 2021; An overview on the 
main lipid metabolome changes in influenza and SARS-
CoV-2 infection is given in Figure  5).

Interestingly, LXA4 and isomers of the D-series resolvin 
RvD6 were previously found to reduce the expression of 
ACE2 and to counteract the binding of the receptor-binding 
domain of SARS-CoV-2 spike protein to injured tissue 
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(Pham et  al., 2020). The SARS-CoV-2 spike protein S1 
subunit was moreover found to induce RvD1 in macrophages 
from patients affected by cystic fibrosis (CF). Importantly, 
RvD1 and RvD2 counteracted the inflammatory response 
to SARS-CoV-2 spike protein in both CF and non-CF 
macrophages, while potentiating their host defensive, 
phagocytic functions (Recchiuti et  al., 2021).

From a clinical perspective, it will be important to develop 
biomarkers allowing to predict the course of a COVID-19 

infection, to stratify patients for specific treatments and 
deduce novel potential targets to prevent a severe course 
of infection. Given the fact that LOX and FLAP proteins 
have been identified as key players in SARS-CoV-2 infections, 
several possibilities arise. With respect to disease and patient 
stratification biomarkers, LOX pathway markers, such as 
5-HETE, 15-HETE, and other mono-hydroxylated PUFA 
derivatives, should be considered as possible diagnostic tools 
to predict the subsequent course of the infection and to 

FIGURE 2 | ALOX5 expression in bronchoalveolar lavage �uid (BALF) cells from patients affected by COVID-19. Violin plots depicting ALOX5 expression levels 

within speci�c cellular populations in BALF cells from healthy (blue, n = 4), moderate (gray, n = 3), or severe (red, n = 6) COVID-19 patients. RNA sequencing data 

are publicly available (Liao et al., 2020). ns = non-signi�cant, ***p < 0.001.
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induce specific targeted therapies. With regard to therapeutic 
interventions, omega-3 PUFA as investigated in the COVID-
Omega-F Trial may represent an attractive approach to 
counteract pathologic inflammation thereby preventing lung 
dysfunction and need for mechanical ventilation. This view 
has just recently been backed up by Darwesh et al. proposing 
omega-3 PUFA as adjuvant therapy (Darwesh et  al., 2021). 
Additionally, several drugs, such as for example montelukast 
or zileuton, have been designed to target leukotrienes in 

inflammatory lung diseases. As outlined by Funk and Ardakani 
(2020), a dual-treatment paradigm targeting leukotrienes as 
the final pro-inflammatory mediators of the 5-LOX pathway 
might pose a scientifically sound approach, which to our 
knowledge has however been neglected so far. Unfortunately, 
this counts for the entire eicosanoid pathway as recently 
outlined by Hammock et  al. (2020), even though it bears 
a central role in pro- and anti-inflammatory responses 
triggered by infectious agents (Dennis and Norris, 2015). 

FIGURE 3 | ALOX5AP expression in BALF cells from patients affected by COVID-19. Violin plots depicting ALOX5AP expression levels within speci�c cellular 

populations in BALF cells from healthy (blue, n = 4), moderate (gray, n = 3), or severe (red, n = 6) COVID-19 patients. RNA sequencing data are publicly available 

(Liao et al., 2020). ns = non-signi�cant, **p < 0.01, ***p < 0.001.
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In fact, the eicosanoid pathway presents several interesting 
targets for the treatment of COVID-19. In addition to the 
targets suggested by Funk and Ardakani, COX, microsomal 
prostaglandin E2 synthase-1 (mPGES-1; Bergqvist et  al., 
2020) as well as soluble epoxide hydrolase inhibitors 
(Hammock et  al., 2020) present interesting novel avenues 
for the treatment of COVID-19. Particularly, the 
latter might  ideally be  combined with omega-3 PUFA 
substitution, boosting  the production of epoxyeicosanoids 

exerting anti-inflammatory as well as tissue regenerative 
functions (Morisseau and Hammock, 2013).

Besides the extensive research on SARS-CoV-2 and the 
gained knowledge, there are still points that require further 
investigation to complete the picture of SARS-CoV-2 
infection, COVID-19 disease progression and resolution. 
Increasing the knowledge about the complex interplay 
between lipid mediators, the immune system and SARS-CoV-2 
infection will yield novel insights into underlying 

FIGURE 4 | ALOX15 expression in BALF cells from patients affected by COVID-19. Violin plots depicting ALOX15 expression levels within speci�c cellular 

populations in BALF cells from healthy (blue, n = 4), moderate (gray, n = 3), or severe (red, n = 6) COVID-19 patients. RNA sequencing data are publicly available 

(Liao et al., 2020). ns = non-signi�cant.
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pathomechanisms and will provide the basis for novel 
therapeutic strategies.

MATERIALS AND METHODS

Single-cell sequencing data provided by Liao et  al. (2020) were 
analyzed with R programing suite version 4.0.3 and tidyverse 
package bundle. In brief, transcript counts per cell in BALF 
macrophages from healthy and COVID-19 individuals were extracted 
from the table with normalized expression and sample-cell-individual 
assignment table provided by the authors. For visualization as 
violin plots (package ggplot2), transcript counts were transformed 
with the log2(x + 1) function. Statistical signi�cance for di�erences 
in transcript numbers per cell between the COVID-19 severity 
groups and healthy controls was assessed by mixed-e�ects generalized 
linear modeling (log link function, expected distribution of residuals: 

Poisson, package lme4) with the �xed e�ect of the study group 
and the random e�ect of the cell donor.
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FIGURE 5 | The mediator lipidome in in�uenza and SARS-CoV-2 infection. (A) The graph summarizes common 6-PUFA- and 3-PUFA-derived bioactive and pro-

resolving lipid mediators (AA, arachidonic acid; DHA, docosahexaenoic acid; and EPA, eicosapentaenoic acid). While severe in�uenza infection showed inhibition of 

protectin D1 (PD1) synthesis, severe SARS-CoV-2 infection was associated with a signi�cant reduction in E-series resolvin 3 (RvE3). (B) Lipid mediator grouping according 

to synthetic pathways. (C) Transcriptional regulation of key enzymes involved in lipid mediator synthesis in PBMCs and BALF cells from patients affected by COVID-19.
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