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Abstract: Alzheimer’s disease (AD) is a global concern and has become a major public health event
affecting human health. Insulin is a metabolic hormone secreted mainly by the peripheral tissue
pancreas. In recent years, more and more evidence has proved that insulin regulates various functions
of the brain. The hippocampus, one of the earliest brain regions affected by AD, is widely distributed
with insulin receptors. Studies have shown that type 2 diabetes mellitus, characterized by insulin
resistance, is closely related to AD, which has drawn extensive attention to the relationship between
hippocampal insulin signaling and AD. Therefore, we provide an overview of intranasal insulin
administration on memory and its underlying mechanism. We also highlight the molecular link
between hippocampal insulin resistance and AD and provide a theoretical basis for finding new
therapeutic targets for AD in clinical practice.
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1. Introduction

Since insulin was first demonstrated to have hypoglycemic effects in 1916, followed by
the identification of insulin receptors (IRs), a major role of IRs in the regulation of glucose
metabolism in peripheral tissues has been established [1,2]. In the past few decades, insulin
receptor (IR) function was thought to be restricted to the periphery, and the brain was
traditionally considered an insulin-insensitive organ, largely based on the fact that whole-
brain glucose uptake is not affected by circulating insulin levels [3]. Over the past two
decades, however, studies in the field have identified a unique role for insulin in the brain.
There is increasing evidence that insulin enters the brain and regulates central nervous
system (CNS) functions such as eating, depression, and cognitive behavior [4–6]. The effects
on feeding behavior and metabolism appear to be primarily mediated by the hypothalamic
actions of insulin, while cognitive function and memory changes are attributed to its actions
in the cortex and hippocampus.

The hippocampus is the center of learning and memory, and its dysfunction con-
tributes to neurodegenerative diseases including Alzheimer’s disease (AD) [7,8]. Studies
have shown that IRs are widely distributed in the hippocampus [9]. Whether insulin acts
on the hippocampus to affect memory has been of interest. Intranasal delivery routes
can effectively deliver insulin to CNS targets in a biologically active form. Although the
mechanism has not been clarified, many studies in recent years have shown the amelio-
rative effect of intranasal insulin on memory impairment in animal models and clinical
studies, respectively. Currently, type 2 diabetes mellitus (T2DM) is considered to be very
prevalent due to the prevalence of obesity and population aging [10]. Notably, studies
have shown that people with T2DM were twice as likely to have cognitive dysfunction [11].
Many clinical and animal models have demonstrated a close link between AD and T2DM
pathology, and one of the most important links is insulin resistance [12]. In this review,
we use insulin and AD as an entry point, summarize the underlying mechanisms by
which insulin affects memory, and discuss the potential molecular link between insulin
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resistance and AD, which may help the future development of novel targets and new
treatment options.

2. Insulin and Hippocampus: Memory as a Key Link

The hippocampus highly expresses IRs, so changes in insulin signaling in the brain
may have significant effects on the hippocampus. Given the crucial role of the hippocampus
in memory processing, there has been much interest in whether insulin regulates memory.
Here, we elucidated the effects of altered insulin signaling on memory from animal and
human studies and summarized the underlying mechanisms.

2.1. Evidence in Animal Studies

Changes in brain insulin levels and IR density, as well as reducing the sensitivity of IRs
(i.e., insulin resistance), can lead to changes in insulin signaling. The effect of altered insulin
signaling on memory function has been discussed in many animal studies. The blood-brain
barrier (BBB) limits the ability to deliver drugs and peptides to the brain, and intranasal
delivery provides another solution for insulin to enter the brain [13]. A study showed
that intranasal insulin can be detected within 5 min in young CD-1 mice and was still
present 60 min after injection [14]. In recent years, many studies have shown that intranasal
insulin significantly ameliorates memory impairment in animals in various disease models
(Table 1). In these disease models, 0.1–2 IU insulin showed different degrees of protective
effect. Taken together, these studies suggested that intranasal insulin had a beneficial effect
on memory impairment.

Table 1. Evidence in animal studies.

Dose of Insulin Time of Intranasal
Administration Animal Models Memory Detection

Method
Effects on
Memory References

Low level
(0.0715 IU)

once a day, 5 days a
week, 12 weeks

18-month-old male
F344 rats Morris water maze test No obvious effects [15]

Low level
(0.24 IU)

once a day,
4 consecutive weeks male C57BL6 mice Radial arm water

maze test Improvement [16]

Low level
(0.1 IU and 0.5 IU)

once a day,
4 consecutive weeks

kainic acid-induced
chronic epileptic mice Morris water maze test Improvement [17]

Low level
(0.5 IU)

once a day,
7 consecutive days

Wistar with
methamphetamine for

10 days

Y-maze test, Novel
object recognition test Improvement [18]

High level
(1 IU)

twice a day,
14 consecutive days

C57BL/6J mice treated
with an I.C.V. injection

of STZ
Morris water maze test Improvement [19]

High level
(1.75 IU)

once a day,
3 consecutive days

3xTg-AD mice
anesthetized with

propofol/sevoflurane
for 3 h

Morris water maze
test, novel object
recognition test

Improvement [20]

High level
(2 IU)

once a day,
14 consecutive days

rats were injected with
STZ (3 mg/kg, ICV)
bilaterally twice, on

days 1 and 3

Morris water maze test Improvement [21]

High level
(2 IU)

once a day,
6consecutive weeks

Wistar rats were
injected with 6-OHDA
(12 µg/4 µL) into the

unilateral medial
forebrain bundle

T-maze rewarded
alternation test Improvement [22]
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The ameliorative effect of intranasal insulin on memory depends on the normal density
and function of IRs. Sufficient evidence has proved that the hippocampus IRs are closely
related to learning and memory. Animal models showed that the gene expression of IRs in
the hippocampus was upregulated after spatial learning [23], and the ameliorative effect of
intranasal insulin on memory impairment was also affected by the levels of IRs [14]. Simi-
larly, another study reported that the specific loss of hippocampal IRs resulted in impaired
recognition and spatial memory in mice [6]. In addition, the sensitivity of IRs in regulating
memory also plays an important role. Many studies have confirmed that hippocampal
insulin resistance led to cognitive dysfunction [24,25]. In addition, insulin resistance was
characteristic of T2DM, and type 2 diabetic mice or rats were often accompanied with
cognitive dysfunction [26,27]. In conclusion, although many mechanisms remain unclear,
changes in hippocampal insulin signaling are shown to regulate memory function.

2.2. Evidence in Human Studies

Insulin has been widely used as a drug to treat diabetes in clinics since it was discov-
ered. Studies in humans have shown that intranasal insulin can bypass the BBB and reach
the CNS within 1 h of administration [28]. The beneficial cognitive effects of insulin delivery
to the CNS via the intranasal route have been demonstrated in a series of studies in healthy
people [29–32]. In vivo animal experiments as well as in vitro studies have enabled an
understanding of the ameliorative effects of intranasal insulin on cognitive dysfunction in
pathological states [15–20]. In recent years, there has been increasing interest in the role of
brain insulin signaling in the development of AD pathology and the prevention of cognitive
impairment with intranasal insulin administration. Several studies have also explored the
effect of intranasal insulin on improving memory deficits in patients with AD or MCI (mild
cognitive impairment) clinically in humans (Table 2), and these clinical data consistently
indicate the positive effects of intranasal insulin on cognitive function in patients. However,
these studies still have their limitations. On one hand, to date, intranasal insulin is a
novel treatment for patients with AD or MCI that has only been tested in a few clinical
trials. On the other hand, the age and sex of the patient; the methods and criteria used to
assess cognitive function; and the type, dose, and duration of insulin administration were
all factors used to assess the effect of intranasal insulin on memory [33,34]. Notably, the
effect of intranasal insulin on cognitive function was also influenced by apoe4 gene-carrier
status. There has been evidence that ApoE ε4 negative individuals are more sensitive to the
cognitive consequences of insulin resistance [33]. Patients with Apoe4 (−) showed more
consistent cognitive gains compared to patients with Apoe4 (+) [35]. At present, there is
sufficient evidence to show that there are few serious adverse effects observed after clinical
intranasal insulin administration [35–37]. In conclusion, intranasal insulin has emerged
as a potential treatment for neurodegenerative diseases, but further studies are needed to
determine its effects on cognitive function.

Table 2. Evidence in human studies.

Objective
(MCI or Mild to
Moderate AD)

Dose and Duration of
Intranasal Insulin

Administration

Memory Detection
Method Effects on Memory References

289 adults 40 IU/day,
12 months adas-cog-12 score No benefits [13]

60 adults 40 IU/day,
21 days

verbal working
memory, visuospatial

working memory
Improvement [38]

104 adults 40 IU/day,
4 months

delayed story recall, the
dementia severity

rating scale
Improvement [33]
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Table 2. Cont.

Objective
(MCI or Mild to
Moderate AD)

Dose and Duration of
Intranasal Insulin

Administration

Memory Detection
Method Effects on Memory References

49 adults 20 IU/day,
12 months

Alzheimer’s disease
assessment

scale-cognition,
Alzheimer’s disease

cooperative
study-activities of daily
living scale, a memory

composite

Improvement [39]

36 adults 40 IU/day,
4 months

global cognition
(Alzheimer’s disease

assessment
scale-cognition)

Improvement [40]

2.3. Mechanisms by Which Insulin Affects Memory

Synaptic plasticity in the hippocampus is thought to underlie learning and memory
processes [41]. IRs are enriched at hippocampal synapses, where they have been proposed
to modulate synaptic plasticity through interactions with the glutamatergic system [24].
AMPA and NMDA receptors are the two most important ionotropic channels gated by
glutamate binding. Insulin has a strong effect on glutamate receptor signaling [24]. Studies
have shown that insulin-stimulated phosphorylation of GluN2A and GluN2B subunits
in the hippocampus enhanced NMDAR-mediated synaptic transmission [42,43]. In addi-
tion, insulin exhibits a strong transcriptional regulatory effect on NMDA receptors and
may in turn affect synaptic function by altering the composition and kinetic properties of
NMDA receptors. A recent study provided additional evidence for a functional interaction
between the insulin and glutamate systems [6]. Deletion of IRs specifically downregulated
the expression of the GluA1 subunit of AMPA receptors in the hippocampus. Indeed,
it was shown most of the AMPA receptors containing the GluA1 subunit are near the
postsynaptic membrane in recycling endosomes and can be rapidly recruited under the
stimulation of calcium influx mediated by insulin or NMDA receptors. This was a key
molecular mechanism for long-term enhancement (LTP), which was important for learning
and memory [44–46]. Furthermore, insulin activates mTOR and its downstream transla-
tional regulators, 4E-BP1 and p70S6K, to stimulate translation of the dendritic spine protein,
PSD95, an important postsynaptic compact protein that is responsible for excitatory synap-
togenesis and function maintenance [47]. Insulin also modulates the concentration of
several neurotransmitters such as acetylcholine and nitric oxide, and controls the release
and uptake of GABA and norepinephrine, which in turn affects synaptic function [48–50].
In summary, the expression of glutamate receptors at the postsynaptic membrane, the
expression of postsynaptic proteins, and the release of neurotransmitters may all influence
synaptic function. Glutamate signaling may be a molecular link between brain insulin
and hippocampal synaptic function, and these data underscore the critical role of insulin
signaling for memory function.

3. The Source of Insulin in the Brain

In recent years, the idea that normal brain function is not insulin-independent has also
been revisited. As mentioned above, it has been confirmed in many studies that hippocam-
pal function is affected by insulin. However, there is no doubt that peripheral insulin is
produced by the pancreas, so where does insulin come from in the brain? (Figure 1).
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Figure 1. Schematic diagram showing the possible sources of brain insulin. First, the BBB is com-
posed of a capillary basement membrane, pericytes, astrocytes, and specialized capillary endothelial 
cells that are interconnected with tight junctions. Peripheral insulin can cross the BBB intact through 
IR-specific vesicle-mediated transport in endothelial cells. Second, the B-CSF barrier has fenestrated 
capillaries in the choroid plexus that lack tight junctions and allow para- and trans-cellular transport 
across the endothelium. The B-CSF barrier is another possible route for insulin to enter the CNS. 
Third, there is some limited evidence suggesting the possibility of de novo insulin synthesis in the 
brain. BBB: blood-brain barrier, BISF: brain interstitial fluid, CSF: cerebrospinal fluid; IR: insulin 
receptor. 

3.1. External Insulin Reaches the Brain 
There was evidence that most IR isoforms in the human and mouse brain were pre-

dominantly localized in microvessels [51]. At present, peripheral insulin enters the brain 
through the BBB and the blood-cerebrospinal fluid (B-CSF) barrier, which are the two 
most concerning pathways. There is enough evidence that insulin can pass through the 
BBB into the brain [52]. As a special protective structure, the BBB is composed of a capil-
lary basement membrane, pericytes, astrocytes, and specialized capillary endothelial cells 
that are interconnected with tight junctions [53]. A new study showed that pancreas-pro-
duced insulin interacted primarily with the IR on the luminal side of the brain vasculature 
[51]. IRs expressed on BBB endothelial cells play a major role in the transport of insulin to 
the CNS [54,55]. Recent studies have added to this view: in addition to IRs, endothelial 
cell-mediated insulin transport also requires lipid raft function [55]. Insulin crosses the 
BBB intact through IR-specific vesicle-mediated transport in endothelial cells. In addition, 
IRs in astrocytes also mediate insulin transport [56]. It should also not be overlooked that 
in vivo studies have shown that insulin across the BBB can occur independently of insulin 
[54], and a similar finding was obtained in another in vitro experiment [57], suggesting 
that the IRs may not be the only protein-mediated insulin transport in the BBB. These 
findings greatly increased our understanding of the pathways involved in brain insulin 
transport. Notably, various other events such as obesity, diabetes, and LPS-induced in-
flammation alter the permeability of the BBB to insulin, which may lead to changes in 
insulin signaling and related functions in the brain [58–60]. 

The B-CSF barrier is another possible route for insulin to enter the CNS. The B-CSF 
barrier has fenestrated capillaries in the choroid plexus that lack tight junctions and allow 

Figure 1. Schematic diagram showing the possible sources of brain insulin. First, the BBB is composed
of a capillary basement membrane, pericytes, astrocytes, and specialized capillary endothelial cells
that are interconnected with tight junctions. Peripheral insulin can cross the BBB intact through
IR-specific vesicle-mediated transport in endothelial cells. Second, the B-CSF barrier has fenestrated
capillaries in the choroid plexus that lack tight junctions and allow para- and trans-cellular trans-
port across the endothelium. The B-CSF barrier is another possible route for insulin to enter the
CNS. Third, there is some limited evidence suggesting the possibility of de novo insulin synthe-
sis in the brain. BBB: blood-brain barrier, BISF: brain interstitial fluid, CSF: cerebrospinal fluid;
IR: insulin receptor.

3.1. External Insulin Reaches the Brain

There was evidence that most IR isoforms in the human and mouse brain were
predominantly localized in microvessels [51]. At present, peripheral insulin enters the
brain through the BBB and the blood-cerebrospinal fluid (B-CSF) barrier, which are the two
most concerning pathways. There is enough evidence that insulin can pass through the
BBB into the brain [52]. As a special protective structure, the BBB is composed of a capillary
basement membrane, pericytes, astrocytes, and specialized capillary endothelial cells that
are interconnected with tight junctions [53]. A new study showed that pancreas-produced
insulin interacted primarily with the IR on the luminal side of the brain vasculature [51].
IRs expressed on BBB endothelial cells play a major role in the transport of insulin to
the CNS [54,55]. Recent studies have added to this view: in addition to IRs, endothelial
cell-mediated insulin transport also requires lipid raft function [55]. Insulin crosses the BBB
intact through IR-specific vesicle-mediated transport in endothelial cells. In addition, IRs in
astrocytes also mediate insulin transport [56]. It should also not be overlooked that in vivo
studies have shown that insulin across the BBB can occur independently of insulin [54],
and a similar finding was obtained in another in vitro experiment [57], suggesting that
the IRs may not be the only protein-mediated insulin transport in the BBB. These findings
greatly increased our understanding of the pathways involved in brain insulin transport.
Notably, various other events such as obesity, diabetes, and LPS-induced inflammation
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alter the permeability of the BBB to insulin, which may lead to changes in insulin signaling
and related functions in the brain [58–60].

The B-CSF barrier is another possible route for insulin to enter the CNS. The B-
CSF barrier has fenestrated capillaries in the choroid plexus that lack tight junctions and
allow para- and trans-cellular transport across the endothelium [61]. Earlier findings
supported the hypothesis that the choroid plexus has a high density of IRs and suggested
that the choroid plexus may be the site of brain insulin transport to the CSF [62]. However,
evidence for direct insulin receptor-mediated insulin transport across the choroid plexus is
still lacking.

3.2. Local Insulin Synthesis in the Brain

The question of whether the CNS secretes insulin has been debated for a long time.
Although the evidence was insufficient, previous studies have indicated that partial insulin
may also be secreted by the CNS. For example, in the study of Dorn et al., radioimmunoas-
say analysis revealed much higher concentrations of insulin and C-peptide in the human
brain than in the blood, with the highest in the hypothalamus, and immunostaining was
mainly restricted to the cell soma and proximal dendrites. They observed immune response
products to the two peptides in most nerve cells in all regions of the brain examined [63].
Schechter et al. further proved the presence of insulin in the CNS via rabbit neurons
isolated in vitro and indicated that the neurons may be one of the synthesis sites of insulin
in the brain [64]. These early studies supported that insulin was at least partly produced
in the CNS. However, there are also studies showing that the brain produces little or no
insulin [65]. This question has been controversial for many years. It was reported that
Ins2 mRNA was strongly expressed in GABAergic glial cells in the rat cerebral cortex [66].
Nemoto et al. reported that synthesized insulin was secreted from rat hippocampal and
cortical neurons’ dense-core vesicles [67]. Moreover, recent studies have reported that
astrocytes isolated from the cerebral cortex of rat embryos express Ins2 mRNA and secrete
insulin, which confers strong protection against AβO synaptic toxicity [68,69]. Notably, Aβ,
a molecule characteristic of AD, has been reported to reduce insulin synthesis and secretion
in cultured neurons and astrocytes and may cause impaired insulin signaling, which also
provided new insights into the link between insulin signaling in the brain and AD [67,69].
These studies provide some evidence for the local production of insulin in the brain, and
the possibility of the brain synthesizing insulin.

4. Insulin Signaling and Hippocampal Disease: AD Is a Key Point

AD is the most common form of dementia, and its most important feature is the
persistent and progressive impairment of cognitive function, especially the severe decline
in memory. Some human clinical data suggested that people with T2DM, which was
characterized by insulin resistance, had a significantly increased risk of developing AD.
In recent years, several animal studies have explored the mechanistic effects of insulin
resistance on AD. Here, we summarized the molecular link between hippocampal insulin
resistance and AD.

4.1. The Role of the Hippocampus in AD

AD is usually associated with the extracellular deposition of the Aβ peptide and
accumulation of hyperphosphorylated tau in neurons. Neuronal degeneration and synaptic
changes caused by these pathologies are considered to constitute the main neurobiological
basis of cognitive dysfunction in AD [70]. The hippocampus is one of the earliest brain
regions affected by AD and reduced hippocampal volume and elevated rates of atrophy
have been found in patients with early AD in many structural and functional imaging
studies [7,8,71]. Therefore, alterations in hippocampal structure and function may be
good candidates for predicting AD development. Here, we summarized the association of
hippocampal pathology with the development of AD (primarily Aβ accumulation and tau
hyperphosphorylation) (Figure 2).
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Figure 2. Association between hippocampal pathology and AD disease. AD is characterized by the
accumulation of Aβ and hyperphosphorylation of tau protein which lead to neuronal degeneration
and changes in synaptic structure and function, leading to neurotoxicity. The damage of mitophagy
can lead to the reduction in mitochondrial quality and abnormal mitochondrial function. On the
one hand, it promotes the progression of AD pathology. On the other hand, the abnormal mito-
chondrial function also leads to increased ROS release, which may further lead to hippocampal iron
accumulation and neuroinflammation, and then lead to Aβ accumulation and hyperphosphorylation,
which may eventually lead to neurotoxicity and AD. AD: Alzheimer’s disease, LIP: Labile iron pool,
Aβ: Amyloid beta, NFTs: Neurofibrillary tangles,

√
: Protective effect, ×: Damaging effect (Drawn

by Figdraw).

4.1.1. Hippocampal Neuroinflammation and AD

Neuroinflammation due to microglial activation is thought to play a key role in the on-
going neurodegeneration of AD. Activated microglia secrete a variety of proinflammatory
cytokines and toxic products, leading to neuronal dysfunction and apoptosis. The transcrip-
tion factor NF-κB is known to be a master regulator of inflammatory responses. Studies
have shown that activation of NF-κB promoted amyloid precursor protein (APP) cleavage
and Aβ production by enhancing BACE1 expression [72]. In AD, reactive microglia ad-
jacent to Aβ plaques have been repeatedly observed in the hippocampus in both clinical
data and animal experiments [73–75]. Not only that, but the latest research also suggested
that microglia carrying being swallowed Aβwould be disseminated to other health areas
of the brain, causing the formation of new Aβ [76], and Aβ deposition would continue
to cause chronic activation of microglia, leading to excessive production of cytokines and
chemokines, thereby deepening the microglia activation and inflammatory response. In
addition to affecting Aβ production [77], studies have shown that Aβ activated the NLRP3
inflammasome in microglia to promote tau pathology and neurodegeneration [78,79]. Of
note, previous in vivo and in vitro experiments have consistently shown that microglial
activation drove the spread of tau tangles [78,80]. A recent study also demonstrated, for
the first time from the brains of living patients, that the diffusion path of tau depends on
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microglial activation [81]. In conclusion, neuroinflammation is an indispensable and a key
link in the upstream pathogenesis of AD. Microglia activation is not only a symptom of
inflammation, but also very likely to have some association with Aβ pathology and tau
pathology, and is a key role in promoting the progression of AD.

4.1.2. Hippocampal Ferroptosis and AD

In recent years, the role of ferroptosis in neurodegenerative diseases has received
much attention. Iron accumulation has been observed in the brains of AD patients and
AD transgenic mouse models, with excess iron accumulation in insoluble Aβ plaques and
neurofibrillary tangles [82,83]. Sufficient evidence has shown a clear link between age-
related elevated iron load and AD symptoms [84]. Downregulation of Ferroportin (FPN),
the only known iron exporter, may be a key link between iron accumulation and AD [85,86].
Recent studies have shown decreased hippocampal FPN expression and abnormal iron
deposition in the brains of AD mouse models and AD patients [84], and that increased
brain iron levels may accelerate Aβ formation [87]. Similarly, the administration of specific
inhibitors of ferroptosis effectively reduced neuronal death and memory impairment
induced by Aβ aggregation in vitro and in vivo [84]. GPX4 is also a central regulator of
ferroptosis. It has been reported that the knockdown of GPX4 in mice directly leads to age-
dependent neurodegenerative changes and significant neuronal loss [88]. Iron accumulation
occurs not only in neurons but also in microglia. On the one hand, iron accumulation
in microglia can reduce the phagocytic ability of microglia to Aβ, leading to excessive
deposition of Aβ [89,90]. On the other hand, iron accumulation can drive microglia to
polarize into the proinflammatory M1 type, thereby inducing neuroinflammation [91]. In
general, ferroptosis is a novel form of cell death characterized by intracellular iron overload.
Excessive iron accumulation aggravates Aβ accumulation and tau hyperphosphorylation,
which provides new insights into the molecular pathophysiology of AD.

4.1.3. Hippocampal Mitophagy and AD

Mitophagy is a form of cellular autophagy that selectively removes defective mito-
chondria. Corresponding with the age-related increase in AD incidence, there is also an
age-dependent accumulation of dysfunctional mitochondria and impaired mitophagy [92].
In biopsies from human AD cases and transgenic animal models of AD, electron micro-
scopic studies have identified the accumulation of damaged mitochondria, such as the
appearance of swelling with sclerosis and distortion [93], while basal levels of mitophagy
in the hippocampus of postmortem AD patients are 30–50% lower than normal [94]. These
studies indicated that mitophagy was dysfunctional in the hippocampus of AD patients [95].
The mechanism of hippocampal mitophagy in AD remains largely unexplored. A recent
study found that induction of mitophagy improved AD pathology and reversed mem-
ory impairment in transgenic nematodes, IPSC-derived neurons, and mouse models of
AD [94]. In APP/PS1 mouse model, mitophagy reduced insoluble Aβ1-42 and Aβ1-40,
and inhibited neuroinflammation and cognitive impairment through phagocytosis of Aβ
plaques by microglia, suggesting that abnormal mitophagy may be one of the causes of AD.
However, other studies have shown that Aβ peptide accumulation in the hippocampus of
APP/PS1 mice decreased hippocampal mitochondrial mass and increased mitophagy [96].
A previous in vitro study had consistent results. The accumulation of mAPP and Aβ led
to abnormal mitophagy function in hippocampal neurons [97]. These data suggested that
abnormal mitophagy may be the initiator of Aβ aggregation and tau hyperphosphorylation,
which can further aggravate mitochondrial dysfunction, thus forming a vicious circle in
AD pathology.

4.1.4. Hippocampal Oxidative Stress and AD

Oxidative stress, a severe imbalance between the production of reactive oxygen species
(ROS) and reactive nitrogen species (RNS) and antioxidant defenses, has been shown to
promote the pathological progression of AD in a wide range of studies. In a recent study,
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the results of single-cell whole-genome sequencing data indicated higher than normal
levels of single nucleotide changes associated with oxidative stress and associated DNA
damage in the hippocampus and cortex of AD patients [98]. GSH, an enzyme that fights
oxidative stress, was significantly depleted in the hippocampal region of patients with MCI
and AD compared with healthy elderly subjects [99]. In neurons, accumulated ROS can
oxidize polyunsaturated neuronal lipid products to produce active lipid byproducts, such
as 4-hydroxy-2, 3-nonenal (HNE), malondialdehyde, and F2-isoprostane or glycosylated
proteins to produce advanced glycosylation end products (AGEs). HNE and AGES can
also overaccelerate Aβ production and tau phosphorylation. Moreover, recent studies have
shown that ROS caused the overexpression of β-site APP cleavage enzyme 1 (BACE1) and
increased Aβ production [100], which in turn exacerbated mitochondrial dysfunction and
ROS production [101], leading to a vicious cycle. Of note, oxidative stress appears to be at
the intersection of many pathological changes, such as neuroinflammation, ferroptosis, and
mitochondrial dysfunction.

4.2. T2DM and AD

T2DM is a chronic endocrine disease that affects approximately 6% of the global pop-
ulation. The occurrence of T2DM can cause many complications in the body. Currently,
the most observed neurological effects of T2DM are impaired learning and memory. Many
studies have shown that humans with T2DM exhibited cognitive deficits, characterized
by smaller hippocampal size and hippocampal atrophy, and poor memory in T2DM pa-
tients [102–104]. Similar to these results, in animal studies, T2DM mice/rats performed
poorly in many behavioral tests, such as the delayed alternation T-maze task [26], the
Y-maze test, the Morris maze water test [105,106], the nest building test, and the novel
object recognition test. This evidence supported a strong relationship between T2DM and
cognitive function. In addition, clinical and epidemiological studies have demonstrated
that the risk of developing AD is twice as high in patients with T2DM compared to those
without diabetes [107,108].

The central feature of T2DM is insulin resistance [109]. Subsequent studies have
shown that insulin resistance caused hippocampal neuroplasticity deficits [110], leading
to decreased performance on hippocampal-dependent learning and memory tasks [111].
Sufficient evidence has been obtained to demonstrate the development of hippocampal
insulin resistance in AD patients or AD animal models [112,113]. Collectively, these studies
supported the hypothesis that hippocampal insulin resistance was a common pathological
feature of T2DM and AD, with some studies also calling AD “type 3 diabetes”.

4.3. Molecular Link between Hippocampal Insulin Resistance and AD

Hippocampal insulin resistance is characterized by the insensitivity of hippocampal
IRs and decreased phosphorylation of insulin downstream signaling molecules. Studies
have shown a strong association between hippocampal insulin resistance and AD pathology,
including Aβ aggregation and tau hyperphosphorylation [25,114]. Here, we summarized
recent findings on the possible mechanisms by which hippocampal insulin resistance
induced AD pathology (Figure 3).

4.3.1. Direct Pathways of Hippocampal Insulin Resistance Induced AD Pathology: Aβ
Aggregation and Tau Hyperphosphorylation

Aβ peptides are produced by the hydrolysis of APP. The accumulation of Aβ proteins
into plaques between cells is considered to be a typical pathological feature of AD [115].
Insulin-degrading enzyme (IDE) is a widely expressed zinc-dependent metalloproteinase
that contributes to the proteolytic inactivation of insulin [116]. It is worth noting that
Aβ protein is also the substrate of IDE. Studies have shown that IDE plays a crucial role
in the clearance of Aβ in AD [117]. Thus, IDE is also considered a link between insulin
resistance and AD. In mice, increased γ-secretase activity and decreased IDE activity due
to insulin resistance or hyperinsulinemia have been shown to lead to increased Aβ in
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the brain [118]. In addition, hyperphosphorylation of tau protein is another pathology
of AD. Sufficient evidence has shown that tau phosphorylation is regulated by GSK-3β,
which is regulated by insulin signaling. Studies have shown that when insulin resistance
occurred in the hippocampus, the activity of PI3K/AKT, the main signaling molecule of
the insulin signaling pathway, was decreased, which promoted the activation of GSK3β
and phosphorylation of tau and promoted the pathological progression of AD [119].
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4.3.2. Indirect Pathways of Hippocampal Insulin Resistance Induced AD Pathology:
Neuroinflammation and Oxidative Stress

It has been shown that hippocampal insulin resistance led to microglia activation [120],
and activated microglia released proinflammatory-related factors (IL6, TNF-a, IL-1β) and
induced neuroinflammation. Current studies have shown that these proinflammatory
factors can promote Aβ accumulation through three pathways. Firstly, the increase in
proinflammatory factors inhibited the phagocytosis of Aβ protein by microglia and then
induced the accumulation of Aβ. Second, TNF-α and IL-1β are potent stimulators of
γ-secretase, leading to increased Aβ production through pathways involving the c-Jun
N-terminal kinase (JNK)-dependent MAPK pathway [121]. Third, activation of the NF-κB
pathway has been shown to induce ROS production and accumulation [122]. In addition,
ROS may be directly affected by insulin resistance [123]. On the one hand, the increase in
ROS induces the increase in BACE1 activity, thereby causing the accumulation of Aβ [124],
on the other hand, it induces the generation of oxidative stress. Studies have shown that
oxidative stress inactivates the AKT pathway [125], followed by increased cerebral insulin
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resistance, activation of GSK3β, and phosphorylation of tau. Overall, oxidative stress and
neuroinflammation appear to be an important link between hippocampal insulin resistance
and AD development.

5. Conclusions

It is now widely accepted that insulin in the brain plays an important role in regulating
many functions of the CNS. IRs are highly expressed in many brain regions, including the
hippocampus. Although mechanistic studies have been insufficiently conducted, adequate
animal studies have demonstrated a significant improvement in memory impairment with
insulin; however, this improvement has not been as evident in clinical studies. Some
studies have shown that clinical trial delivery devices affected the effectiveness of insulin
delivery in the CNS, which may be one of the possible reasons for the deviation of results
between clinical trials and animal studies [13]. Previous studies have shown that the
interaction between insulin and glutamatergic receptors can change hippocampal synaptic
plasticity, which may be one of the key mechanisms by which insulin improves memory. As
a common link between T2DM and AD, in recent years, insulin resistance has been shown
to contribute directly or indirectly to the progression of AD. To date, there is no clinical
treatment for AD associated with T2DM. Comparative studies that identify the various
pathways involved in insulin signaling may help illustrate the relationship between AD
and T2DM or their relative treatment, which may prove potential future research areas.
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