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Abstract-The basic building blocks in a multidimensional 
(MD) multirate system are the decimation matrix M and the 
expansion matrix L. For the D-dimensional case these are D zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX 

D nonsingular integer matrices. When these matrices are di- 
agonal, most of the one-dimensional (ID) results can be ex- 
tended automatically. However, for the nondiagonal case, these 
extensions are nontrivial. Some of these extensions, e.g., 
polyphase decomposition and maximally decimated perfect re- 
construction systems, have already been successfully made by 
some authors. However, there exist several ID  results in mul- 
tirate processing, for which the multidimensional extensions are 
even more difficult. An example is the development of poly- 
phase representation for rational (rather than integer) sam- 
pling rate alterations. In the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAID case, this development relies 
on the commutativity of decimators and expanders, which is 
possible whenever M and L are  relatively prime (coprime). The 
conditions for commutativity in the two-dimensional (2D) case 
have recently been developed successfully in [l]. In  the MD 
case, the results are more involved. In this paper we formulate 
and solve a number of problems of this nature. Our  discussions 
are based on several key properties of integer matrices, includ- 
ing greatest common divisors and least common multiples, 
which we first review. These properties are analogous to those 
of polynomial matrices, some of which have been used in sys- 
tem theoretic work (e.g., matrix fraction descriptions, coprime 
matrices, Smith form, and so on). 

I. INTRODUCTION 

ECENTLY, there has been much research work on R multidimensional (MD) multirate systems, which 
have found applications in the processing of images and 
video data. The key building blocks in these systems are 
the decimation matrix M and the expansion matrix L .  With zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
D denoting the number of dimensions, these are D x D 
nonsingular integer matrices. An excellent review of MD 
multirate systems, along with many new developments in 
filter banks, is given in [2]. 

When these matrices are diagonal, most of the one-di- 
mensional (1D) results can be extended automatically (by 
performing operation in each dimension separately). 
However, for the nondiagonal case, these extensions are 
nontrivial and require more complicated notations and 
matrix operations. Some of these extensions, e.g., poly- 
phase decomposition and maximally decimated perfect 
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reconstruction systems, have already been successfully 
made by some authors [2]-[ 1 I]. However, there still exist 
several 1D results in multirate processing, for which the 
multidimensional extensions are even more difficult. In 
this paper, we shall address some problems of this nature, 
including i) the development of polyphase representation 
for rational sampling rate alterations, ii) the perfect-re- 
construction properties of MD delay-chain systems, and 
i i i )  the periodicity properties of decimated periodic sig- 
nals. Some preliminary results have been reported by the 
authors in [12], [13]. 

The first of the above three problems can be solved pro- 
vided a number of conditions are satisfied. This includes 
the commutativity of decimators and expanders. For the 
two-dimensional (2D) case, the commutativity issue has 
been successfully addressed recently in [ I ] ,  where the 
commutativity is used in a different context, i.e., the de- 
sign of 2D filter banks with arbitrary rational decimation 
matrices. 

Before formulating and solving these problems, in Sec- 
tion I1 we first review fundamental concepts of MD mul- 
tirate signal processing. In Section 111, we introduce some 
properties about integer matrices.' These are crucial to 
our discussions because of the role played by the deci- 
mation and expansion matrices. Some of these properties 
are analogous to those of polynomial matrices, which have 
been well developed by researchers in system theory, e.g. ,  
matrix fraction descriptions, greatest common right/left 
divisors (gcrdlgcld), coprime matrices, Smith form, and 
so on [ 181, [ 171. We also review the concepts of the least 
common right multiple (Icrm) and least common left mul- 
tiple (lclm) of integer matrices [14, p. 351 and develop 
further their properties. We shall also present an approach 
to finding an lcrm/lclm of two integer matrices, which is 
very useful in practical applications. 

All of these will be applied in deriving many of the new 
multirate results summarized next. 

A. Polyphase Structures fo r  Rational Sampling Rate 
Alterations (Section IV) 

In lD ,  multirate techniques permit us to alter the sam- 
pling rate of a sequence by a rational fraction, e.g., to 

' In fact, these properties can be applied to matrices with elements from 
a so-called "principle ideal domain" (pid) [ 141-[ 171. The set of integers 
and the set of polynomials with coefficients belonging to a field are two 
examples of pid's. 
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reduce the sampling rate by MIL .  Fig. 1 shows a scheme 
to achieve this. Note that the filter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH ( z )  is used to sup- 
press image components generated by the L-fold expander 
and to eliminate aliasing owing to the M-fold decimator 
as well. In MD, also it is often necessary to interface im- 
ages (or video data) between systems which use different 
sampling methods (different sampling lattices) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 191, [3]. 
The conversion between the European and North Ameri- 
can television systems, and the conversion between high 
definition television (HDTV) signals and conventional 
television signals [20] are two examples. 

For the 1D case, using the polyphase approach, we can 
implement Fig. 1 more efficiently as in either Fig. 2(a) or 
Fig. 2(b) (for the case M = 3 and L = 2 ) .  Then, it seems 
that we cannot improve the efficiency anymore because 
we cannot use Noble identities [21], [22] to move the ex- 
panders further to the right (or the decimators further to 
the left). However, it turns out that we can still do so by 
using the technique introduced in [23]. We shall refer to 
this technique as the rational polyphase implementation 
(RPI). Fig. 3 shows the development of the RPI technique 
by successively redrawing the rational decimation circuit. 
Starting from Fig. 2(a), we replace zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz - I  by z 2 z  -3 and z -* 
by z4zP6, so we get Fig. 3(a). Note that when M and L 
are relatively prime (coprime), we are able to express 
every integer k as Lk, + Mk2 for some integers k ,  and k2 
(Euclid’s theorem). With the help of Noble identities, Fig. 
3(a) can be redrawn as Fig. 3(b). Next, we can inter- 
change the expanders and decimators when M and L are 
coprime 1211, and obtain Fig. 3(c). Finally we can per- 
form Type 2 polyphase deccmposition on E, (z ) ’ s  with re- 
spect to L, and get Fig. 3(d). In summary, Fig. 3(d) is 
equivalent to Fig. 2(a) but now each arithmetic operation 
is performed at its lowest rate. Note that the RPI tech- 
nique works if and only if M and L are coprime. 

New Results zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Section ZV: In Section IV, we will ex- 
tend this polyphase technique for MD systems and show 
that the necessary and sufficient conditions for its feasi- 
bility are: 1) ML = LM (i.e., M and L commute) and 2) 
M and L are coprime. The coprimeness of matrices will 
be defined later in Section 111. Note that, in general, we 
have to distinguish left coprimeness and right coprime- 
ness for the matrix case. However, we will show that if 
ML = LM,  left coprimeness and right coprimeness are 
equivalent. 

We should point out that the conditions for commuta- 
tivity of an M-fold decimator and an L-fold expander has 
been generalized to the 2D case in [ 11, where the condi- 
tions are given for upper triangular M and L .  In Section 
IV, we will present conditions which hold for any number 
of dimensions without any assumption on M and L .  

B.  Generalized Delay-Chain Systems (Section V)  

A 1D delay-chain system is shown in Fig. 4. It has been 
shown that this is a perfect-reconstruction (PR) system 

Fig. 1 .  One-dimensional rational decimation system 

- - 43 E2(z) 
Z-2 

(a) 

Ro (z)  -GET+ Ri(z) (b) T2 

Fig. 2. Two types of polyphase implementations of a ID rational deci- 
mation system. 

Fig. 3.  Successive redrawing of polyphase implementations of a ID ra- 
tional decimation system. 

(i.e., i ( n )  = x ( n ) )  if and only if L and M are coprime 
[24, lemma A.21. This system is fundamental to many ID 
maximally decimated PR filter banks [2 11. The case where 
L = 1 in Fig. 4 is most common. The case where L # 1 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. One-dimensional delay-chain system. 

is also required in some applications where pairs of anal- 
ysis filters are constrained by symmetry conditions [24]. 
In Section V, we will consider the MD extension of Fig. 
4 and then discuss the conditions for PR. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C. Periodicity Matrices of Decimated Signals (Section 
VI) 

In the ID case, if a periodic signal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx ( n )  with period L 
is decimated by a factor of M to obtain y ( n )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= x ( M n ) ,  
then the period of y(n)  is easily verified to be L/gcd(M, 
L)  = lcm(M, L)/M. (If further information about x ( n )  is 
available, then smaller periods can be found.) We shall 
extend this result to the MD case, where an MD signal 
x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(n) with periodicity matrix L is decimated by the matrix 
M .  We will show that the periodicity matrix of y ( n )  = 

x(Mn) is M - '  Icrm(M, L),  where Icrm ( M ,  L) denotes an 
lcrm of M and L .  We will also extend these results for 
stochastic signals. More specifically, assuming that x (n) 
is cyclo-widesense stationary (CWSS) with periodicity 
matrix L,  we will derive the periodicity matrix of cyclo- 
stationarity of x (Mn) .  

D. Emerging Results from Other Authors (Section VIII) 

After we submitted this paper, we came to realize via 
private communication with a number of authors that sev- 
eral other groups were simultaneously arriving at similar 
and related results, particularly about the commutativity 
of decimators and expanders. In Section VIII, we provide 
mathematical details on these other contributions. 

11. REVIEW OF BASIC CONCEPTS 

We first review some basic concepts of MD multirate 
techniques, which are crucial to our discussion. More de- 
tailed discussion and derivations can be found in [25], 
[26], [3], zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[8], [2]. In particular, [2] contains an excellent 
review, including many of the notations we have sum- 
marized as follows. Some of the notations we use here are 
slightly modified versions of those in [2], and suit our 
discussions better. 

I )  Notations: Capital and lowercase boldfaced letters 
denote matrices and vectors, respectively. The symbol zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ 

is reserved for the identity matrix. The notations AT, A- ' ,  
and APTdenote the transpose, the inverse, and the inverse 
transpose of A, respectively. The row and column indices 

typically begin from zero. Also, 

D: number of dimensions. 
32: 
[a,  b f :  set of D x 1 real vectors x with components 
x, in the range a I xi < b. 
n = [no n I  . * * nD-  I]T: "time" index of MD discrete 
signals. All ni's are integer, so that n E 32. 
cc) = [wo wI * . * w D -  I]T: frequency variable of the 
Fourier transform of MD discrete signals. 
x ( n )  ++ XF(cr)): 

set of all D X 1 integer vectors. 

Fourier transform pair, defined as 

i 

XF(W) = c x(n)e- jwm, 
n E 3 1  

z = [ZO ZI * * * zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZD- 11' variable of the z transform of 
MD signals. The z transform of x ( n ) ,  where it con- 
verges, is given by 

X ( z )  = c x(n>z-". (2.2) 
ne3Z 

A vector raised to a vector power [2], as in z-" above, 
gives a scalar defined as z" z;l"z;' * . * zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzD- I .  Note 
that the subscript F is used to distinguish the Fourier 
transform from the z transform. It is clear that X F ( o )  
can be obtained by evaluating X ( z )  at z, = e for i = 

Let M be a D X D nonsingular integer matrix. Then, 
32 ( M )  is the set of all integer vectors of the form Mx, 
x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE [0, 1f. And, J ( M )  1 det MI (absolute determi- 
nant), which is also equal to the number of elements in 

An integer matrix U is called unimodular if [det U ]  = 

- + 1 ,  i.e., J ( U )  = 1. Clearly, for unimodular U ,  U - '  
= [adjugate of U]/[det U ]  is also an integer matrix, 
and is unimodular. 
A E B (A is a right associate of B [14], [17]): This 
means that there exists a unimodular integer matrix V 
such that A = BV.  Clearly, A B if and only if (iff) 
B A. Similarly, A is a left associate of B (denoted as 
A B)  if A = UB for some unimodular integer matrix 
U .  
Let V be a D x D nonsingular real matrix. Then, LAT 
( V )  (the lattice generated by V [27], [16], [3]) denotes 
the set of all vectors of the form Vn,  n E 32. It can be 
shown that LAT (A) = LAT (B )  iff A B .  Also, 
SPD ( V )  (the symmetric parallelepiped generated by V )  
is the set of all real vectors of the form Vx,  x E 

0 ,  * * .  , D - 1 .  

n.(M). 

[-1, 1 p .  

2) Decimation: The M-fold decimated version of x (n )  
s defined as y ( n )  = x ( M n ) ,  where M is a nonsingular 
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integer matrix. The frequency domain relation is 

3) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAExpansion: Let L be a nonsingular integer matrix. 
The L-fold expanded version of x ( n )  is defined as 

x(L-'n) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn E LAT (L)  
(2.4) i o  otherwise. 

y ( n )  = 

The frequency domain relation is YF(w) = XF(LTw). The 
corresponding z domain relation is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Y(z )  = X ( Z L ) .  (2.5) 

The notation of a vector raised to a matrix power 121, as 
in z L  above, is a D x 1 vector defined as z p  [zpu zp'  
. . 

Remark: In this paper, M and L always denote D X D 
nonsingular integer matrices, with the above meanings. 

4) To prevent aliasing due to M-fold decimation (or 
suppress images owing to M-fold expansion), a decima- 
tion (or interpolation) filter H(z)  is necessary. Typically, 
this filter has a parallelepiped passband in the region w = 
T M - ~ x ,  for x E [ - 1, l)D. Using the notation of SPD, we 
can rewrite this as w E SPD ( T M - ~ ) .  Fig. 5 shows the 
typical passband for 

zpO- ' I T ,  where p ,  is the i th column of P. 

M =  [: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-;I. 
Note that some other choices of passband regions are pos- 
sible [28], 1291. 

5) Division Theorem for Integer Vectors: Every inte- 
ger vector n can be expressed as n = k + Mno, for some 
k E 32 ( M ) ,  and no E 32. Moreover, k and no are unique 
for a given n. We denote this relation as k = n mod M ,  
or k = ( ( r ~ ) ) ~ .  

6) Polyphase Decomposition: The polyphase compo- 
nents of x ( n )  with respect to a given M are defined as 

ek(n) = x(Mn + k) ,  (Type 1) 

or 

rk(n) = x (Mn - k), (Type 2) (2.6) 

where k E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA32 ( M ) .  So k can take on J ( M )  different values. 
Also, in the frequency domain, the polyphase decompo- 
sition of XF(w) can be expressed as 

or 

In the z domain, these become 

IC 

"I 

--II 

"0 lr 
-lr 

Fig. 5 .  Typical passband of multirate filters 

Fig. 6. MD Noble identities 

or 

Note that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz k  (or e j W r k )  is a shift operator, which shifts 
(advances) an MD signal by a vector amount k .  Similarly, 

-k(or e-Jwrk ) shifts an MD signal by - k ,  i.e., "delays" 
it by k .  

7) Noble Identities: These are rules which permit us 
to move decimators and expanders across transfer func- 
tions. For example, a filter followed by a L-fold expander 
is equivalent to the expander followed by the L-fold ex- 
panded version of the same filter. Also, a M-fold deci- 
mator followed by a filter is equivalent to the M-fold ex- 
panded version of the same filter followed by the 
decimator. Fig. 6 shows these rules. 

8) Periodicity Matrix: An MD signal x ( n )  is said to 
be periodic with periodicity matrix L if x ( n  + Lk) = x ( n ) ,  
vk E 32. Further details can be found in Section VI. 

111. GCRD, GCLD, LCRM, AND LCLM 

In this section, we introduce some properties about in- 
teger matrices. As mentioned before, the counterpart of 
these properties in polynomial matrix case is well known 
and well developed 1301, 1181, [17]. In the [17, appen- 
dix], many of these properties are also given for matrices 
with elements in a principle ideal domain (pid), which is 
an even more general case. We omit proofs which can be 
found in these references. We will review the concepts of 
the Icrm and lclm for the matrix case [ 141 and derive sev- 
eral properties, including their relations with gcrd/gcld. 
We shall also present a method of finding an Icrm/lclm of 
two integer matrices. All of these will be applied in de- 
riving many of the new multirate results in the following 
sections. 
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A .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGcrd and Gcld zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(141, (181, (1 71 
Dejinitions: 

1) The integer matrix R is a right divisor (rd) of M if 
M zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= PR for some integer matrix P .  

2) The integer matrix R is a common right divisor of 
M and L (denoted by crd ( M ,  L ) )  if M = PR and L = Q R  
for some integer matrices P and Q. 

3 )  The integer matrix Ro is a greatest common right 
divisor of M and L (denoted by gcrd ( M ,  L)) if 

i) Ro is a crd ( M ,  L ) .  
ii) If R is another crd ( M ,  L ) ,  Ro = SR for some 

4) Two matrices M and L are right coprime if all their 
integer matrix S. 

crd’s are unimodular. 
Properties: 

1) The gcrd is not unique. In fact, all gcrd’s of two 
given integer matrices are left associate of one another. 
Hence, we should write “Ro A gcrd ( M ,  L)” (instead of 
“Ro = gcrd ( M ,  L ) ” )  to express “Ro is a gcrd of M and 
L.” 

2) Given M = PR and L = QR. Then, R is a gcrd ( M ,  
L )  iff P and Q are right coprime. 

3 )  Let Ro be a gcrd ( M ,  L ) .  There exist integer ma- 
trices A and B such that AM + BL = Ro. This is the 
extension of the Euclid’s theorem. 

4) Suppose M and L are right coprime. There exist in- 
teger matrices A and B such that AM + BL = I .  This is 
called the generalized Bezout theorem. 
Remarks: 

1) The left divisor (Id), common left divisor (cld), 
greatest common left divisor (gcld) and left coprimeness 
are defined similarly. 

2) The proof of the existence of gcrd/gcld and methods 
for finding gcrdlgcld can be found in [ 141, [ 181, [ 171. 

B. Smith Form and Smith-McMillan Form (301, [18], 
11 71 

I )  Smith Form: Any nonsingular integer matrix M can 
always be decomposed as M = UAV where U and V are 
unimodular integer matrices and A is a diagonal matrix 
with nonzero integer elements on the diagonal. 

Remarks: The Smith form has been used outside the 
control-theory literature more than once. For example, the 
Smith form for polynomial matrices with coefficients in a 
finite field has been mentioned and applied in convolu- 
tional coding theory in [15]. A special Smith form was 
used to design MD filter banks in [6]. The Smith form for 
integer matrices has been used in [25, problem 2.201 and 
[31] for computing the MD discrete Fourier transform, 
and was used in the MD multirate systems to exploit the 
decimation/expansion matrices in [9], [ lo] .  

2) Smith-McMillan Form: Any nonsingular matrix H 
with rational elements can always be decomposed as H = 

UAV where U and V are unimodular integer matrices and 

A is a diagonal matrix with nonzero rational elements on 
the diagonal. 

C. RightlLeji Matrix Fraction Description (MFD) 

Any nonsingular matrix H with rational elements can 
be expressed as H = P I  Q,’  (right MFD), or as H = 

Q;’ P2 (left MFD), where Pl’s and Q,’s are nonsingular 
integer matrices. A right MFD is said to be irreducible if 
P I  and Ql are right coprime. Similarly, a left MFD is said 
to be irreducible if P2 and Q2 are left coprime [ 181, [ 171. 

It can be shown that if PI Q I ’  and P ;  Qi - ’  are both 
irreducible right MFD’s of H ,  then there exist unimodular 
V such that Pi  = P I  V and Q ;  = Ql V, i .e., P ;  and Q ;  
are right associates of P I  and Ql with the same V .  There- 
fore, all the denominator matrices (the Q’s) of the irre- 
ducible right MFD’s have the same absolute determinant 
dl.  Similarly, we can show that all the denominator ma- 
trices of the irreducible left MFD’s have the same abso- 
lute determinant d2. These, in turn, are equal, i.e., dl = 

d2,  as explained later. 
Computation of Irreducible MFD ’s Using the Smith- 

McMillan Form [ I  71: For a given rational matrix H ,  first 
decompose it into Smith-McMillan form, H = UAV, 
where A = diag [A,, . . , X D  - Then, represent all 
the rational A, = a,/P, in their irreducible forms (a, and 
P I  are coprime integers for all i ) .  Let A. = diag [ao, * * * , 
cyD - I ]  and Ad = diag [Po ,  * . . , Po - ‘1 so that 

H = UAa A i 1  V = UAF‘ A a V .  (3.1) -- -- 
PI Q; ‘  Q;‘ Pr 

It can be shown that P I  and Ql are right coprime and P2 
and Q2 are left coprime, so P ,  QF’ and QT‘ P2 are irre- 
ducible MFD’s. 

Note that (3.1) tells us that there exist one irreducible 
right MFD and one irreducible left MFD of which the 
denominator matrices have the same absolute determi- 
nant, since J(Ql) = J ( A o )  = ](e2). Summarizing, we 
have proved the following: 

Fact I :  For all irreducible right and left MFD’s of a 
nonsingular rational matrix, the denominator matrices 
have the same absolute determinant. 

D. Lcrm and Lclm 
Dejinitions: 

1) R is a right multiple (rm) of M if R = MP for some 
integer matrix P ,  i.e., if M is a left divisor of R.  

2) R is a common right multiple of M and L (denoted 
as crm ( M ,  L ) )  if R = MP = LQ for some integer ma- 
trices P and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ. 

3 )  Ro is a least common right multiple of M and L (de- 
noted as lcrm ( M ,  L ) )  if 

i) Ro is a nonsingular crm ( M ,  L ) .  
ii) If R is another nonsingular crm ( M ,  L ) ,  then R = 

RoS for some integer matrix S .  
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Remark on Singularity: Singular crm is of less impor- 
tance because given any nonsingular crm ( M ,  L ) ,  we can 
always postmultiply it by a singular matrix to get a sin- 
gular crm ( M ,  L ) .  Also, if either M or L is singular, all 
crm ( M ,  L) ’s are singular and it is meaningless to discuss 
the Icrm ( M ,  L ) .  For these various reasons, by definition 
we restrict the lcrm to be nonsingular and to be defined 
only for nonsingular M and L .  This is slightly different 
from the definition in [14], but more proper for our dis- 
cussions. This is also consistent with the convention for 
the 1D case, where we exclude zero as a least common 
multiple although it is a multiple of any integer. 

Note that crm ( M ,  L )  and lcrm ( M ,  L )  are not unique. 
According to the above definitions, we can prove the fol- 
lowing: 
Lemma 1: 

a) If A and B are both lcrm ( M ,  L ) ,  then A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA!! B [ 141. 
b) Let B be an Icrm ( M ,  L ) .  Then, A is also an lcrm 

( M ,  L)  iff A B .  

Proofs: 

a) According to the definition of Icrm, we have A = 
BS and B = AT. Then, A = BS = ATS, so TS = 1. This 
implies both S and Tare unimodular, i.e., A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 B .  

b) The “only if” part follows directly from a). We 
proceed to prove the “ i f ”  part. Suppose A = BU, where 
U is unimodular. Clearly, A is a crm of M and L .  Since 
B is an Icrm of Mand L ,  any crm of Mand L ,  say zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR, can 
be written as R = BS. So, we have 

R = BU U - ‘ S  (3.2) -- 
A S‘ 

where S’  is also an integer matrix. This proves that A is 
an Icrm. A A A  
Remarks: 

1) It can be easily verified that there exists at least one 
crm ( M ,  L ) ,  which is R = M(k[adjugate of MIL) = 

L ( J ( M ) Z ) .  On the other hand, the existence of a nonsin- 
gular lcrm of any two nonsingular matrices is guaranteed 
by a constructive method (Section 111-E). 

2) From the above properties, it also can be easily ver- 
ified that an Icrm is a nonsingular crm with the smallest 
absolute determinant. And, all the Icrm ( M ,  L) ’s have the 
same absolute determinant. In particular, Lemma 1 says 
that the Icrm ( M ,  L )  is unique up to postmultiplication by 
a unimodular matrix. Therefore, for consistency in nota- 
tion, we should write “Ro E Icrm (M, L)” (instead of 
“R0 = lcrm ( M ,  L ) ” )  to express “Ro is an lcrm of Mand 
L.” 

Next, we can relate Icrm together with gcrd and right 
coprimeness by the following theorem: 

Theorem 1: Let R be a nonsingular crm ( M ,  L ) ,  i.e., 
R = MP = LQ. Then, R is an lcrm ( M ,  L )  iff P and Q 

Proof: 

1) If P and Q are not right coprime, then there exists 
an X which is not unimodular such that P = P‘X and Q 
= Q ’ X .  Therefore, we have 

R = MP’X = LQ’X (3.3) - - 
R’ R’  

Clearly, R = R ’ X, and R ‘ is a crm of M and L .  Suppose 
R is an Icrm of M and L ,  then R ‘ = RS according to the 
definition of Icrm. Then, R = R ’ X  = RSX, which im- 
plies both X and S must be unimodular and leads to con- 
tradiction. Hence we conclude that if P and Q are not right 
coprime, R is not an Icrm of M and L .  

2) Next, suppose P and Q are right coprime, we have 
to prove that R is an Icrm of Mand L .  Let R ’ be any other 
nonsingular crm of M and L ,  i.e., R ’  = MP‘  = L Q ‘ .  
Clearly, P ’  is nonsingular. Because P and Q are right co- 
prime, there exist integer matrices A and B such that AP 
+ BQ = Z (generalized Bezout theorem). Replacing Q 
with Q ’ P ’ - I P ,  we can rewrite this as 

(3.4) 

(3.5) 

A P ‘ P ’ - ’ P  + B Q ’ P ’ - ‘ P  = I .  

AP ’  + BQ’ = P - ‘ P ‘ .  

Postmultiplying both sides by P- IP  ’, we get - 
S 

So, P ’  = PS and hence R ’  = RS. From the definition of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A A A  

Remark: The left multiple (lm), common left multiple 
(clm), and least common left multiple (Iclm) can be de- 
fined similarly. All the properties above can also be de- 
rived similarly. 

lcrm, R is indeed an Icrm ( M ,  L ) .  

E. Computation of Lcrm/Lclm Using MFD s 

A method of computing an Icrm/lclm of two nonsin- 
gular matrices can be found in [14, p. 361. However, the 
above-mentioned irreducible MFD’s give us an altema- 
tive. This also gives .a constructive way of proving the 
existence of a nonsingular Icrm/lclm of two nonsingular 
matrices. 

To compute an lcrm of nonsingular M and L ,  we let H 
= M - ’ L  (which is also nonsingular) and compute one 
irreducible right MFD of H as in (3. l ) ,  so we have M - ’ L  
= P I  QF’ where P ,  and Ql  are right coprime. Therefore, 
MPI = L e l .  Denote this as R. Using Theorem 1, we can 
conclude that R is an lcrm ( M ,  L ) .  Similarly, if we let H ’  
= LM-I and compute one irreducible left MFD of it us- 
ing (3.1), then R ’  = P,M = Q 2 L  is an lclm ( M ,  L ) .  

IV. POLY PHASE IMPLEMENTATIONS OF RATIONAL 
SAMPLING RATE ALTERATIONS 

A ID sampling rate alteration system with decimation 
ratio M I L  can be implemented efficiently by using the 

are right coprime. rational ’polyphase implementation (RPI) as in Fig. j ( d ) .  
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For this technique to work, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL should be coprime. 
In this section, we shall extend this technique to the MD 
case, which finds applications in conversions of images 
or video data between different sampling standards. An 
MD decimation system with rational decimation ratio (in 
this case, a matrix) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= L - ‘ M  is shown in Fig. 7. As an 
example, if we choose 

we can convert rectangularly sampled images to hexago- 
nally sampled ones, as shown in [19, fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA61. As in the 
ID case, the MD filter H ( z )  in Fig. 7 is used to suppress 
image components generated by the L-fold expander and 
eliminate aliasing owing to the M-fold decimator. 

We can use the MD polyphase decomposition to imple- 
ment this system more efficiently as in either Fig. 8(a) or 
(b). The numbers of branches in Figs. 8(a) and (b) are 
J ( M )  and J(L) ,  respectively. For simplicity, figures only 
show the case where J ( M )  = 3 and J(L)  = 2. We can 
use the RPI technique to improve the efficiency even fur- 
ther. Fig. 9 shows this by successively redrawing the cir- 
cuit of Fig. 8(a). 

Starting from Fig. 8(a), suppose it is possible to replace 
every kj in r(. ( M )  with Mk,, + Lkj2, where kjl and kr2 are 
some integer vectors. Hence we get Fig. 9(a). With the 
help of Noble identities, Fig. 9(a) can be redrawn as Fig. 
9(b). Next, suppose we can interchange the expanders and 
decimators to obtain Fig. 9(c). We can then perform Type 
2 polyphase decomposition on Ek(Z)’S with respect to L,  
and get Fig. 9(d). In summary, Fig. 9(d) is equivalent to 
Fig. 8(a) but each arithmetic operation is now performed 
at its lowest rate. Note that the filters Ek,(Z) in Fig. 9(d) 
are the ML-fold polyphase components (up to a certain 
delay) of H(z ) .  

To summarize, we can see that the following two issues 
should be considered for the above technique to work: 1) 
Every kj in X ( M )  should be expressed in the form of k, 
= Mkjl + LkIz, where kjl and kj2 are some integer vec- 
tors. 2) The decimators and the expanders should be in- 
terchangeable. 

We shall devote the rest of this section to the proof of 
the following simple and clear statement. 

77zeorem 2: The above two issues are satisfied if and 
only if 1) ML = LM, i.e., M and L commute. 2) M and 
L are coprime. (As we will show, left coprimeness is 
equivalent to right coprimeness when ML = LM.) 

We first deal with the interchangeability of decimators 
and expanders and prove the following theorem. 

Theorem 3: The L-fold expander and the M-fold dec- 
imator can be interchanged if and only if 1 )  ML = LM. 
2) ML is an lcrm ( M ,  L), i .e. ,  ML Icrm ( M ,  L) .  (Given 
ML = LM, this condition can be shown to be equivalent 
to the coprimeness of M and L.  See Theorem 4.) 

Fig. 7. MD rational decimation system 

j, E N(L)  
(b) 

Fig. 8. Two types of polyphase implementations of an MD rational deci- 
mation system. 

Comments: 

1) These two conditions can be easily tested. While the 
test for “ML = L M ”  is straight-forward, the test for co- 
primeness (i.e., the computation of a gcrd/gcld) is also 
easy and can be found in [14], [18], [17]. 

2) In the 1D case, Condition 1 is automatic, and Con- 
dition 2 is equivalent to coprimeness. 

Proof: Consider y1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(n) and y2 (n) in Fig. 10. From 
the definitions of M-fold decimation and L-fold expan- 
sion, we have 

[ : (ML- ’n)  n E LAT (L) 
y , ( n )  = (4.1) 

otherwise 

and 

x(L-’Mn) Mn E LAT (L) 
(4.2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL otherwise. 

y2(n) = 

For y I  (n) to be identical to y2 (n), we should in particular 
have x(ML-’n) = x(L-’Mn) for n E LAT (L). Because 
x(n) is arbitrary, we should have 

ML-’n = L-’Mn V n  E LAT (L). (4.3) 

Since L is not singular, LAT (L) contains D linearly ifi- 

dependent vectors. So, the above implies ML-I = L-IM, 
or, LM = ML. 

In order for y I  (n) = y2(n) ,  we also need 

n E LAT (L) iff Mn E LAT (L) .  (4.4) 

Since Mn is also in LAT ( M ) ,  we know Mn E LAT (L) iff 
Mn E LAT (L) fl LAT ( M ) .  It is shown in the Appendix 
that LAT (L) n LAT ( M )  = LAT (Icrm ( M ,  L)). Let MP 
be an lcrm ( M ,  L). Then, the right-hand side of (4.4) is 
equivalent to Mn E LAT (MP) ,  which is true iff n E LAT 
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Fig. 9. Successive redrawing of polyphase implcmcntations of an MD rational decimation system 

x(n) JM yz(n) 

Fig. IO.  Interchange of an MD decimator and an MD expander zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( P ) .  Comparing this with the left-hand side of (4.4), we 
know that for (4.4) to be true, L and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP should generate 
the same lattice, i.e., L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE P. Then, ML MP and hence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A A A  
Remark: The interchangeability problem was also ad- 

dressed in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ I] for the 2D case for upper triangular M and 
L .  However, the conditions we proved above work for 
any M ,  L and any number of dimensions. In fact, the re- 
sult in [ l ]  is a special case of the results presented here. 

It turns out that when ML = LM, the lcrm/lclm and 
gcrd/gcld (or right/left coprimeness) have very strong re- 
lations, as stated in the following theorem. 

ML should be an lcrm ( M ,  L ) .  

Theorem 4: When ML = LM, the following four state- 

1) ML is an lcrm ( M ,  L ) .  
2) M and L are right coprime. 
3 )  M and L are left coprime. 
4) ML is an lclm ( M ,  L) .  
For the ID case, this theorem simply states “lcm ( M ,  

L )  = ML iff M and L are coprime,” a well-known fact. 
Proofi Let R = ML = LM. Using Theorem 1, we 

know that R is an lcrm ( M ,  L )  iff L and M are right co- 
prime. That is, Statements l and 2 imply each other. Sim- 
ilarly, we can show that Statements 3 and 4 imply each 
other. 

Next, consider Statements 2 and 3.  Let H = ML-‘ = 
L - ‘ M .  If M and L are right coprime, ML-’ is an irre- 
ducible right MFD of H .  Suppose M and L are not left 
coprime. Let X (nonunimodular) be a gcld of M and L,  
i .e., M = XM’ ,  L = XL’ where M‘ and L‘ are left co- 
prime. Then, H = L ’ - ’ M ’  is an irreducible left MFD. 

ments are equivalent: 
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We then have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ(L ' )  < J ( L ) ,  which violates Fact 1 (Sec- 
tion 111-C). Hence, we conclude that Statement 2 implies 
Statement 3. Similarly, we can prove that Statement zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 im- 
plies Statement 2 and this completes the proof. A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA A 

Next, we shall consider the feasibility of expressing 
every k, in X ( M )  in the form of k, = Mk,,  + Lk,2.  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Lemma 2: If M and L are left coprime, then any integer 
vector k can be expressed as k = Mkl  + Lk2 for some k ,  
and k2 E 32. 

Pro08 If M and L are left coprime, there exist P and 
Q such that MP + L Q  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ (generalized Bezout theorem). 
Then, for any k E 32, 

M P k  + L Q k  = k .  (4.5) 

a n n  
Combining Theorems 3, 4, and Lemma 2, we thus 

complete the proof of Theorem 2. We conclude this sec- 
tion with the following result, which is intuitively ap- 
pealing. 

Lemma 3: Suppose M L  = L M .  Then, any lcrm ( M ,  L )  
and any gcrd ( M ,  L )  can be related as lcrm ( M ,  L )  * U . 
gcrd ( M ,  L )  = M L  for some unimodular U .  

Remark: For the 1D case, this nicely reduces to lcm 
( M ,  L )  gcd ( M ,  L )  = ML.  This lemma also holds for the 
lclm and gcld case, i.e., gcld ( M ,  L )  * U lclm ( M ,  L )  
= ML for some unimodular U .  

Proof: Let Y = MP = LQ be an lcrm ( M ,  L ) ,  so P 
and Q are right coprime (Theorem 1). Since ML = LM 
is a crm ( M ,  L ) ,  by the definition of lcrm, M L  = LM = 

MPX = LQX for some integer matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX. We then have L 
= PX and M = QX. Because P and Q are right coprime, 
X is a gcrd ( M ,  L ) .  Clearly, YX = ML.  We know any 
lcrm ( M ,  L )  is a right associate of Y and any gcrd ( M ,  L )  
is a left associate of X. So, we have lcrm ( M ,  L )  . U . 
gcrd ( M ,  L )  = M L  for some unimodular U .  A A A 

- 4 2 -  

ki k2 

V.  MD DELAY-CHAIN SYSTEMS 

A 1D delay-chain system as shown in Fig. 4 is a perfect 
reconstruction (PR) system, i.e., i ( n )  = x ( n ) ,  iff M and 
L are coprime. This is shown in [24], and applications of 
this PR system in the design of filter bank systems can 
also be found therein. We shall now extend this concept 
to the MD case. One potential application of MD delay- 
chain systems is to design MD filter banks where the anal- 
ysis and synthesis filters have a certain symmetry. The 
research about such symmetry is still in progress. 

A MD delay-chain system is shown in Fig. 11. (The 
case of L = Z is most commonly used and is a trivial PR 
filter bank.) We can see that this is a very special case of 
MD maximally decimated filter bank [SI, [2] with J ( M )  
channels, where the analysis and synthesis filters are only 
shift operators (sometimes called "delays") defined as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
H k ( Z )  = Z - L k  and F k ( Z )  = Z L k  for k E X ( M ) .  

(5.1) 

Fig. 1 I .  MD delay-chain ayatem. 

As before, we assume M and L are nonsingular to avoid 
degeneracy. Clearly, Fig. 1 1  is an extension of the 1D 
delay-chain system. 

Using the definitions of decimation and expansion, we 
can write the signal u k ( n )  in Fig. 1 1 for every k E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA32 ( M )  
as follows: 

[:n) n + Lk E LAT(M) 

otherwise. 
(5.2) 

Define " e k  & {nln + Lk E LAT(M)}. Clearly, " e k  is 
obtained by shifting LAT(M) by -Lk .  We can then re- 
draw Fig. 11 as in Fig. 12. From Fig. 12, we can see that 
i ( n )  = x(n)  v n  iff 

U "ek = 32, and f l  " e k  = empty set. (5.3) 

u k ( n )  = 

k6'3?(M) k 6 3 U M )  

It can be verified that the above condition is true iff 

S A {((Lk)),I k E 3 2 ( M ) }  = 32.M).  (5.4) 

From the definition of the modulo notation for integer 
vectors, all the elements in S are also in 3 2 ( M ) .  There- 
fore, (5.4) is true iff all ((Lk)),'s (for k E 3 2 ( M ) )  are 
distinct. We now present the following sufficient condi- 
tion for PR. 

Theorem 5: If LM R Icrm ( L ,  M ) ,  the MD delay chain 
is PR. 

lcrm(L, M ) ,  but the MD de- 
lay chain is not PR, i.e., there exist two different k l ,  k2 E 

% ( M )  such that ((Lkl))M = ((Lk2))M. So, L ( k l  - k,) = 

Mn for some n E 32. Let k = k l  - k2.  Since LAT(LM) 
= LAT (lcrm ( L ,  M ) )  = LAT(L) fl LAT(M) (from the 
Appendix), the above implies Lk = Mn = LMn' for some 
n' E 32. So, k = Mn' .  Because k , ,  k2 E 3 2 ( M ) ,  we can 
let k, = My,, i = 1, 2, wherey, E [0, 1)". So, k = My,  
where y = y, - y, E ( -  1,  1)". Together with k = Mn' ,  
we thus conclude that y = n' = k = 0 (0 stands for the 
zero vector), so k ,  = k2 ,  which leads to contradiction. 

A n a  
However, LM E lcrm ( L ,  M )  is not a necessary con- 

Proof: Suppose LM 

dition. An example is 

It is easily checked that the above choice satisfies 
{( (Lk))MI k E 3 2 ( M ) }  = 3 2 ( M )  (so the system is PR), 
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r\ E Ick,M)-, t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7 

Fig. 12. MD delay-chain system redrawn 

but zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
LM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= [: -:] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5.6) 

is not even an rm of M ,  since M- 'LM is not an integer 
matrix. Furthermore, we can get PR even with some sin- 
gular L's .  For example, when 

we still have 

However, if we assume ML = LM, we can show the 

Theoretn 6: If ML = LM, then the condition LM 
following. 

determinant. (We exclude the case of singular periodicity 
matrices.) 

We shall consider the following question: when an MD 
signal x (n )  with periodicity matrix L is decimated by M ,  
is the output zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy(n) = x(Mn)  periodic? If yes, what is the 
periodicity matrix? In other words, given x(n  + Lk) = 

x (n ) ,  v k  E 32, we want to find P such that y(n + Pk) = 

y(n), Vk E 92. Since y ( n  + Pk) = x(Mn + MPk),  we 
can see that y ( n  + Pk) = y(n) if MPk = Lq for some q 
E 32. Therefore, P is a periodicity matrix of y(n) if 

V k  E 32, 3 q E 32, such that MPk = Lq. (6.1) 

Let k = e,, 1 . . , el, - successively, where e,'s are 
columns of the identity matrix I ,  and collect all the cor- 
responding zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqo, . . * , qn - ,  to form the matrix Q. We see 
that (6.1) is equivalent to 

MP = LQ for some integer matrix Q.  (6.2) 

This equation clearly states that MP = LQ is a crm ( M ,  
L ) .  Thus, P is a periodicity matrix of y ( n )  if P = M- '  
crm ( M ,  L ) .  Clearly, P is not unique. Moreover, using 
the notation of lcrm, we can conclude that the nonsingular 
P which satisfies (6.2) with the smallest absolute deter- 
minant is P = M- '  lcrm ( M ,  L ) .  Note that (6.2) is a 
sufficient condition for P to be a periodicity matrix of 
y(n) .  If further knowledge about .u(n) is available, a pe- 
riodicity matrix with even smaller absolute determinant 
can be found. 

VI.  PERIODICITY MATRICES OF DECIMATED SIGNALS 

It is well known that in ID, a signal with period P is 
also periodic with period PS where S is any nonzero in- 
teger. In MD, a similar fact is true. Let ~ ( n )  have peri- 
odicity matrix P .  If Q = PS, i.e., Q is an rm of P ,  Q is 
also a periodicity matrix ofx(n) (25, p. 121. This is easily 
verified using the definition of periodicity matrices. Since 
the periodicity matrix of an MD signal is not unique, we 
are usually interested in those with the smallest absolute 

x (Mn) .  What can we say about the cyclostationarity of 
y (n ) ' ?  We know E [ y ( n ) ]  = E[x(Mn)]  and R , , ( n ,  m )  = 
E [ y ( n ) y * ( n  - m) ]  = E[x(Mn)x*(Mn - Mm)]  = R,(Mn, 
Mm).  That is, E [ y ( n ) ]  can be obtained by M-fold deci- 
mating E [ x ( n ) ] ,  and R, ,  ( n ,  m)  can be obtained by M-fold 
decimating R, , (n ,  m )  with respect to both n and m .  Using 
the result we obtained for the deterministic case, we can 
conclude that E [ y ( n ) ]  has periodicity matrix P = M - '  
Icrm ( M .  L ) ,  and R, ,  ( n .  m )  also has the same periodicity 
matrix with respect to n. (Note that the decimation with 
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Fig. 13. Decimation of MD signals. 

respect to the second argument zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm is not significant here.) 
Therefore, by the definition of CWSS, we know y(n) is 
(CWSS),,, with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP = M - '  Icrm(M, L ) .  

The above results are summarized in Fig. 13. Note that 
in lD,  these simply reduce to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP = Icm ( M ,  L ) / M  = 

L/gcd ( M ,  L )  1321. 

B. Comments on Fundamental Periodicity Matrices 

As mentioned earlier, the periodicity matrix of an MD 
signal is not unique and we usually are interested in those 
with the smallest absolute determinant. For this reason, 
one defines the fundamental periodicity matrix as follows: 

Dejinition: Po is a fundamental periodicity matrix of 
x ( n )  if 

i) Po is a periodicity matrix of x (n ) .  
ii) Any other periodicity matrix of x (n ) ,  say P ,  can be 

written as P = PoS for some integer matrix S. That 
is, Po is a left divisor of all the periodicity matrices 
of x (n ) .  

It is clear from the above definition that a fundamental 
periodicity matrix of an MD signal is a periodicity matrix 
with the smallest absolute determinant (with singular pe- 
riodicity matrices excluded), and is unique up to post- 
multiplication by a unimodular matrix. The existence of 
a fundamental periodicity matrix is assured by the follow- 
ing lemma: 

Lemma 4: If P and P' are both periodicity matrices of 
x(n) ,  then gcld ( P ,  P ' )  is also a periodicity matrix. 

Proof: Let R denote a gcld ( P ,  P ' ) .  There exist in- 
teger matrices A and B such that PA + P'B = R (exten- 
sion of the Euclid's theorem). We then have 

x(n + Rk) = x(n + P Ak + P' Bk) = ~ ( n )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV k  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA32. 

k'  k" (6 .3)  

A n n  
From the above lemma, we can conclude that, for a 

given MD signal, a gcld of all the periodicity matrices is 
indeed a fundamental periodicity matrix. Since a gcld ex- 
ists, the existence of a fundamental periodicity matrix is 
also guaranteed. 

- - 
So, R is also a periodicity matrix of x ( n ) .  

VII. CONCLUDING REMARKS 

In this paper, we have formulated and solved various 
theoretical issues in multidimensional (MD) multirate sig- 
nal processing, including: the MD polyphase implemen- 
tation technique for rational sampling rate alterations, the 
perfect reconstruction properties for the MD delay-chain 
systems, and the periodicity matrices of decimated MD 
signals (both deterministic and statistical). We have shown 

that all these can be solved with the help of the concepts 
of gcrd, gcld, Icrm, and Iclm, and other related properties 
for integer matrices. Although we are only interested in 
integer matrices, all the properties used here also apply to 
a more general kind of matrices, viz., matrices with ele- 
ments in a principle ideal domain. 

VIII. EMERGING RESULTS FROM OTHER AUTHORS 

After we had submitted this paper for review in August 
1991, we came to realize that the commutativity of MD 
decimators and expanders was also being considered by 
several other research groups. This commutativity prob- 
lem has simultaneously been solved by different groups to 
different degrees. 

Evans, McClellan, and Bamberger found the necessary 
and sufficient conditions of the commutativity to be: i) 
ML = LM and ii) Icrm ( M ,  L )  = MLV where V is a 
unimodular matrix [33]. Also, through electronic mail 
correspondences, we realized that J .  A. Sjogren (AFOSR) 
has also found similar conditions: i) ML = LM and ii) 
the absolute determinant of the generating matrix of the 
intersection lattice LAT ( M )  f l  LAT ( L )  equals 

A similar, but more relaxed, commutativity has also 
been considered. This is shown in Fig. 14. Gopinath and 
Burrus found that when M and L are left coprime, there 
exist M' and L ' ,  which are right coprime, such that the 
system in Fig. 14(a) is equivalent to the one in Fig. 14(b) 
[34]. Also, Kalker found that if M and L are such that the 
absolute determinant of the generating matrix of the in- 
tersection lattice LAT ( M )  n LAT ( L )  equals J(M)J(L) ,  
then there exist M' and L' such that Figs. 14(a) and (b) 
are equivalent [35]. Inspired by this relaxed commutativ- 
i ty, we came up with the following lemma related to 
MFD's. 

Lemma 5: Given matrices M and L ,  we can always find 
M' and L' such that Fig. 14(a) and Fig. 14(b) are equiv- 
alent by computing an irreducible right MFD of L - ' M ,  
i .e. ,  L - ' M  = MIL'- '  and M' and L' are right coprime. 
Conversely, given matrices M' and L' which are right co- 
prime, we can always find M and L such that Figs. 14(a) 
and (b) are equivalent by computing a left MFD of 

Proof: By modifying the proof of Theorem 3 ,  we 
can obtain the conditions for Figs. 14(a) and (b) to be 
equivalent: i) ML' = LM' and ii) ML' (or LM')  is an Icrm 
( M ,  L ) .  Combined with Theorem 1, these conditions are 
equivalent to: i) ML' = LM' and ii) M' and L' are right 

A n n  
Remark: It turns out that we can use this relaxed com- 

mutativity in the RPI technique. Then, whenever M and 
L are left coprime, the RPI technique works. 

It can be verified that all the above mentioned results 
are consistent with our results. Comparison of all these 
results leads to the conclusion that our conditions for 
commutativity ( M L  = LM and M and L are coprime) are 
very explicit and easy to test. 

J ( M )  J ( L ) .  

, i.e., M ' L ' - '  = L- IM.  M'LI- I 

coprime. Then, the above lemma follows. 
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Fig. 14. Relaxed commutativity 
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In this Appendix, we will prove that LAT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( L )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfl LAT 
( M )  = LAT (lcrm ( M ,  L ) ) .  A similar statement can be 
found in [14, p. 38, theorem 24.21 (although the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlcm was 
mistaken to be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgcd, which might be due to a typographical 
error in [ 141). Since the proof of this statement was omit- 
ted in 1141, we will now provide a formal proof. 

The fact that the intersection of two lattices is also a 
lattice (which was called the greatest common submodul 
in [14] and the least common sublattice in [3]) is itself a 
nontrivial issue. To show this, we need the following 
theorem [27], [16]. 

Theorem A l :  A set V of vectors in the D-dimensional 
space is a lattice iff it satisfies all the following three con- 
ditions: 

1) If a E V and b E V, then a + b E V. 
2) V contains D linearly independent vectors. 
3) There exists a positive number zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 such that the zero 

vector is the only vector in V with norm less than 7. 
We use this theorem to show that V = LAT ( L )  fl 

LAT ( M )  is indeed a lattice. Clearly, V satisfies Condi- 
tion 1. To show that it satisfies Condition 2, we consider 
any nonsingular crm of M and L (for example, J ( M ) L ) ,  
say K .  It is easily verified that all the column vectors in 
K are in V and independent. It is also clear that V satisfies 
Condition 3 for any 0 < 7 < 1 ,  since all vectors in V 
have integer elements. 

We will also need the following lemma (a similar state- 
ment can be found in [14, p. 38, theorem 24.11): 

Lemma A l :  LAT ( X )  C LAT ( Y ) ,  i .e. ,  LAT(X) is a 
sublattice of LAT ( Y )  iff X = YP for some integer matrix 
P ,  i.e., X i s  an rm of Y .  
Proof: 

1) If LAT (X) C LAT ( Y ) ,  we have 

vk E 32, 3 p E 32, such that Xk = Yp. (8.1) 

Let k = eo, * * , e D -  (ej ’s are same as in Section VI) 
and collect all the corresponding po ,  * * , p D -  I to form 
the matrix P ,  we get zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX = YP. 

2) Suppose X = YP. Then, x E LAT (X) * x = Xn 
for some integer n *x  = YPn. Since Pn is also an integer 
vector, x E LAT ( U ) .  Hence, we proved LAT (X) C LAT 

We proceed to prove that LAT ( L )  fl LAT ( M )  = 

LAT (Icrm ( M ,  L ) ) .  Let LAT ( L )  f l  LAT ( M )  = LAT 
(X). Because LAT (X) C LAT ( M ) ,  X = MP for some 

( Y > .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA A A  

trix Q. So, Xis a crm ( M ,  L )  and hence an rm of Icrm ( M ,  
L ) .  Using Lemma A1 , we can conclude that LAT (X) c 
LAT (lcrm ( M ,  L ) ) .  On the other hand, let MP = LQ be 
a crm ( M ,  L ) .  Using Lemma A l ,  we know LAT ( M P )  
C LAT ( M j  and LAT (LQ) c LAT ( L ) .  So, we have 
LAT (crm ( M ,  L ) )  C LAT ( M )  fl LAT ( L ) .  Hence, in 
particular, LAT (lcrm ( M ,  L ) )  C LAT ( M )  fl LAT ( L )  
= LAT (X). Therefore, LAT (Icrm ( M ,  L ) )  = LAT (X) 
= LAT ( L )  n LAT ( M ) .  
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