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Abstract

Interleukin-1, an inflammatory cytokine, is considered to have diverse physiological functions and pathological
significances and play an important role in health and disease. In this decade, interleukin-1 family members have
been expanding and evidence is accumulating that highlights the importance of interleukin-1 in linking innate
immunity with a broad spectrum of diseases beyond inflammatory diseases. In this review, we look back on the
definition of “inflammation” in traditional general pathology and discuss new insights into interleukin-1 in view of
its history and the molecular bases of diseases, as well as current progress in therapeutics.
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Background

In terms of general pathology, inflammation is one of the

adaptive responses to various injuries including physical,

chemical, and biological factors. The Roman encyclopedist

A. Cornelius Celsus described four cardinal signs of in-

flammation in one concise sentence: “Now the signs of an

inflammation are four: redness (rubour) and swelling

(tumour), with heat (calour) and pain (dolour)” [1]. A cen-

tury and a half later, Galen added a fifth sign: “disturbance

of function” (funcio laesa) [2]. The classical signs of in-

flammation are considered to be related to cells and tis-

sues responding to pathological cell injury caused by

internal stimuli, including damage-associated products

and metabolites, and external stimuli, including bacteria

and viruses [3–6].

The host bears the receptors that facilitate recognition of

these damage-associated molecular patterns (DAMPs) and/

or pathogen-associated molecular patterns (PAMPs) that

are not host-derived. These receptors are termed pattern

recognition receptors (PRRs) [7]. PRRs directly or indirectly

detect infection and/or noxious chemicals, resulting in in-

flammation that is coupled with the induction of immune

responses and a tissue reparative component [8]. The signal

transduction triggered by these PRRs leads to the acute in-

flammatory mediator expressions that regulate the elimin-

ation of pathogens and infected cells [9, 10].

There are several known PRRs: Toll-like receptors

(TLRs), RIG-I-like receptors (RLRs), NOD-like receptors

(NLRs), and C-type lectin receptors (CLRs). The majority

of NOD-like receptors such as NLRP1, NLRP3, NLRC4,

NLRP6, and NLRP12 can interact with apoptosis-associated

speck-like protein containing a caspase-recruitment do-

main (ASC) and caspase-1, and the resulting complex is a

sensor of cell injury called “inflammasome”, an interleukin

(IL)-1β-processing platform that plays a crucial role in

IL-1β maturation and secretion from cells. Other

pyrin-domain (PYD)-containing proteins such as AIM2,

IFI-16, and pyrin are also known to form inflammasomes.

Among them, NLRP3 inflammasomes monitor membrane

integrity and pore-forming toxins, crystals, and many

other noxious stimuli and are involved in IL-1β processing

and maturation [11–14]. It is now widely accepted that an

inflammatory response is the extreme end of a spectrum

that ranges from a homeostatic state of inflammation to a

stress response and finally inflammation [8, 15]. The

homeostatic state of inflammation, which is not inflamma-

tion from the perspective of general pathology, was sug-

gested to be maintained by PRRs expressed in stromal

and/or immune cells, detecting endogenous ligands in

parenchymal cells and/or pathogens, leading to chronic

inflammatory responses ranging from the basal homeo-

static state to disease-causing inflammation [15, 16]. In

addition to several forms of inflammation including clas-

sical inflammation, homeostatic inflammation, a distinct

nomenclature for low-grade inflammation, such as
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para-inflammation (an adaptive response against stress or

malfunction) and meta-inflammation (metabolically trig-

gered inflammation), has been proposed [17–19]. As dis-

cussed above, there are various factors involved in forms

of inflammation; in particular, since IL-1 is a downstream

cytokine of the sensor of cell injury, the inflammasome, it

is important for regulating inflammation and tissue dam-

age beyond inflammation [20].

Biological functions of interleukin-1
IL-1 is a master regulator of inflammation via controlling

a variety of innate immune processes [21]. From a histor-

ical point of view, IL-1 has a wide range of biological func-

tions, which include acting as a leukocytic pyrogen, a

mediator of fever and a leukocytic endogenous mediator,

and an inducer of several components of the acute-phase

response and lymphocyte-activating factor (LAF) [22, 23].

LAF was later shown to be a macrophage-derived immune

mediator acting on T- and B- lymphocytes and was desig-

nated as IL-1 in the Second International Lymphokine

Workshop held in Switzerland in 1979 [24, 25]. In

addition, serum blocking factors in breast cancer patients

identified by the leukocyte adherence inhibition test were

reported. The serum adherence-promoting factors were

regulated by IL-1 [26–28]. To date, the tumor microenvir-

onment has been characterized by dominant immunosup-

pression, being infiltrated by tumor immunosuppressive

myeloid-derived suppressor cells (MDSCs), regulatory T

cells (Tregs), and tumor-associated macrophages (TAMs)

[29, 30]. IL-1 is capable of inducing the recruitment of

TAMs and MDSCs, which promote tumor development

in breast cancer [31].

Interleukin-1 family members

Currently, human sequence algorithm technologies suggest

that the IL-1 family comprises a total of 11 members with

similar or distinct biological effects [32, 33]. IL-1α, IL-1β,

IL-1Ra, IL-18, IL-33, IL-36α, IL-36β, IL-36γ, IL-36Ra IL-37,

and IL-38 have been identified and characterized (Table 1)

[32]. Among them, IL-1α, IL-1β, IL-18, IL-33, and IL-36

are receptor-agonistic, and IL-1Ra, IL-36Ra, and IL-38 are

receptor-antagonistic. IL-37 is the only anti-inflammatory

cytokine. Although the function of each IL-1 family mem-

ber is now being investigated, IL-1 is the most characterized

among these members.

Molecular mechanism of interleukin-1 activation

There are two individual forms of IL-1, IL-1α and IL-1β,

isolated from two distinct cDNAs, but they are indistin-

guishable in terms of their biological functions [34].

Although the homology between IL-1α and IL-1β is not

high (27%) in terms of amino acid sequences, IL-1α and

IL-1β are structurally similar and show the same functions

by sharing a common receptor, IL-1 type 1 receptor

(IL-1R1), and both have the same central β-barrel along

with adjoining loops [35, 36]. The difference between IL-1α

and IL-1β is an N-terminal extension of 14 residues beyond

the N-terminus of IL-1α and IL-1β [37]. The molecular

weight of each precursor is approximately 31 kDa, and

IL-1α and IL-1β are processed by specific proteases to ma-

ture forms. The N-terminal domain of IL-1α contains a

nuclear localization sequence (NLS) and shows transcrip-

tion activity [38]. IL-1α is produced as a 271-amino acid

(AA) precursor protein. For transcription of the IL-1α gene,

transcription factor specificity protein 1 (Sp1) activates the

IL-1α promoter activity in the 5′-upstream GC box (− 60

to − 45 bp) [39] and NF-κB, which is also activated by

IL-1α itself, and stimulates the consensus promoter region

(− 103 to − 70 bp) to induce its own gene expression and

production in an autocrine manner [40]. The precursor of

IL-1α translocates into the nucleus to bind to chromatin

and also exists in a membrane-anchored form. Upon stress

responses, IL-1α is processed by Ca2+-dependent protease

calpain or other proteases, such as cytotoxic T- lympho-

cytes (CTL)/natural killer (NK)-granzyme-B, mast cell

chymase, or neutrophil elastase to the C-terminal 159 AA

as mature IL-1α [41]. The IL-1α processing separates NLS

from its precursor, which is not linked to secretion or cell

death [21]; however, IL-1α is a key danger signal that in-

duces inflammation on release from necrotic cells [42]. The

IL-1α precursor triggers IL-1R1 on resident macrophages

in necrotic tissues, producing IL-1β as well as chemokines

as post-necrotic inflammation [43].

IL-1β is produced as a 269-AA precursor protein and

processed by caspase-1, which is also known as IL-1β-con-

verting enzyme (ICE), activated in inflammasomes, to the

C-terminal 153 AA as mature IL-1β [11, 12, 34, 44]. The

IL-1β precursor is also processed by other serine proteases

[45]. Neutrophils derived from caspase-1-deficient mice re-

lease mature IL-1β processed by elastase in response to

lipopolysaccharide (LPS) stimulation [46]. The neutrophil

proteases, such as elastase, chymases, granzyme A,

Table 1 The IL-1 family members

IL-1 family members Receptor Property

IL-1α IL-1RI Inflammatory

IL-1β IL-1RI Inflammatory

IL-1Ra IL-1RI IL-1RI antagonist

IL-18 IL-18Rα Inflammatory

IL-33 ST2 Th2 inflammation

IL-36Ra IL-1Rrp2 IL-1Rrp2 antagonist

IL-36α IL-1Rrp2 Inflammatory

IL-36β IL-1Rrp2 Inflammatory

IL-36γ IL-1Rrp2 Inflammatory

IL-37 IL-18Rα Anti-inflammatory

IL-38 IL-1Rrp2 IL-1Rrp2 antagonist
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cathepsin G, and proteinase-3, cleave the IL-1β precursor

into a secreted, biologically active form [47–49]. These al-

ternatively cleaved forms of functional IL-1β were detected

in synovial fluid of a patient with inflammatory polyarthritis

and gout [50]. Occasionally, massive neutrophil infiltration

appeared in excess-inflammation-damaged tissues and

organs, such as in septic shock or systemic inflammatory

response syndrome. Thus, the NLRP3 inflammasome-re-

lated inflammation induced by a variety of factors de-

scribed above may be a target of anti-IL-1 therapy [51].

Currently, a two-step model of the initiation of NLRP3

inflammasome activation is suggested. The first step medi-

ates transcriptional and post-translational priming of

NLRP3 (Step1), and the second step is activation of inflam-

masomes (Step 2). Step 1 is the first synthesis of a biologic-

ally inactive IL-1β precursor by NF-κB binding to the

consensus binding site (− 296 to − 286 bp) to transcribe the

IL-1β gene. Step 2 is processing into mature, biologically

active IL-1β by caspase-1 activated by a cytosolic activation

platform called inflammasome [52, 53]. The inflammasome

is a large protein complex, which consists of PRRs, such as

NLRs, AIM2, RIG-I or pyrin, an adaptor protein ASC, and

caspase-1. Among them, the NLRP3 inflammasome is a

prototype inflammasome, which has been reported to be

activated by a wide range of PAMPs and DAMPs [54, 55].

Various NLRP3-activating PAMPs have been reported, i.e.,

bacteria-derived RNA or DNA, pore-forming toxins, lethal

toxins, flagellin/rod proteins, muramyl dipeptide (MDP),

M2 protein, virus-derived RNA or DNA, fungus-derived

β-glucans, hypha mannan, zymosan, and protozoon-derived

hemozoin [56]. NLRP3-activating DAMPs have also been

reported, i.e., self-derived glucose, β-amyloid, hyaluronan,

ATP, cholesterol crystals, monosodium urate (MSU) crys-

tals, calcium pyrophosphate dihydrate (CPPD) crystals,

environment-derived alum, asbestos, silica, alloy particles,

UV radiation, and skin irritants [56]; however, their diverse

physiological and chemical signals leading to the direct acti-

vation of NLRP3 have not been fully elucidated. Instead, ef-

flux of potassium has been identified as the common

activator of most known NLRP3 step 2 signals [57, 58]. The

NLRP3 activation by potassium efflux suggested to lead

NLRP3-Nek7 interaction to drive inflammasome activation

[59–61]. The mechanism underlying the secretion of IL-1β

has been suggested to overlap with IL-1α secretion [41].

Also, mitochondrial and phagosomal reactive oxygen spe-

cies (ROS) have been proposed to activate the NLRP3

inflammasome. Alternatively, non-canonical pathways of

NLRP3-inflammasome activation associated with proin-

flammatory caspases, caspase-4, caspase-5, and caspase-11

have been proposed. In this process, LPS is recognized by

the caspase-recruitment domain (CARD) of respective cas-

pases, leading to activation [62–65]. Caspase-8 or proteases

in neutrophils are also processed and activate IL-1β. Several

PRRs, such as NLRP1, NLRP3, NLRC4, pyrin, and AIM2,

convert the assembly of the adaptor molecule ASC into a

high-molecular-weight complex, called the pyroptosome

[66]. Then, the caspase-1 precursor is recruited to the pyr-

optosome to also form helical structures, which enable its

proximity-induced proteolytical auto-activation. With

caspase-1 precursor maturation into the active p102/p202

heterotetramer, it cleaves the IL-1β precursor, leading to

pyroptotic cell death. This cell death is mediated by the

caspase-1-dependent cleavage of gasdermin-D (GSDMD)

[67–69]. In turn, the mature N-terminal fragment of

GSDMD translocates to the inner leaflet of the plasma

membrane to form round and pore-like structures of ap-

proximately 15 nm in diameter [70–73].

Tissue distributions of interleukin-1

IL-1α and IL-1β are expressed in a wide range of tissues

and a variety of cells, especially in macrophages in lymph-

oid organs including the thymus, spleen, lymph nodes,

Peyer’s patches, and bone marrow. In non-lymphoid or-

gans, IL-1α and IL-1β are expressed in tissue macrophages

in the lung, digestive tract, and liver. They are also

expressed in cellular subepithelial endometrial tissue of the

uterus, in the glomeruli, in outer cortical areas of the kid-

ney, and in various specific cell types, including neutrophils,

keratinocytes, epithelial and endothelial cells, lymphocytes,

smooth muscle cells, and fibroblasts [74, 75].

Interleukin-1 receptors and subcellular signaling

There are two cell surface IL-1 receptors, IL-1R1 and IL-1

type 2 receptor (IL-1R2), a decoy receptor. IL-1 binds to

IL-1R1, which requires the formation of a heterodimer with

the IL-1 type 3 receptor (IL-1R3) (also known as

IL-1RAcP) accompanied by adaptor IL-1 receptor-associ-

ated kinase (IRAK) and myeloid differentiation primary re-

sponse protein 88 (MyD88) [76]. IL-1R1 initiates

inflammatory responses when binding to the ligands IL-1α

and IL-1β and has been reported to be expressed by T-

lymphocytes, fibroblasts, epithelial cells, and endothelial

cells. IL-1R2, which does not initiate signal transduction, is

expressed in a variety of hematopoietic cells, especially in

B- lymphocytes, mononuclear phagocytes, polymorpho-

nuclear leukocytes, and bone marrow cells. Notably, ex-

pression levels of IL-1R1 and IL-1R2 are different among

the cell types; for example, neutrophils predominantly ex-

press IL-1R2. As a result, much higher concentrations of

IL-1β are required to activate neutrophils, whereas low

concentrations of IL-1β are sufficient to activate endothelial

cells. The IL-1R1-mediated signaling pathways also differ

according to the cell types [77, 78]. IL-1R3 is a co-receptor

for IL-1R1, responsible for signaling after binding ligands

IL-1α and IL-1β, and has been reported to be ubiquitously

expressed by all cells responsive to IL-1. IL-1R3b is a

brain-specific isoform of IL-1R3 generated by alternative
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splicing, and it has been reported to be expressed in the

brain, cerebellum, and spinal cord [79].

Activated IL-1 is incapable of functioning until recognized

by cell surface receptors. The complex contains a motif of

GTPase activity and activates GTPase-activating protein and

protein kinases [80–82]. In contrast, IL-1R2 is thought to re-

duce the biological response to IL-1. The proximity of the

two cytoplasmic domains of IL-1R1 and IL-1R3 is thought

to initiate signal transduction by the hydrolysis of GTP. This

is followed by c-Jun N-terminal kinase (JNK) and p38 MAP

kinase [83]. IRAK and tumor necrosis factor (TNF)

receptor-associated factor (TRAF) 6 activate NF-κB, as well

as p38, JNKs, extracellular signal-regulated kinases (ERKs),

and mitogen-activated protein kinases (MAPKs) [84]. The

NF-κB activation pathway is dependent on the Iκ-B kinase

(IKK) complex, composed of IKKα, IKKβ, and NF-κB essen-

tial modulator (NEMO), via associations with TAK1, TAK2,

TRAF2, and TRAF6 in the IL-1R1-signaling pathway [85].

These signals play important roles in both acute and chronic

inflammation in various diseases [86].

Interleukin-1 and diseases

Autoinflammatory diseases

Single nucleotide mutation of the CIAS1 gene results in

NLRP3 mutation, which induces constituted inflammasome

activation causing cryopyrin-associated periodic syndrome

(CAPS). This is termed autoinflammatory disease, including

familial cold autoinflammatory syndrome (FCAS), Muckle–

Wells syndrome (MWS), and neonatal-onset multisystem

inflammatory disease (NOMID)/chronic infantile neuro-

logic, cutaneous, and arthritis (CINCA) syndrome, which

leads to greater IL-1β secretion without any DAMPs or

PAMPs [87–92]. The most common autoinflammatory dis-

ease is Familial Mediterranean fever (FMF). FMF is auto-

somal recessive; however, mutations in the causative MEFV

gene, encoding mutated pyrin, leads to active pyrin inflam-

masome [93]. Inflammatory diseases like those above, char-

acterized by the enhanced secretion of IL-1β, include a

group of autoinflammatory diseases such as NLRP12 auto-

inflammatory syndrome; hyperimmunoglobulinemia D and

periodic fever syndrome (HIDS)/mevalonate kinase defi-

ciency (MKD); pyogenic arthritis, pyoderma gangrenosum,

and acne (PAPA) syndrome; pyoderma gangrenosum, acne,

and suppurative hidradenitis (PASH) syndrome; pyogenic

arthritis, acne, pyoderma gangrenosum, and suppurative

hidradenitis (PAPASH); Majeed syndrome; and TNF-recep-

tor-1-associated syndrome (TRAPS) [93–100]. On

deficiency of the IL-1-receptor antagonist (DIRA), excess

IL-1β induces other proinflammatory cytokines and che-

mokines [101].

Metabolic syndromes

Excess stress responses disrupt body homeostasis under

physiological conditions and lead to excess cytokine

production. NLRP3 inflammasomes have also been re-

ported to be involved in low-grade subclinical inflammation

induced by chronic exposure to high levels of free fatty

acids and glucose, leading to increased apoptosis and im-

paired insulin secretion of β-cells in obese type 2 diabetes

mellitus (T2D) patients [102–104]. Indeed, islet amyloid

polypeptide (IAPP) oligomers activated NLRP3 inflamma-

somes to induce significant IL-1β production by infiltrating

macrophages in an in vivo study [105, 106]. Higher concen-

trations of glucose activate NF-κB and IL-1 precursors in

cells [102]. Minimally oxidized low-density lipoproteins

stimulate TLR4, which triggers IL-1β expression [104, 105],

and accumulations of islet amyloid polypeptides are depos-

ited and mediate NLRP3 inflammasome activation in islet

macrophages [107]. Another oligomer of amyloid, amyloid

β, can induce IL-1β via NLRP3 inflammasomes in a process

involving the phagocytosis of amyloid β in glial cells in pa-

tients with Alzheimer’s disease (AD) and subsequent lyso-

somal damage and release of cathepsin B [108]. ROS are

considered to be involved in the activation of NLRP3

inflammasomes, and it was suggested that direct interaction

between amyloidogenic peptide and NLRP3 could initiate

NLRP3 inflammasome formation in a cell-free system [109,

110]. Both IL-1α and IL-1β gene polymorphisms have been

reported to be associated with central obesity and metabolic

syndrome in a population with coronary heart disease in an

epidemiologic study [111]. Thus, these diseases are IL-1-

dependent cytokinopathies (interleukinoneopathies).

Acute inflammation

Besides the above diseases, numerous inflammatory dis-

eases related to excess IL-1 signaling have also been identi-

fied [112–114]. For example, high IL-1β levels in humans

and mice result in increased Th17-dominant immunopa-

thology, and IL-1β expression was limited to macrophages

and neutrophils, which account for a large proportion of

the CD45α cells in the cervix upon Chlamydia muridarum

infection [115]. Consequently, IL-1β promotes the differen-

tiation of monocytes into conventional dendritic cells

(DCs) and M1-like macrophages and supports the prolifer-

ation of activated B- lymphocytes and their differentiation

into plasma cells [116–118]. IL-1 in combination with IL-2

promoted not only the expansion of NK cells but also

CD4+ CD8+ T-lymphocytes [119]. IL-1β generated by acti-

vated antigen-presenting cells (APCs) induced type 1 im-

mune responses, which produced CTL and led to the

polarization of CD4+ T -lymphocytes towards T-helper cell

type 1 (Th1) [120, 121].

Chronic inflammation and malignancy

IL-1β plays a role in resolving acute inflammation resulting

in the initiation of adaptive anti-tumor responses; however,

chronic inflammatory conditions increase the risk of devel-

oping cancer [122]. In human breast cancer, higher
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expression of IL-1β is associated with tumor invasiveness

and aggressive tumor biology [123]. Expression of IL-1α,

IL-1β, and their receptors in human breast cancer tissues

results in the activation of a population of cells and subse-

quently contributes to angiogenesis, tumor proliferation,

and tumor invasion in the microenvironment [124]. In a

spontaneous MMTV-PyMT mouse mammary gland tumor

model, mature IL-1β levels in primary mammary tumors

and metastasis sites were significantly elevated, being asso-

ciated with inflammasome activation and the infiltration of

myeloid cells in tumor microenvironments. In this model,

CD11b+Gr1+ and CD11b+Gr1− myeloid cell populations

were also significantly increased in both tumor tissues [31].

IL-1β generated in a tissue with a tumor microenvironment

dominated by TAMs promotes tumor growth and metasta-

sis in breast cancer [122, 125]. IL-1, by promoting MDSCs

and sustaining the immunosuppressive activity of TAMs,

contributes to the suppression of effective adaptive

anti-tumor immune responses [126]. Actually, the sphingo-

lipid sphingosine-1-phosphate (S1P) on TAMs promotes

lymphangiogenesis and lung metastasis via NLRP3/IL-1β in

mouse breast cancer model [127]. For example, obesity

induces an increase in tumor-infiltrating MDSCs with acti-

vated NLRC4 inflammasome, leading to IL-1β production,

which drives tumor progression through adipocyte-medi-

ated vascular endothelial growth factor (VEGF) A

expression and angiogenesis [128]. A recent report showed

that IL-1β orchestrates tumor-promoting inflammation in

patients with high-risk HER2-negative breast cancer who

would benefit from IL-1-blocking therapeutics with ana-

kinra (described later on). The report indicates that while

anakinra downregulates gene expressions for IL-1β, IL-1R1,

IL-1R2, and IL-1R3, increased gene expressions of NK cells

and CTLs are observed [129].

Interleukin-18 and diseases

Although IL-1 has been well-characterized, IL-18 and other

IL-1 family members have been less comprehensively inves-

tigated. IL-18 can be processed by caspase-1 and

proteinase-3 as well as IL-1β, to be activated [130–132].

Considering the pathogenesis of IL-1-related diseases,

IL-18 could be involved [133].

IL-18 was originally identified as interferon (IFN)-γ-indu-

cing factor [134]. IL-18 is the most structurally related to

IL-1β. IL-18 is synthesized as a 24-kDa inactivated precur-

sor and is cleaved by caspase-1 to a biologically active

17-kDa mature form [131, 132]. Although IL-1β is biologic-

ally active within the pg/mL range, IL-18 requires 10–20

ng/mL and sometimes higher levels for in vitro activation

[135, 136]. Since the IL-18 precursor is expressed ubiqui-

tously in tissues [137], IL-18 signaling is thought to be reg-

ulated concentration-dependently. Mature IL-18 forms a

signaling complex with the IL-18 receptor alpha chain

(IL-18Rα) with low affinity. If the cell expresses an IL-18

receptor β chain (IL-18Rβ), a high affinity complex is

formed like the IL-1R accessory chain IL-1R3. The complex

of the heterodimer recruits MyD88 through the Toll-IL-1

receptor (TIR), four IRAKs, and TRAF-6, leading to the

degradation of I-κB and activation of NF-κB, as that for

IL-1 signaling [83].

IL-18 is involved in regulation of the Th1 response by

modulating the production of IFN-γ. For example, in syn-

ergy with either IL-12 or IL-15, which upregulates the ex-

pression of the IL-18Rβ co-receptor, IL-18 induces the

production of IFN-γ by T cells [138]. IL-18 induces IFN-γ

production by NK cells, and NK cells express CCR7 and

produce high levels of IFN-γ [139]. The combination of

IL-18 and IL-12 induced high levels of IFN-γ upon

hypoglycemia, intestinal inflammation, and inanition [140].

Some human autoimmune diseases are associated with the

elevated production of IFN-γ and IL-18. Autoimmune dis-

eases such as systemic lupus erythematosus, rheumatoid

arthritis (RA), type-1 diabetes mellitus, Crohn’s disease and

psoriasis, and graft versus host disease are thought to be

mediated by IL-18 [141]. So far, several anti-IL-18 therapies

have been reported. An anti-IL-18, multicenter, random-

ized, single-blind, placebo-controlled, parallel-group, phase

IIa trial for the treatment of T2D was reported whereby

anti-IL-18 monoclonal antibody, GSK1070806, was

well-tolerated; however, the anti-IL-18 therapy did not lead

to any improvements in glucose control [142]. Interleukin-

18 binding protein (IL-18BP) was purified from urine by

chromatography on IL-18 beads that abolished IL-18 in-

duction of IFN-γ, IL-8, and activation of NF-κB in vitro

[143]. The IL-18 inhibition using IL-18BP significantly de-

creased MDSCs in the tumor microenvironment in a

preclinical osteosarcoma mouse model [144]. IL-18BP

(Tadekinig α®) was successful in the treatment of Still’s dis-

ease and NLRC4-mutated autoinflammatory macrophage

activation syndrome (MAS), for which anti-IL-1 treatment

had failed [145, 146].

Biologics against interleukin-1 signaling and their

applications

Several inhibitors of IL-1 signaling have been clinically

approved (Fig. 1).

Anakinra

One is a recombinant human intrinsic IL-1 receptor antag-

onist (IL-1Ra), anakinra [147]. Anakinra is the pharmaceut-

ical name of a recombinant form of intrinsic human

IL-1Ra, a 17.2-kDa protein consisting of 153 amino acid

residues. IL-1Ra was first reported in 1985 as a bioactive

IL-1 inhibitor of 22–25 kDa in the supernatants of human

monocyte culture, and it was independently identified as an

IL-1 inhibitor from the urine of febrile patients [148, 149].

Anakinra was the first biological drug of a selective IL-1R1

antagonist to receive approval from the US Food and Drug
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Administration (FDA). Since anakinra is an IL-1 receptor

antagonist, it can prevent the activity of both IL-1α and

IL-1β by competitively blocking their binding to IL-1R1

and IL-1R2. Anakinra has been applied for a wide range of

diseases including autoinflammatory diseases, non-cancer

inflammatory diseases, and malignancies [150]. To date, no

serious adverse effect of anakinra has been reported [151].

Rilonacept

Another is rilonacept (ril on’ a sept), a soluble decoy re-

ceptor (Fig. 1). Rilonacept is a recombinant fusion pro-

tein consisting of the extracellular portion of human

IL-1R1 and IL-1R3 fused with the Fc portion of human

IgG1 [152–154]. Rilonacept binds to both IL-1α and

IL-1β with high affinity and inhibits the activity of both

with a long-term inhibitory effect. Rilonacept was first

approved by the FDA for the treatment of CAPS in

2008. Subcutaneous injection with a loading dose and a

weekly injection of half the loading dose was adminis-

tered [154]. There are no known severe adverse effects

of rilonacept due to IL-1 signaling inhibition. These

drugs could modulate the immune response. The most

common side effects (> 10% of treated patients) are

inflammation of the upper respiratory tract or sinuses,

headache, and redness at the injection site [154].

Canakinumab

The third is canakinumab (Fig. 1). Canakinumab, a specific

human monoclonal IgG1 antibody targeting IL-1β, is intra-

venously or subcutaneously infused to neutralize the bio-

activity of human IL-1β [155, 156]. Canakinumab does not

react with IL-1α or IL-1R1. Therefore, canakinumab is a

more specific inhibitor of IL-1β, expected to have no effect

on IL-1α-dependent host defense [154]. Early clinical trials

established the administration of canakinumab every 2

weeks as safe and effective against several inflammatory dis-

eases [155, 156].

MABp1

There are several agents currently undergoing clinical trials.

IL-1α production is a very early step in the sterile inflam-

matory response at the center of the malignant phenotype

that drives angiogenesis, tumor stromal remodeling, tumor

invasiveness, metastasis, and cachexia [150, 157–159].

Thus, IL-1α may be a particularly important target for the

treatment of cancer. A neutralizing true human IgG1κ

a b

dc

Fig. 1 Interleukin-1 receptors and inhibitors of IL-1 signaling. a IL-1R1 interacts with both IL-1α and IL-1β and promotes signal transduction, together with
its co-receptor IL-1R3 (IL-1RAcP). IL-1Ra is a protein that binds to IL-1R1 but not IL-1R3, and it is as an inhibitor of IL-1 signaling. IL-1R2 is a decoy receptor
because it lacks a cytoplasmic segment. b Anakinra is a recombinant form of intrinsic human IL-1Ra. It works as an antagonist of IL-1R1, and it is able to
inhibit both IL-1α and IL-1β. c Rilonacept is a recombinant fusion protein including the extracellular protein of human IL-1R1 and IL-1R3 fused with the Fc
portion of human IgG1. It binds to both IL-1α and IL-1β with high affinity and has a long-term inhibitory effect. d Canakinumab and MABp1 are
monoclonal antibodies against IL-1β and IL-1α, respectively. They bind to and neutralize their targets specifically
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monoclonal antibody specific for human IL-1α, MABp1,

has been developed, and it was well-tolerated with no

dose-limiting toxicities or immunogenicity [160, 161]

(Fig. 1). MABp1 treatment for patients with advanced

colorectal cancer in a randomized, double-blind, placebo-

controlled, phase 3 study revealed that MABp1 improved

clinical performance in patients with advanced colorectal

cancer [161]. MABp1 is a promising treatment for patients

with hidradenitis suppurativa not eligible for the anti-

TNF-α antibody adalimumab [162].

Gevokizumab

Gevokizumab is an anti-IL-1β monoclonal antibody, IgG2,

which improved glucose control and β-cell function in a

diet-induced-obesity mouse model [163] and in the pres-

ence of IL-1β-driven inflammatory diseases [164].

LY2189102

LY2189102 is a humanized monoclonal antibody (IgG4) that

binds to IL-1β to neutralize its activity. Its affinity is com-

paratively high (2.8 pmol/L). Previous clinical studies evalu-

ated not only its safety and pharmacokinetics but also its

effects on RA (NCT00380744). Weekly treatment of T2D

patients with LY2189103 for 3months resulted in modest

reductions in glycated hemoglobin and blood glucose [165].

Population pharmacokinetics (PK) of LY2189102 were char-

acterized using data from 79 T2D subjects (Study

H9C-MC-BBDK) who received 13 weekly subcutaneous

doses of LY2189102 (0.6, 18, and 180mg) and 96 RA sub-

jects (Study H9C-MC-BBDE) who received five weekly

intravenous (IV) doses (0.02–2.5mg/kg) [166]. No add-

itional study has been reported.

AMG 108

AMG 108 is a fully human, IgG2 monoclonal antibody that

binds to human IL-1R1, inhibiting the activity of IL-1α and

IL-1β [167]. Patients with osteoarthritis received placebo or

AMG 108 subcutaneously (SC, 75 or 300mg) or intraven-

ously (IV, 100 or 300mg) once every 4weeks for 12weeks or

received placebo or 300mg AMG 108 SC, once every 4

weeks for 12weeks; however, there was non-significant but

numerically greater improvement in pain compared with the

placebo group based on WOMAC pain scores [168].

AMG108 is now termed MEDI-8968 which has been studied

in not only osteoarthritis, but also chronic obstructive pul-

monary disease. In all cases, the benefit is limited [168, 169].

EBI-005

EBI-005 is a protein chimera of IL-1β and IL-1 receptor an-

tagonists (IL-1Ra or anakinra). EBI-005 binds to IL-1R1

and inhibits IL-1 signaling and has been studied for the

treatment of ocular surface inflammatory diseases [170].

VX-765

Since IL-1β is known to be processed and activated by

caspase-1, caspase-1 could be an indirect target for IL-1β

signaling. To examine this, the highly selective caspase-1

inhibitor VX-765 was applied to a rat model of myocardial

infarction (MI) and mouse model of AD [171, 172].

Applications of IL-1 blockade for diseases

For autoinflammatory diseases

The recombinant human IL-1-receptor antagonist ana-

kinra is markedly effective against CAPS such as MWS,

FCAS, and NOMID/CINCA. Weekly rilonacept treatment

markedly improved the clinical symptoms of CAPS and

normalized the levels of SAA in those at risk of developing

amyloidosis [90, 153, 173, 174]. In several case reports of

patients with FMF, anti-IL-1 treatment with anakinra,

canakinumab, or rilonacept in colchicine-resistant patients

was highly effective [175–178]. It was also reported that

there was a rapid and lasting response of pyoderma gang-

renosum to targeted treatment with anakinra in a patient

with PAPA syndrome [179]. Anakinra and canakinumab

therapies were also reported to be effective in patients with

MKD/HIDS [180]. In the case of TRAPS, although TNF-α

is considered to be mainly involved in clinical manifesta-

tions, marked improvement following IL-1β blockade oc-

curred [112, 181]. An open-label, phase II study was

reported whereby 19 patients with active recurrent or

chronic TRAPS (19/20, 95%; 95% CI 75.1% to 99.9%)

achieved the primary efficacy endpoint. Canakinumab

treatment for TRAPS rapidly improved the median time to

clinical remission to 4 days (95% CI 3 to 8 days) [182]. Skin

findings also promptly improved upon anakinra treatment

in a patient with DIRA [183]. Monotherapy involving cana-

kinumab for the treatment of FMF has been reported

[184]. A nationwide report on IL-1 treatment of patients

with FMF revealed that 172 FMF patients (83 [48%] female;

mean age, 36.2 years [range, 18–68]) were included; the

mean age at onset was 12.6 years (range, 1–48), and the

mean colchicine dose was 1.7mg/day (range, 0.5–4.0).

Anakinra was administered to 151 patients, and canakinu-

mab was administered to 21 patients. Anti-IL-1 treatment

was used in 84% of colchicine-resistant patients and 12%

of amyloidosis patients. During the mean of 19.6months of

treatment (range, 6–98), the attack frequency per year was

significantly decreased (from 16.8 to 2.4; P < 0.001), and

symptoms of 42.1% of colchicine-resistant patients with

FMF were ameliorated. In this study, the complete remis-

sion rate was 40% and inefficacy rate was 8% in patients

treated with anakinra, whereas the complete remission rate

was 65% and inefficacy rate was 6% for patients treated

with canakinumab [185]. Although the response rates were

not significant (P = 0.144 and χ2 = 3.872606) in the study

above [185], in our opinion, long-acting canakinumab may
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be more efficacious than anakinra, considering the neces-

sity of daily subcutaneous anakinra injection because of its

short half-time clearance of less than 12 h [185].

For miscellaneous autoinflammatory diseases

There are suspected etiologies of autoinflammatory disor-

ders, but all lack a known genetic basis. In patients with

adult-onset Still’s disease (AOSD), anakinra monotherapy is

significantly effective and has become the standard therapy,

especially in prednisone-resistant patients. Commercially

available anti-IL-1 agents (anakinra/Kineret®, canakinumab/

Ilaris®, or rilonacept/Arcalyst®) for patients with treatment-

resistant AOSD are effective. Canakinumab and anakinra

were also effective for patients with Schnitzler syndrome, an

adult-onset autoinflammatory disease characterized by focal

urticaria and systemic inflammation including fever with

bone and muscle pain, in the first placebo-controlled study,

and several clinical trials are currently ongoing [186–189].

For autoimmune diseases

IL-1 blockade therapy using anakinra is successful in pa-

tients with psoriatic arthritis, ankylosing spondylitis, and

RA. On the other hand, its efficacy and safety are insuffi-

cient, precluding use for patients with systemic lupus erythe-

matosus or Sjögren syndrome, and IL-1β inhibition using

canakinumab had no effect on the decline in β-cell function

after diabetes onset in patients with type 1 diabetes mellitus

resulting from autoimmune-mediated β-cell loss [190–194].

As for RA, the enhanced release of other proinflammatory

cytokines such as TNF-α and IL-6 plays important roles in

the inflamed synovium of RA patients [195]. In patients for

whom TNF-α blockers are contraindicated, anakinra is ef-

fective in controlling the disease activity of RA and has been

licensed for treatment at a dose of 100mg/day by subcuta-

neous injection every day [196, 197]. Compared with ana-

kinra, TNF inhibitors, such as the anti-TNF-α monoclonal

antibody infliximab, or etanercept that fuse the TNF recep-

tor to the end of the IgG1 antibody, dominate the field of bi-

ologics for RA because of the sense of well-being

experienced by patients within hours of treatment [198].

Tocilizumab, a humanized anti-IL-6 receptor (IL-6R) mono-

clonal antibody, has also been shown to improve the symp-

toms of patients with RA [199]. However, those agents are

associated with the risk of reactivating bacterial pathogens

such as tuberculosis (TB) and malignancies [197]. Notably,

no cases of TB reactivation were reported in 7964 RA pa-

tients after anakinra treatment, whereas 8 cases of TB reacti-

vation were reported in 10,281 RA patients after

tocilizumab treatment, and 7 and 10 cases of TB reactivation

were reported in 2626 and 3167 RA patients after TNF-in-

hibitor treatment with golimumab and certolizumab pegol,

respectively. This suggests the low risk of TB reactivation in

RA patients treated with anti-IL-1 therapy [197].

For infectious diseases

Anakinra is safe and may be associated with a dose-related

survival advantage in patients with septic shock syndrome

complicated by acute respiratory distress syndrome, dis-

seminated intravascular coagulation, and renal dysfunction,

and subsequent secondary hemophagocytic lymphohistio-

cytosis (HLH), or macrophage-activating syndrome (MAS)

[200, 201]. For sepsis with MAS, anakinra treatment led to

significant improvements in hepatobiliary dysfunction and

disseminated intravascular coagulation in patients (65.4%

anakinra vs. 35.3% placebo) and the 28-day survival rate,

with the hazard ratio for death being 0.28 (0.11–0.71; p =

0.0071) for the treatment group on Cox regression. The

data included 763 adults in the original study cohort,

randomized to receive either anakinra or placebo [202].

For metabolic syndromes

IL-1 inhibition by anakinra, rilonacept, or canakinumab is

efficacious for gout patients [203]. IL-1 plays a role in the

progression of atherosclerosis as well [204]. In patients with

a history of MI, canakinumab significantly reduced the

high-sensitive serum CRP concentration from the baseline,

as compared with a placebo, without affecting the

LDL-cholesterol concentration. A 150-mg dose of canaki-

numab resulted in a significantly reduced risk of recurrent

cardiovascular events compared with a placebo [205]. The

inhibition of IL-1 with anakinra improved glycemia and the

pancreatic β-cell function and reduced systemic inflamma-

tion [205]. Although IL-1β inhibition with canakinumab

had similar effects on major cardiovascular events among

those with and without diabetes, treatment over a median

period of 3.7 years did not reduce incident diabetes [206].

The blockade of IL-1 with anakinra improved glycemia and

the β-cell secretory function and reduced markers of sys-

temic inflammation [104]. Anakinra also prevented trans-

thyretin extracellular deposition in the sciatic nerve in a

familial amyloidotic polyneuropathy mouse model [207].

For ischemic diseases

During ischemic disease, such as MI or cerebral infarction,

or tissue injury, cell death by necrosis takes place and the

IL-1α precursor is released in sterile inflammation [208].

When there is no time for the synthesis of IL-1α, IL-1α is

ready to function as soon as it leaves the dying cell in the

first few hours following tissue ischemia or injury [209]. In

fact, animal studies showed that the inhibition of IL-1 is

effective in limiting atherosclerosis and cardiovascular

events and improving the symptoms of acute MI and is-

chemic stroke [210, 211]. Two pilot studies of IL-1 inhib-

ition in ST-segment elevation MI revealed a reduced acute

inflammatory response and favorable overall performance

at the 3-month follow-up [212].
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For malignant diseases

IL-1β is thought to play an important role in cancer invasive-

ness, progression, and metastases via inflammation in the

tumor microenvironment. A further analysis in the Canaki-

numab Anti-inflammatory Thrombosis Outcomes Study

(CANTOS), a randomized trial of the role of inhibition of

IL-1β in atherosclerosis, revealed that anti-inflammatory

therapy with canakinumab targeting the IL-1β innate

immunity pathway could significantly reduce lung cancer

mortality [213]. Moreover, treatment of patients with meta-

static breast cancer-related with anakinra eliminates a

systemic transcriptional signature of IL-1-associated inflam-

mation in blood cells. The inflammatory signature in primary

breast cancers identifies a subset of patients that could po-

tentially benefit from IL-1β-targeted therapies [129].

Safety profiles

Safety profiles of both anakinra and canakinumab were

reported [214]. In this study, several clinical and

therapeutic data on patients treated with either anakinra

or canakinumab were retrospectively analyzed. Four

hundred and seventy-five patients participated; anakinra

and canakinumab were prescribed in 421 and 105 treat-

ment courses, respectively. Eighty-nine adverse events

were recorded; 13 (14.61%) were classified as serious

adverse events during a mean follow-up of 24.39 ± 27.04

months. [214]. In addition, anakinra is applied to

metastatic cancer. A trial involving metastatic colorectal

cancer patients showed significantly increased survival

when anakinra was added to standard chemotherapy for

colorectal cancer and patients with HER2-negative

breast cancer [129, 215]. The IL-1 blockade will reduce

IL1-driven inflammation and immunosuppression

that may contribute to the tumor metastatic

Fig. 2 Timeline of anti-IL-1 therapy as described in the text. RA,
rheumatoid arthritis; MWS, Muckle–Wells syndrome; CAPS, cryopyrin-
associated periodic syndrome; FMF, familial Mediterranean fever; HIDS,
hyper-IgD syndrome; TRAPS, TNF-receptor-1-associated periodic
syndrome, AOSD, adult-onset Still’s disease; SjiA, systemic juvenile; T2D,
type 2 diabetes mellitus; HLH, hemophagocytic lymphohistiocytosis;
MOF, multiple organ failure; MAS, macrophage-activating syndrome; MI,
myocardial infarction

Table 2 Effective anti-IL-1 therapy for inflammatory diseases

Autoinflammatory diseases:

Cryopyrin-associated periodic syndrome (CAPS) [87, 88]

Familial Mediterranean fever (FMF) [95]

Pyogenic arthritis, pyoderma gangrenosum and acne syndrome
(PAPA) [96]

NLRP12 autoinflammatory syndrome [97]

Tumor necrosis factor receptor-1-associated syndrome (TRAPS) [100]

Hyperimmunoglobulinemia D and periodic fever syndrome (HIDS)/
mevalonate kinase deficiency (MKD) [180]

Deficiency of the interleukin-1-receptor antagonist (DIRA) [183]

Autoimmune diseases:

Psoriatic arthritis [191]

Ankylosing spondylitis [192]

Rheumatoid arthritis (RA) [196]

Metabolic syndrome:

Gout [203]

Atherosclerosis [204]

Type 2 diabetes mellitus (T2D) [204]

Amyloidosis [207]

Neurodegenerative disease:

Alzheimer’s disease (AD) [111]

Infections and inflammatory responses:

Septic shock syndrome [199]

Acute respiratory distress syndrome (ARDS) [199]

Disseminated intravascular coagulation (DIC) [199]

Hemophagocytic lymphohistiocytosis (HLH) [200]

Macrophage-activating syndrome (MAS) [200]

Ischemic diseases:

Myocardial infarction (MI) [209]

Stroke [209]

Malignant rumor:

Breast cancer [129]
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microenvironment [216]. The timeline of therapeutics is

summarized in Fig. 2.

Conclusions
We described IL-1 as an important cytokine for not only

inflammation related to cell injury but also homeostasis

of cells, tissues, and organs in view of the general path-

ology. In addition, we also described recent expanding

IL-1 signal-targeting for the treatment of diseases. Once

the balance of IL-1 signaling is disrupted, it may mark-

edly contribute to the pathogenesis of not only inflam-

matory disease, but also malignancies. IL-1-targeted

biologics have been expanding, as there are no known

serious adverse effects such as lymphoproliferative dis-

order or virus reactivation like TNF or IL-6-targeting

therapies. Therefore, IL-1 is expected to become an at-

tractive molecular target to treat a wide range of diseases

such as autoinflammatory diseases, autoimmune dis-

eases, infectious disease, metabolic syndromes, ischemic

diseases, and malignant tumors [217, 218] (Table 2).
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