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Abstract

In this study, we investigated the hypotheses that in human
intervertebral disc (IVD) degeneration there is local production
of the cytokine IL-1, and that this locally produced cytokine can
induce the cellular and matrix changes of IVD degeneration.
Immunohistochemistry was used to localize five members of the
IL-1 family (IL-1α, IL-1β, IL-1Ra (IL-1 receptor antagonist), IL-1RI
(IL-1 receptor, type I), and ICE (IL-1β-converting enzyme)) in
non-degenerate and degenerate human IVDs. In addition, cells
derived from non-degenerate and degenerate human IVDs were
challenged with IL-1 agonists and the response was
investigated using real-time PCR for a number of matrix-
degrading enzymes, matrix proteins, and members of the IL-1
family.

This study has shown that native disc cells from non-degenerate
and degenerate discs produced the IL-1 agonists, antagonist,
the active receptor, and IL-1β-converting enzyme. In addition,

immunopositivity for these proteins, with the exception of IL-
1Ra, increased with severity of degeneration. We have also
shown that IL-1 treatment of human IVD cells resulted in
increased gene expression for the matrix-degrading enzymes
(MMP 3 (matrix metalloproteinase 3), MMP 13 (matrix
metalloproteinase 13), and ADAMTS-4 (a disintegrin and
metalloproteinase with thrombospondin motifs)) and a decrease
in the gene expression for matrix genes (aggrecan, collagen II,
collagen I, and SOX6).

In conclusion we have shown that IL-1 is produced in the
degenerate IVD. It is synthesized by native disc cells, and
treatment of human disc cells with IL-1 induces an imbalance
between catabolic and anabolic events, responses that
represent the changes seen during disc degeneration.
Therefore, inhibiting IL-1 could be an important therapeutic
target for preventing and reversing disc degeneration.

Introduction
Low back pain is a common, debilitating, and economically

important disorder. Current evidence implicates loss of

intervertebral disc (IVD) matrix consequent upon disc 'degen-

eration' as a major cause of low back pain [1]. Although many

treatments aimed at relieving back pain are directed towards

the degenerate IVDs (e.g. removal of protruding disc material,

disc replacement, etc.), none of these are aimed at the proc-

esses of degeneration. Modern advances in therapeutics, par-

ticularly cell and tissue engineering, offer potential methods for

inhibiting or reversing IVD degeneration that have not previ-

ously been possible, but they require a level of understanding

of the pathobiology of degeneration of the IVDs that is not cur-

rently available [2].

Degeneration is characterized by increased degradation of the

normal IVD matrix by locally produced matrix metalloprotein-

ases (MMPs) and ADAMTS (a disintegrin and metalloprotein-

ase with thrombospondin motifs) [3-6]. In addition, the nature

of the matrix produced in the degenerate IVDs differs from that

in normal IVDs, as a consequence of switches in the produc-

tion of collagen within the inner annulus fibrosus (IAF), and

nucleus pulposus (NP) from type II to type I [7] and in the syn-

thesis of proteoglycan from aggrecan [8] to versican, biglycan,

and decorin [9,10]. The resultant changes within the

ADAMTS = a disintegrin and metalloproteinase with thrombospondin motifs; AF = annulus fibrosus; DMEM + F12 = Dulbecco's modified Eagle's 
medium and Ham's F12 nutrient medium; EDTA = ethylenediaminetetraacetic acid; GAPDH = glyceraldehyde-3-phosphate dehydrogenase; H&E = 
haematoxylin and eosin; IAF = inner annulus fibrosus; ICE = IL-1β-converting enzyme; IL-1 = interleukin-1; IL-1Ra = IL-1 receptor antagonist; IL-RI = 
IL-1 receptor, type I; IVD = intervertebral disc; MMP = matrix metalloproteinase; NP = nucleus pulposus; OAF = outer annulus fibrosus.
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extracellular matrix have a number of consequences, resulting

in loss of structural integrity, decreased hydration, and a

reduced ability to withstand load.

Similar matrix changes have been reported in articular carti-

lage in osteoarthritis [11,12]. In this disease, the body of evi-

dence points towards these being part of a more profound

change in chondrocyte biosynthesis [13] driven by local pro-

duction of IL-1 and tumour necrosis factor α [14-17]. Despite

the similarities between IVD degeneration and the cartilage

changes in osteoarthritis, there has been relatively little inter-

est in exploring the possibility that the disease processes

involved in IVD degeneration might be driven by similar altera-

tions in local tissue cytokine biology, and particularly by IL-1

and tumour necrosis factor α. TNF α has been implicated in

disc herniation and sciatic pain [18-21], but not in disc degen-

eration. There is, however, some circumstantial evidence impli-

cating IL-1 in human IVD degeneration [22-26]. This evidence

comes from studies on annulus fibrosus (AF) cells from rabbit

IVDs [24,26,27] and NP cells from ovine [25] and rabbit IVDs

[28], which suggest that IL-1 may have similar effects on the

chondrocyte-like cells of IVDs to those seen in articular

chondrocytes. IL-1 has been identified in herniated, displaced

human discal tissue [23,29,30] but has not been investigated

within the degenerate IVDs themselves. Two recent genetic

studies suggest that IL-1 gene cluster polymorphisms contrib-

ute to the pathogenesis of lumbar IVD degeneration and low

back pain [31,32]. Despite these data, there is no clear evi-

dence that IL-1 is synthesized by native human disc cells (as

opposed to cells within herniated disc tissue) or whether it can

induce the altered synthesis of matrix molecules and degrad-

ing enzyme production by human IVD cells characteristic of

IVD degeneration, particularly in the NP, where degenerative

changes first appear.

This study investigates two hypotheses: that in human IVD

degeneration, there is local production of the cytokine IL-1 by

native disc cells, and that locally produced IL-1 can induce the

cellular and matrix changes of IVD degeneration.

Materials and methods
Tissue samples

Human IVD tissue was obtained either at surgery or at post-

mortem examination, with the informed consent of the patient

or relatives. Local research ethics committee approval was

given for this work by the following local research ethics com-

mittees: Salford and Trafford (Project number 01049), Bury

and Rochdale (BRLREC 175(a) and (b)), Central Manchester

(Ref No: C/01/008), and her Majesty's coroner (LMG/RJ/M6).

Tissue samples for Immunohistochemical analysis

Post-mortem tissue
Preliminary studies from our laboratory (data not shown) have

shown that IVD cells remain viable for at least 48 hours after

death. We also have evidence that NP cells from retrieved

cadaveric IVDs are biosynthetically identical to age-matched

cells from non-cadaveric tissue, an observation borne out by

others [4,33,34]. In all, eight discs recovered from six patients

within 18 hours of death were used in this study (Table 1).

They consisted of full-thickness wedges of IVD of 120° of arc

removed anteriorly. This allowed well-orientated blocks of tis-

sue incorporating AF and NP to be cut for histological study.

The family practitioner's notes were examined for evidence of

a history of sciatica sufficient to warrant seeking medical opin-

ion, and such patients were excluded from the study.

Surgical tissue
Patients were selected on the basis of IVD degeneration diag-

nosed by magnetic resonance imaging and progression to

anterior resection either for spinal fusion or disc replacement

surgery to relieve chronic low back pain. Some patients under-

went fusion at more than one level, because of instability.

Occasionally the specimens retrieved from multilevel fusion

included discs with low (0–3) degeneration scores (i.e. mor-

phologically normal) at one level (Table 1) (The scoring system

is described below). Wedges of disc tissue were removed in

a manner similar to that described for cadaveric tissue.

Treatment of tissue specimens
A block of tissue incorporating AF and NP in continuity was

fixed and processed into paraffin wax. As some specimens

contained bone, all the samples were decalcified in ethylene-

diaminetetraacetic acid (EDTA) (we have previously shown

that EDTA decalcification does not affect detectable levels of

product using in situ hybridization or immunohistochemical

staining [35] when compared to snap-frozen tissue). Sections

from the tissue blocks were taken for H&E staining to score

the degree of morphological degeneration according to previ-

ously published criteria [8]. This scoring system provided a

representation of the grade of degeneration within a disc:

scores of 0 to 3 represent a histologically normal (non-degen-

erate) disc; 4 to 6, histological evidence of low-level degener-

ation; 7 to 9, an intermediate degree of degeneration; and 10

to 12, severe degeneration. From this scoring, 30 discs were

selected to represent a range of scores from non-degenerate

(1 to 3) up to the most severe level of degeneration (12).

Tissue samples for in vitro cell studies

Samples of degenerate IVD tissue (graded 6 to 10) were

obtained from patients undergoing surgery for disc replace-

ment for the treatment of chronic low back pain. Non-degener-

ate IVD tissue (graded 0 to 2) was also obtained from surgery

for disc removal after trauma. Ten discs were used in triplicate

for all treatments; all discs were lumbar in origin and the ages

of the patients ranged from 18 to 44 years (mean 29.9).

Production and localization of IL-1 family proteins

Immunohistochemistry was used to localize the two IL-1 ago-

nists (IL-1α and IL-1β) and their antagonist IL-1Ra together

with the active receptor IL-1RI (IL-1 receptor, type I) and the
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IL-1β-converting enzyme (ICE; caspase-1) within the 30 disc

samples described in Table 1. In addition, rheumatoid syn-

ovium was selected as a positive control tissue for members

of the IL-1 family. The immunohistochemistry protocol followed

was as previously published [6]. Briefly, 4-µm wax sections

were dewaxed and rehydrated, and endogenous peroxidase

was blocked using hydrogen peroxide. Sections were washed

in dH2O and then treated with chymotypsin enzyme antigen

retrieval system (0.01% w/v chymotrypsin (Sigma, Poole, Dor-

set, UK), 20 min at 37°C) for IL-1α, IL-1β, IL-1Ra, and ICE. No

enzyme retrieval was necessary for IL-1RI. After washing, non-

specific binding sites were blocked at room temperature for

45 min, either with 20% w/v rabbit serum (Sigma), for IL-1Ra

and IL-1RI, or with 20% w/v donkey serum (Sigma), for IL-1α,

IL-1β, and ICE. Sections were incubated overnight at 4°C with

mouse monoclonal primary antibodies against human IL-1Ra

(1:200 dilution, R&D Systems, Abingdon, UK), IL-1RI (1:50

dilution, R&D Systems), and goat polyclonal primary antibod-

Table 1

Patient details and grades of disc degeneration in tissues used for immunohistochemical analysis

Laboratory number Source of tissue Sex Age (y) Clinical diagnosis Disc level Histological grade

1 Post-mortem Male 53 No data L4/5 1

2 Post-mortem Male 53 No data L5/S1 1

3 Surgical Male 44 Relatively normal L4/5 1

4 Surgical Male 47 Relatively normal L4/5 2

5 Post-mortem Male 75 No data L5/S1 3

6 Surgical Male ? Disc degeneration L5/S1 3

7 Surgical Male 48 Disc degeneration L4/5 3

8 Surgical Male 64 Disc degeneration L5/S1 3

9 Surgical Male 46 Disc degeneration L5/S1 4

10 Surgical Male 21 Disc degeneration L5/S1 4

11 Surgical Female 36 Disc degeneration L5/S1 4

12 Surgical Male 39 Disc degeneration L4/5 5

13 Surgical Female 32 Disc degeneration L5/S1 5

14 Surgical Female 36 Disc degeneration L4/5 5

15 Surgical Male 25 Disc degeneration L4/5 5

16 Surgical Female 35 Disc degeneration L4/5 6

17 Surgical Male 40 Disc degeneration L4/5 6

18 Post-mortem Female 73 No data L5/S1 6

19 Surgical Male 25 Disc degeneration L5/S1 6

20 Surgical Female 55 Disc degeneration L5/S1 7

21 Post-mortem Female ? No data L4/5 7

22 Surgical Female 58 Disc degeneration L4/5 7

23 Surgical Male 34 Disc degeneration L4/5 8

24 Surgical Female 24 Disc degeneration L5/S1 8

25 Surgical Female 33 Disc degeneration L5/S1 9

26 Post-mortem Female 73 No data L4/5 9

27 Surgical Male 68 Disc degeneration L5/S1 10

28 Post-mortem ? 47 No data L5/S1 10

29 Post-mortem ? 47 No data L5/S1 11

30 Surgical Male 39 Disc degeneration L4/5 12

?, not known.
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ies against human IL-1α (1:300 dilution, Santa Cruz Biotech-

nology, Santa Cruz, CA, USA), IL-1β (1:300 dilution,

SantaCruz), and ICE (1:10 dilution, SantaCruz). Negative con-

trols in which mouse or goat IgGs (Dako, Cambridgeshire, UK)

replaced the primary antibody (at an equal protein concentra-

tion) were used.

Following washes, sections reacted with mouse monoclonal

antibodies were incubated in a 1:400 dilution of biotinylated

rabbit anti-mouse antiserum (Dako), and sections reacted with

goat polyclonal primary antibodies were incubated in a 1:300

dilution of biotinylated donkey anti-goat antiserum (Santa Cruz

Biotechnology), all for 30 min at room temperature. Disclosure

of secondary antibody binding was by the streptavidin-biotin

complex (Dako) technique with 3,3'-diaminobenzidine tetrahy-

drochloride solution (Sigma). Sections were counterstained

with Mayer's haematoxylin (Raymond A Lamb, East Sussex,

UK), dehydrated, and mounted in XAM (BDH, Liverpool, UK).

Image analysis
All slides were visualized using a Leica (Leica, Cambridge, UK)

RMDB research microscope and images captured using a dig-

ital camera and Bioquant Nova image analysis system (Bio-

quant, Nashville, TN, USA). Each section was divided into

three areas of disc for the purposes of analysis – the NP, the

Inner annulus fibrosus (IAF), and, where present, the outer

annulus fibrosus (OAF) – and analysed separately. Within

each area, 200 cells were counted and the number of immu-

nopositive cells (brown-stained cells) expressed as a propor-

tion of this. Averages and standard deviations were calculated

for disc sections grouped with the scores 0 to 3, 4 to 6, 7 to

9, and 10 to 12. Data was then presented on graphs as means

± 2 standard errors to represent the 95% confidence intervals

[36].

Statistical analysis
Data was non-parametric, and hence the Mann-Whitney U

tests were used to compare the numbers of immunopositive

cells in degenerate discs (groups 4 to 6, 7 to 9, and 10 to 12)

with those in non-degenerate discs (scores 0 to 3). These

tests were performed for each area of the disc analysed (i.e.

NP, IAF, and OAF). In addition, the Wilcoxon paired samples

tests were used to compare proportions of immunopositive

cells in the different areas of the discs (i.e. NP vs IAF, NP vs

OAF, and IAF vs OAF). This analysis was performed using all

disc sections, regardless of level of degeneration.

Investigation of the effect of IL-1 on human IVD cells in 

alginate culture

Issolation of Disc cells
Tissue samples were separated into NP and IAF tissue and

transported to the laboratory in DMEM and Ham's F12 nutrient

medium (DMEM + F12) (Gibco BRL, Paisley, UK) on ice. Tis-

sue samples were finely minced and digested with 2 U/ml pro-

tease (Sigma) in DMEM + F12 media for 30 min at 37°C and

washed twice in DMEM + F12. NP cells were isolated in 0.4

mg/ml collagenase type 1 (Gibco), and AF cells in 2 mg/ml

collagenase type 1 (Gibco) for 4 hours at 37°C.

Alginate bead culture
It is well recognized that cells derived from the IVDs change

their morphology and phenotype in monolayer culture, becom-

ing similar to fibroblasts [37]. However, culturing the cells in

systems such as alginate can restore the IVD cell phenotype

[37]. We have therefore used cells in alginate gels to investi-

gate the effects of IL-1 on cell behaviour. To achieve this, fol-

lowing isolation, cells were expanded in monolayer culture for

2 weeks, prior to trypsinization and resuspension in 1.2%

medium-viscosity sodium alginate (Sigma) in 0.15 M NaCl at

a density of 1 × 106 cells/ml and formation of alginate beads

using 200 mM CaCl2. Following washes in 0.15 M NaCl, 2 ml

of complete culture medium was then added to each well and

cultures were maintained at 37°C in a humidified atmosphere

containing 5% CO2. The culture medium was changed every

other day.

Assessment of re-differentiated state in alginate
To ensure that the phenotype of cells treated with IL-1 were

similar to the phenotype of cells within the IVDs in vivo, the cell

phenotype was assessed in monolayer culture and at increas-

ing times in alginate culture. The phenotype was then com-

pared with that of uncultured, directly extracted cells.

Phenotype was assessed using immunohistochemistry on cel-

lular cytospins for directly extracted and monolayer cells, and

wax-embedded alginate beads sectioned at 4 µm and

mounted onto slides for analysis. Immunohistochemistry was

performed for aggrecan, collagen type II, and collagen type I

as described previously [38]. In addition, RNA was extracted

from cells and reverse transcription performed using Avian

Myeloblastosis Virus (AMV) reverse transcriptase (Roche,

East Sussex, UK), and gene expression for the chondrogenic

transcription factor SOX9 and the matrix constituents aggre-

can, collagen II, and collagen type I were assessed (see

below).

Image analysis
All slides were visualized using the Leica RMDB research

microscope and images were captured using a digital camera

and the Bioquant Nova image analysis system. Within each

area, 200 cells were counted and the number of immunopos-

itive cells was expressed as a proportion of this.

Statistical analysis
One-way ANOVA and Tukey post hoc tests were used to com-

pare cellular gene expression of cells cultured in monolayer

and alginate to uncultured, directly extracted cells. To perform

this analysis, 2-∆Ct (where Ct represents the cycle at which the

set threshold is reached) for each sample was calculated to

generate relative gene expression for each sample, including
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all control values. These values were then used in ANOVA and

post hoc tests.

Treatment of cells with IL-1, RNA extraction, and cDNA 
formation
After 4 weeks in this culture system (the time required to allow

redifferentiation to the same phenotype as that of uncultured,

directly extracted disc cells), cells were treated for 48 hours

with either 10 ng/ml IL-1α or 10 ng/ml IL-1β, or were left

untreated to serve as controls; all treatments were performed

in triplicate. Following treatment, RNA was extracted using Tri-

zol reagent (Gibco). Prior to Trizol extraction, alginate beads

were washed in 0.15 M NaCl and dissolved in dissolving

buffer (55 mM sodium citrate, 30 mM EDTA, 0.15 M NaCl; pH

6) at 37°C for 15 min and then were subsequently digested in

0.06% w/v collagenase type I (Gibco) for 30 min to allow

digestion of matrix. Following RNA extraction, reverse tran-

scription was performed as described previously.

Real-time PCR
Real-time PCR was used to investigate the effects of IL-1 on a

range of targets, namely, the members of the IL-1 family (IL-1α,

IL-1β, IL-1Ra, and IL-1RI), matrix-degrading enzymes (MMP-3,

MMP-13, ADAMTS-4, and ADAMTS-5), matrix proteins

(aggrecan and collagen types I and II), and two SOX genes (6

and 9). Primers and Probes for all of these targets were

designed using the Primer Express computer program

(Applied Biosystems, Warrington, UK), using the rules of

primer design recommended by Applied Biosystems. The total

gene specificity of the nucleotide sequences chosen for the

primers and probes were confirmed by BLAST searches

(GenBank database sequences). The nucleotide sequences

of the oligonucleotide hybridization primers and probes are

shown in Table 2. Primers and probes were purchased from

Applied Biosystems, as were pre-designed primers and probe

(PDAR) for human glyceraldehyde-3-phosphate dehydroge-

nase (GAPDH). For each set of primers and probes, the effi-

ciency of the amplification was assessed using template

titrations as recommended by Applied Biosystems.

PCR reactions were then performed and monitored using the

ABI Prism 7700 Sequence Detection System (Applied Bio-

systems). The PCR master mix was based on the AmpliTaq

Gold DNA polymerase (Applied Biosystems). cDNA samples

(2.5 µl in a total of 25 µl per well) were analysed in duplicate;

primers were used at a concentration of 900 nmol/l and probe

Table 2

Real-time PCR probes and details of primers

Target Forward primer Probe Reverse primer Threshold

GAPDH PDAR PDAR PDAR 0.047

Collagen type I 5' CAG CCG CTT CAC CTA CAG C 3' 5' CCG GTG TGA CTC GTG CAG CCA TC 
3'

5' TTT TGT ATT CAA TCA CTG TCT TGC C 
3'

0.078

Collagen type II 5' GGC AAT AGC AGG TTC ACG TAC A 
3'

5' CCG GTA TGT TTC GTG CAG CCA TCC 
T 3'

5' CGA TAA CAG TCT TGC CCC ACT T 3' 0.100

Aggrecan 5' TCG AGG ACA GCG AGG CC 3' 5' ATG GAA CAC GAT GCC TTT CAC CAC 
GA 3'

5' TCG AGG GTG TAG CGT GTA GAG A 3' 0.050

SOX9 5' GAC TTC CGC GAC GTG GAC 3' 5' CGA CGT CAT CTC CAA CAT CGA 
GAC 3'

5' GTT GGG CGG CAG GTA CTG 3' 0.0562

SOX6 5' CCG TGA GAT AAT GAC CAG TGT 
TAC TT 3'

5' AAC CCC AGA GCG CCG CAA A 3' 5' GTC CAC CAC ATC GGC AAG AC 3' 0.052

IL-1α PDAR PDAR PDAR 0.107

IL-1β PDAR PDAR PDAR 0.122

IL-1Ra 5' CCT GCA GGG CCA AGC A 3' 5' AGC CTC GCT CTT GGC AGG TAC 
TCA GT 3'

5' GCA CCC AAC ATA TAC AGC ATT CA 3' 0.122

IL-1RI 5' ATT TCT GGC TTC TAG TCT GGT GTT 
C 3'

5' ACT TGA TTT CAG GTC AAT AAC GGT 
CCC C 3'

5' AAC GTG CCA GTG TGG AGT GA 3' 0.163

MMP-3 5' TGA AGA GTC TTC CAA TCC TAC TGT 
TG 3'

5' CGT GGC AGT TTG CTC AGC CTA TCC 
AT 3'

5' CTA GAT ATT TCT GAA CAA GGT TCA 
TGC A 3'

0.108

MMP-9 5' CCC GGA GTG AGT TGA ACC A 3' 5' CCA AGT GGG CTA CGT GAC CTA 
TGA CAT CC 3'

5' CAG GAC GGG AGC CCT AGT C 3' 0.041

MMP-13 5' GGA CAA GTA GTT CCA AAG GCT 
ACA A 3'

5' CTC CAA GGA CCC TGG AGC ACT 
CAT GTT 3'

5' CTT TTG CCG GTG TAG GTG TAG ATA 
G 3'

0.108

ADAMTS-4 5' ACT GGT GGT GGC AGA TGA CA 3' 5' ATG GCC GCA TTC CAC GGT G 3' 5' TCA CTG TTA GCA GGT AGC GCT TT 3' 0.052

ADAMTS-5 5' GGA CCT ACC ACG AAA GCA GAT C 
3'

5' CCC AGG ACA GAC CTA CGA TGC 
CAC C 3'

5' GCC GGG ACA CAC GGA GTA 3' 0.122

ADAMTS, a disintegrin and metalloproteinase with thrombospondin motifs; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; IL-1Ra, IL-1 
receptor antagonist; IL1-RI, receptor, type I; MMP, matrix metalloproteinase; PDAR pre-designed assay reagent.
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at 250 nmol/l. After real-time amplification, the ABI 7700

expressed the data as an amplification plot, from which a base-

line was set from cycle number 3 upto a few cycles before the

first visible amplification. In addition to the baseline, the thresh-

old was set at a level above background levels and within the

exponential phase of the PCR amplification. The same thresh-

old was used for a target between runs. The Ct values for each

target gene (cycle at which the set threshold is reached) were

then exported into an Excel file, where analysis was performed

using the 2-∆∆Ct method, using GAPDH as the housekeeping

gene, and normalized to untreated controls [39].

Statistical analysis
One-way ANOVA and Tukey post hoc tests were used to com-

pare cells treated with IL-1 with those untreated samples. To

perform this analysis, 2-∆∆Ct for each sample was calculated

using an average of untreated control ∆Ct values to generate

the relative gene expression for each sample, including all con-

trol values. These values were then used in ANOVA and post

hoc tests; each treatment group was compared with untreated

controls.

Results
Immunohistochemical localisation

Immunoreactivity for the five molecules studied (IL-1α, IL-1β,

IL-1Ra, IL-1RI, and ICE) was seen in degenerate and non-

degenerate IVDs. The immunostaining was generally

restricted to the cytoplasm of native disc cells in normal and

degenerate discs (Fig. 1). Staining was particularly prominent

in the cytoplasm of the chondrocyte-like cells of the NP and

IAF. No significant difference was observed between the pro-

portions of cells in the NP and IAF reacting for IL-1α, IL-1Ra,

and ICE (P = 1.525, 0.870, and 0.639, respectively). IL-1β

and IL-1RI immunopositive cells were more frequent in the NP

than the IAF (IL-1β, P < 0.05; IL-1RI, P < 0.05)).

IgG controls were always negative and all positive controls

showed strong immunoreactivity (Fig. 1). No immunopositivity

was observed in the matrix of the IVDs or in blood vessels, with

the exception of immunopositivity for ICE, which showed some

staining in the matrix and blood vessels of the most degener-

ate discs (histological degenerative scores 10 to 12).

Although cells in the OAF did show reactivity for all molecules,

the proportion was always significantly lower than in the NP

and IAF (All targets P < 0.05) (Fig. 2).

Immunohistochemical staining and quantification of 
immunopositive cells
The most prominent aspects of the immunophenotype of non-

degenerate discs (histological degeneration scores 0 to 3)

included: little immunoreactivity for any of the five molecules in

the OAF; low proportions of cells immunopositive for IL-1α, IL-

1β, and IL-1RI in the NP and IAF (approximately 20%); the

presence of IL-1Ra immunopositive cells in every disc, with

high proportions of cells of up to 40% showing immunoposi-

tivity in the NP and IAF; and high numbers of cells in the NP

and IAF also showing immunopositivity for ICE (60%) (Fig. 2).

In the degenerate IVDs (histological degenerative scores 4 to

12), the immunophenotype of cells differed in two ways from

cells in non-degenerate discs (scores 0 to 3). Firstly, the pro-

portion of cells immunopositive for IL-1α, IL-1β, IL-1RI, and

ICE in both the NP and IAF was two or three times that in cells

from non-degenerate IVDs, and this immunopositivity

increased with the severity of degeneration. The difference

between the degenerate and non-degenerate samples was

significant in the NP and IAF in a number of stages of histolog-

ical degeneration: IL-1α (NP and IAF: non-degenerate vs

degenerate grades 10–12, P < 0.05); IL-1β (NP and IAF: non-

degenerate vs three degrees of degeneration (scores 4 to 6,

7 to 9, and 10 to 12), all P < 0.05); IL-1RI (NP: non-degener-

ate vs three degrees of degeneration, all P < 0.05; IAF: non-

degenerate vs severe grades of degeneration (scores 10 to

12), P < 0.05); ICE (NP: non-degenerate vs severe grades of

degeneration, P < 0.05; IAF: non-degenerate vs severe

grades of degeneration, P < 0.05). Secondly, similar numbers

of IL-1Ra-immunopositive disc cells were seen in levels of

degeneration scoring 4 to 6 and 7 to 9 and in non-degenerate

discs, but in severe degeneration (scores 10 to 12), a signifi-

cant decrease in the proportion of cells with IL-1Ra-immunop-

ositivity was seen compared toI that seen in non-degenerate

discs (P < 0.05) (Fig. 2).

Assessment of redifferentiated state in alginate

NP and AF cells directly extracted from IVD tissue showed

similar morphology and phenotypic characteristics. Morpho-

logically, the cells were small and rounded, often (in cells from

degenerate discs) localized in clusters. Immunopositivity for

aggrecan and collagen type II was seen, but no cells immuno-

positive for collagen type I were observed (Fig. 3a). In monol-

ayer, these cells adhered and spread, developing a fibroblastic

morphology, together with loss of immunopositivity for aggre-

can and collagen type II, and they expressed collagen type I

protein (Fig. 3b). However, when transferred to alginate and

cultured for 4 weeks, these cells regained their rounded mor-

phology and began to produce aggrecan and collagen type II

protein, and lost their immunopositivity to collagen type I (Fig.

3c), resembling the immunohistochemical profile of uncul-

tured, directly extracted cells. Gene expression analysis

showed a similar pattern to protein production in monolayer

and alginate cultures, with 4 weeks' culture in alginate

required before gene expression levels returned to that seen

in uncultured, directly extracted cells (P > 0.05) (data not

shown). No significant difference was observed in the re-differ-

entiation potential of cells extracted from NP or from AF cells,

or between cells extracted from non-degenerate or from

degenerate IVDs.
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Effect of IL-1 on human IVD cells
Interleukin 1 treatment (IL-1α and IL-1β) of the four cell types/

origins (degenerate and non-degenerate cells, from AF or NP)

resulted in altered in expression of genes for matrix molecules

and matrix-degrading enzymes. The responses of cells to IL-

1α and IL-1β were similar, and hence only the effects of IL-1β

are detailed here. Although it can be generally summarized

that IL-1 caused an increase in gene expression for matrix-

degrading enzymes, particularly in cells derived from the

degenerate NP, and caused a decrease in normal matrix

molecule gene expression in cells derived from normal discs,

the pattern was complex and dependent upon the origin of the

cells (Table 3).

Effect of IL-1 on degradative enzymes
Following treatment with IL-1, an increase in MMP-3 gene

expression was seen in the four cell types investigated (though

the increase was significant only in cells derived from the non-

degenerate NP and AF (P < 0.05)) (Fig. 4a). An increase in

MMP-13 gene expression was also observed, but only in cells

derived from the NP, with significance achieved in cells from

non-degenerate discs (P < 0.05) (Fig. 4b). Aggrecanase

(ADAMTS-4 and -5) gene expression was increased in cells

Figure 1

Examples of imunohistochemical staining for the IL-1 familyExamples of imunohistochemical staining for the IL-1 family. IL-1β (row A), IL-1Ra (row B), and IL-1 receptor, type I (row C) in grade-1 non-degener-
ate discs (column 1) and grade-12 degenerate discs (column 2), IgG controls (row D) were all negative. Immunopositivity is revealed by brown stain-
ing. N.B In non-degenerate discs, no cell clusters were seen and little immunopositivity was observed in the single cells. In degenerate discs, a large 
number of cell clusters were observed, which were predominately immunopositive. Bars = 570 µm.
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derived from the NP of degenerate discs. This was significant

only for ADAMTS-4 (P < 0.05). In cells derived from the non-

degenerate discs, a slight, nonsignificant decrease in aggre-

canase gene expression was observed (Fig. 4c,d).

Effect of IL-1 on matrix molecules
IL-1 treatment of cells derived from non-degenerate discs

resulted in a decrease in both SOX6 and SOX9 gene expres-

sion. However, this achieved significance only for SOX6 (P <
0.05). No real effect was observed on SOX6 and SOX9 gene

expression in cells derived from degenerate discs (Fig. 5a,b).

A decrease was also observed in expression of the gene for

collagen type I in cells derived from non-degenerate AF and

degenerate NP; however this was significant only in cells

derived from degenerate NP (P < 0.05) (Fig. 5c). The

expression of the genes for collagen type II and aggrecan were

decreased by IL-1 treatment of cells derived from the non-

degenerate disc, although this decrease was only significant

for aggrecan (Fig. 5d,e).

IL-1 regulation
IL-1 treatment of cells derived from the degenerate but not the

non-degenerate disc resulted in a 100-fold increase in IL-1α

and IL-1β gene expression, which reached significance in cells

derived from the NP (P < 0.05) (Fig. 6a,b). No real trend was

observed in IL-1Ra gene expression after treatment with IL-1

(Fig. 6c). A 10-fold decrease in IL-1 receptor gene expression

was observed in cells derived from the non-degenerate AF, but

this was not significant and no effect was observed on the

other cell types (Fig. 6d).

Discussion
In this study, we investigated whether in IVD degeneration

there is local production of the cytokine IL-1 and whether IL-1

could induce the cellular changes characteristic of IVD degen-

eration. To date, the production of IL-1 by human IVD cells has

been shown only in cells derived from herniated tissue

[18,19,29,30,40]. However, herniated tissue is not

representative of native disc tissue and is usually contami-

nated with inflammatory cells. For example, Doita and col-

leagues localized production of IL-1 to infiltrating mononuclear

Figure 2

Immunopositive staining for the IL-1 family in human intervertebral discsImmunopositive staining for the IL-1 family in human intervertebral discs. Numbers of cells with immunopositivity for IL-1α (a), IL-1β (b), IL-1 receptor 
antagonist (c), IL-1 receptor, type I (d), and IL-1β-converting enzyme (e), according to place of origin in the disc and grade of intervertebral disc 
degeneration (n = 30). Data are presented as means ± 2 standard errors (as a representative of 95%CI). *P < 0.1,; **P < 0.05
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cells within sequestered and extruded disc tissue but did not

show any significant immunodetectable IL-1 in connective tis-

sue cells in the displaced IVDs [29]. The current study is the

first to investigate protein production and localization of IL-1 in

intact, non-degenerate and degenerate human IVDs them-

selves, as opposed to herniated disc tissue.

This study has shown that both isoforms of IL-1 (IL-1α and IL-

1β) are produced by the chondrocyte-like cells of the NP and

IAF (but not blood vessels or fibroblast like cells in the OAF)

of non-degenerate and degenerate IVDs. Furthermore,

chondrocyte-like cells in non-degenerate IVDs express and

produce the active receptor IL-1RI, indicating that they can

respond to IL-1. Importantly, in degenerate IVDs there is a

significant increase in IL-1RI-immunopositive chondrocyte-like

cells by comparison with non-degenerate IVDs, indicating an

increased responsiveness to IL-1; and there are increased

numbers of chondrocyte-like cells expressing ICE, an enzyme

required to convert the inactive pro-IL-1β into its active form

[41].

This study demonstrated IL-1Ra protein localization to cells in

both non-degenerate and degenerate human IVDs. The

production of IL-1Ra in the non-degenerate disc demonstrates

a means of regulating IL-1. Within most clinical conditions

involving IL-1, an increase in IL-1Ra production is considered

an excellent marker of disease, and often a better indicator

than IL-1 itself [42]. For example, in rheumatoid arthritis, raised

IL-1Ra production is considered to be a natural compensatory

mechanism to counter the activity of IL-1 [43]. In the current

study, a marked increase in the proportion of cells

immunoreactive for IL-1 were found in degenerate than in non-

Figure 3

Immunopositive staining for phenotypic markers in chondrocyte-like cells from human intervertebral discsImmunopositive staining for phenotypic markers in chondrocyte-like cells from human intervertebral discs. Immunohistochemical staining for collagen 
type II, aggrecan, and collagen type I in uncultured directly extracted cells (a), cells cultured in monolayer for 2 weeks and cytospun prior to staining 
(b), and cells cultured in monolayer for 2 weeks prior to transfer to alginate and then cultured for a further 4 weeks (c). Immunopositivityis revealed 
bybrown staining. Data shown are from cells derived from degenerate discs, but results were similar in non-degenerate discs. Bars = 570 µm. DE, 
directly extracted.
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degenerate IVDs, but no similar increase in IL-1Ra-immunopo-

sitive cells was observed, indicating an imbalance in the local

production of IL-1 and IL-1Ra and failure of the normal com-

pensatory mechanism associated with increasing local pro-

duction of IL-1. When coupled with an increase in IL-1

receptor and ICE with increasing degeneration, the net effect

would be the initiation and perpetuation of an IL-1-mediated

response.

Having established a basis for a functional excess of IL-1 in

degenerate IVDs, we then investigated the role of IL-1 in the

processes that characterize disc degeneration, namely,

decreased matrix synthesis and increased production of

MMPs and ADAMTS-4 [3-6]. This is the first time such a com-

prehensive study has been undertaken in human IVD cells.

Such limited studies as have been conducted previously on

IVD cells have focused on cell monolayers and have not used

human cells [24,26,27]. However, it is well known that cells in

monolayer culture dedifferentiate and therefore effects may be

very different from those in vivo. Culture of cells in 3D gels

such as alginate allows the phenotype of IVD chondrocyte-like

cells to be maintained [37,44-46]. To date, only two studies

have investigated the effects of IL-1 in such systems, one

using ovine IVD cells [25] and the other, rabbit IVD cells [28].

This is the first reported study to investigate the effects of IL-1

on human disc cells cultured in 3D gels.

Effect of IL-1 on degradative enzymes

In the current study, MMP-3 mRNA expression was increased

in NP and AF cells derived from non-degenerate and degener-

ate IVDs after IL-1 treatment, a phenomenon reported in rabbit

disc cells cultured in monolayer [27] and ovine NP cells cul-

tured in agarose [25]. Therefore, in vitro IL-1 causes an

increase expression of MMP-3, an enzyme increased in the

degenerate disc [6]

Treatment of NP (but not AF) cells from degenerate and non-

degenerate IVDs with IL-1 resulted in significant increases in

gene expression of MMP-13 (an MMP with high affinity for

type II collagen), a finding not previously reported in disc cells,

although it has been shown in articular chondrocytes

[16,47,48]. We have previously shown that immunodetecta-

ble MMP-13 protein is present in significant amounts in IVDs,

with the highest immunopositivity in the NP of degenerate

discs [6], an area of the IVD containing the highest concentra-

tion of collagen type II.

ADAMTS-5 gene expression was not significantly altered by

IL-1 treatment. However, such treatment did result in an

increase in the gene expression of the aggrecanase ADAMTS-

4 in cells derived from degenerate NP. In vivo, the NP contains

the highest concentration of aggrecan in the IVD. The

response of cells derived from degenerate NP to IL-1 to up-

regulate ADAMTS-4 indicates that in vivo a local increase in

the concentration of IL-1 might lead to the dehydration and

loss of height characteristic of IVD degeneration, through the

Figure 4

Effect of IL-1 on MMP and ADAMTS gene expression in cells from human intervertebral discsEffect of IL-1 on MMP and ADAMTS gene expression in cells from human intervertebral discs. Relative gene expression was normalized to that of the 
GAPDH (glyceraldehyde-3-phosphate dehydrogenase) housekeeping gene and untreated controls (hence control is graphed at 1 on the log scale) 
for matrix metalloproteinase (MMP)-3 (a), MMP-13 (b), ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs)-4 (c), and 
ADAMTS-5 (d) following IL-1β treatment of cells from two regions of non-degenerate (non-deg) (n = 6) and degenerate (n = 24) discs. **P < 0.05. 
AF, annulus fibrosus; NP, nucleus pulposus.
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production of aggrecanases by local cells. We have previously

shown an increase in ADAMTS-4 production by the cells of

degenerate discs, especially in the NP [6], which, interestingly,

were the same discs shown in this study to produce high lev-

els of IL-1 agonists.

Effect of IL-1 on matrix molecules

Degeneration of the IVD is associated with altered collagen

production by IVD cells, with a switch in synthesis from type II

to type I collagen in the IAF and NP [7]. Proteoglycan produc-

tion is also altered, with decreased aggrecan [8] and

increased production of versican, biglycan, and decorin

[9,10]. IL-1 has been implicated in changes in matrix synthesis

during degradation of articular cartilage, with studies showing

a down-regulation of the genes for SOX9 and collagen type

IIa1 [49], aggrecan, collagen types II and XI, and link proteins

[48,50], and inhibition of normal matrix assembly [51]. The few

studies performed on IVD cells have shown that IL-1 treatment

also causes a decrease in proteoglycan and collagen II pro-

duction in animal cells [24,26-28]. The current study demon-

strates that IL-1 decreases expression of the gene for SOX6

by cells of the non-degenerate IVD. SOX6 (usually in combi-

nation with SOX9, which was also decreased by IL-1 [albeit

not significantly] in this study) determines the chondrogenic

phenotype [52]. Such results suggest that IL-1 can inhibit the

innate regulator of the chondrocyte-like cells' chondrogenic

phenotype, resulting in IVD cells, particularly in the NP, that

develop a less differentiated and more fibroblastic phenotype.

This inhibition of the SOX genes might lead to the altered col-

lagen and aggrecan synthesis typical of IVD degeneration [7-

10,53]. The current study also demonstrated that IL-1 inhib-

ited expression of the genes for collagen types I and II and for

aggrecan. This would mean that within the NP, at least, IL-1

can exert its effects on biosynthesis in the same way as it does

in articular cartilage [49].

Interestingly, this study has also shown that the cells derived

from degenerate and non-degenerate discs respond differ-

ently to IL-1. In particular, cells from degenerate IVDs respond

to IL-1 with a further increase in IL-1 gene expression (i.e. there

is a positive autocrine effect), while cells from non-degenerate

discs showed a decrease, suggesting that the normal homeo-

Figure 5

Effect of IL-1 treatment on matrix gene expression in cells from human intervertebral discsEffect of IL-1 treatment on matrix gene expression in cells from human intervertebral discs. Relative gene expression was normalized to the glyceral-
dehyde-3-phosphate dehydrogenase (GAPDH) housekeeping gene and untreated controls (hence control is graphed at 1 on the log scale) for 
SOX6 (a), SOX9 (b), collagen type I (c), collagen type II (d), and aggrecan (e) following IL-1β treatment of disc cells from two regions of non-
degenerate (non-deg) (n = 6) and degenerate (n = 24) discs. **P < 0.05. AF, annulus fibrosus; NP, nucleus pulposus.
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static response to IL-1 is replaced in the degenerate IVD by a

positive feedback loop. Such a phenomenon has also been

reported in human skin fibroblasts treated with IL-1 [54]. This

positive feedback loop in degenerate disc cells clearly distin-

guishes them from non-degenerate disc cells.

Figure 6

Effect of IL-1 treatment on the IL-1 family gene expression in human intervertebral disc cellsEffect of IL-1 treatment on the IL-1 family gene expression in human intervertebral disc cells. Relative gene expression was normalized to glyceralde-
hyde-3-phosphate dehydrogenase (GAPDH) housekeeping gene and untreated controls (hence control is graphed at 1 on the log scale) for IL-1α 
(a), IL-1β (b), IL-1 receptor antagonist (IL-1Ra) (c), and IL-1 receptor, type I (IL-RI) (d) following IL-1β treatment of disc cells from two regions of 
non-degenerate (non-deg) (n = 6) and degenerate (n = 24) discs. **P < 0.05.

Table 3

Effects of IL-1β on gene expression in cells from non- degenerate or degenerate intervertebral discs

Target General trend Tissues affected Significant changesa (P < 0.05)

Origin of cells Disease state

MMP-3 Increase (5- to 10-fold) NP, AF N, D Non-degenerate NP and AF

MMP-13 Increase (5- to 10-fold) NP N, D Non-degenerate NP

ADAMTS-4 Increase (8-fold) NP D Degenerate NP

ADAMTS-5 No real trend - - None

SOX6 Decrease (3- to 9-fold) NP, AF N Non-degenerate NP

SOX9 Decrease (3-fold) NP, AF N None

Collagen I Decrease (5- to 10-fold) NP, AF N, D Degenerate NP

Collagen II Decrease (5- to 50-fold) AF N, D None

Aggrecan Decrease (3- to 7-fold) NP, AF N, D Non-degenerate NP and AF

IL-1α Increase (100-fold) NP, AF D Degenerate NP

IL-1β Increase (100-fold) NP, AF D Degenerate NP

IL-1Ra No real trend - - None

IL-1RI Decrease (2- to 10-fold) NP, AF N None

aSite of any significant change in gene expression. -, no effect seen; ADAMTS, a disintegrin and metalloproteinase with thrombospondin motifs; 
AF, annulus fibrosus; D, degenerate intervertebral disc; IL-1Ra, IL-1 receptor antagonist; IL1-RI, receptor, type I; MMP, matrix metalloproteinase; 
N, non-degenerate intervertebral disc; NP, nucleus pulposus.
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Conclusion
We have shown that IL-1 is produced in the degenerate IVD.

It is normally synthesized by the native chondrocyte-like cells,

but in the non-degenerate IVD there is a balance between IL-

1 and its inhibitor, IL-1Ra, ensuring that matrix homeostasis is

maintained. Treatment of human IVD cells with IL-1 disturbs

the normal balance of catabolic and anabolic events, with the

result that degrading enzymes are increased and the expres-

sion of genes for matrix proteins are decreased, responses

that correspond to the alterations of cell biology that charac-

terize IVD degeneration. In addition, the immunohistochemical

data from this study demonstrated that although numbers of

cells with immunopositivity for the IL-1 agonists increased with

degeneration, no such increase was seen in the numbers of

cells with immunopositivity for IL-1Ra. This finding suggests

that the normal inhibitory mechanism fails in disc degenera-

tion, with a loss in the balance of IL-1 agonists to antagonists,

allowing IL-1 to elicit and perpetuate a response. We have

also shown that cells from non-degenerate and degenerate

discs respond differently to IL-1. In particular, IL-1 causes cells

from degenerate IVDs to synthesize more IL-1, with the poten-

tial to induce accelerating degeneration.

This study has shown how IL-1, a naturally occurring cytokine

within the IVD, could, through an imbalance between it and its

inhibitor, play a role in the pathogenesis of IVD degeneration

and therefore be an important therapeutic target for preventing

and reversing disc degeneration.
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