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Abstract. A general feature of particle transport in the core of Tokamak plasmas

is that, when core particle sources are small, a stationary peaked density profile

is provided by a balance of outward diffusion and inward convection, driven by

either neoclassical or turbulent mechanisms. The turbulent contribution to the

off–diagonal elements of the transport matrix is very sensitive on the type of

dominant instability of the background turbulence. We present here a detailed quasi–

linear gyrokinetic analysis of stationary turbulent particle transport by means of

analytical and numerical calculations to show how the actual parametric dependence

of the stationary normalized density gradient can strongly vary between an Ion

Temperature Gradient (ITG) dominated turbulence and a Trapped Electron Mode

(TEM) dominated turbulence regime. It is also shown how the maximal achievable

normalized density gradient is reached when the turbulence regime is in a mixed state.

This result is interpreted as the interplay of different physical mechanisms arising from

(linear) wave–particle resonances. The results presented here are addressed to interpret

some of the still unresolved issue in interpreting known experimental results.

1. Introduction

The prediction of the stationary density profile in the core of Tokamak plasmas relies

on the modeling of turbulent transport as it is generally shown to be the dominant

source of energy and particle transport. It is important to understand the physical

mechanisms that, through the correlation between turbulent fields, contribute to the off–

diagonal elements of the transport matrix, providing a net ’convective’ term that, when

directed inwards, can balance the outward diffusive term to establish a peaked density

profile despite the absence of core sources and the smallness of neoclassical transport

[1, 2, 3, 4]. Many experimental observations on stationary particle transport like

magnetic shear dependence [5, 6, 1, 7], collisionality dependence [8, 7, 9, 10, 11, 12, 13],
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temperature ratio dependence [1, 14, 15], and density–temperature scalings in electron

Internal Transport Barriers [16] in MHD–free regions of the plasma core have provided

a rich phenomenology on which theoretical models can be tested both qualitatively

and ultimately quantitatively. Indeed first–principles based models, either fully non–

linear [17, 18, 19] or with quasi–linear approximation [9, 20] have found qualitative

agreement with some of the experimental trends. These and other theoretical works

have disclosed the basic mechanisms that drive the off–diagonal particle transport

terms [21, 22, 23, 24, 25, 26, 27, 28]. We shall briefly summarize the previous results

in a particular fashion, to put in evidence how all the linear wave–particle resonance

physics ultimately leads to the known theoretical results. We show with several specific

parameter scans how quasi–linear numerical results can provide a useful insight to some

of the unresolved experimental issues. In particular our results can explain why the

dependence of the observed density peaking on plasma parameters is very different

depending on the turbulent regime (e.g. collisionality dependence of H–modes with

Te/Ti ≈ 1 [7] or magnetic shear dependence of L–modes with Te/Ti ≫ 1 [1, 7]).

The organization of the paper is as follows: in Section 2 we present the theoretical

formulation and the analytical derivation of the full kinetic expressions of the pinch

coefficients from the non–linear electrostatic gyrokinetic equation and discuss the linear

limit and the physics implied. Section 3 presents and discusses the numerical results

through parameter scans and compares this with observations documented in the

literature. Section 4 summarizes the results.

2. Gyrokinetic evaluation of particle transport contributions

The particle continuity equation for an axisymmetric system, in stationary state and

neglecting particle sources, reduces to the simple condition Γ = 0, where Γ is the particle

flux of the considered species. In the following we neglect the neoclassical contribution

and other sources to consider only the effect of turbulence, i.e. we have Γ = Γturb = 0.

Note however that the neoclassical pinch for electrons, notably the Ware pinch, can

indeed be important in particular scenarios [29, 18]. Note that neglecting of the source

term is relevant up to very large radius in experimental cases with only RF heating,

for example in Ohmic TCV scenarios with ECH [30]. Moreover, the main effects of the

Ware pinch and of a source can be added relatively easily in the framework presented

here since they are essentially additive to the main driving terms sustaining a finite

density gradient [31] .

In the following we shall see that Γturb = 0 is generally found at ∂log n/∂ρ 6= 0,

which means that the diagonal diffusive term in the flux expression is balanced by

a convective term which is driven by the background turbulence and can provide a

peaked or a hollow profile depending on the turbulence characteristics. The main goal

of the theoretical development is to evaluate Γturb and clarify the different mechanisms

that drive the diffusive and the convective terms. The starting point is the non–linear

gyrokinetic equation written in the ballooning representation as derived in Ref. [32],
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which we consider here for a generic species and neglecting magnetic perturbations.

We first set the geometry to the simple concentric shifted–circles (or s − α) magnetic

equilibrium in the low aspect ratio limit. We write the gyrokinetic equation in matrix

multiplication form:

Lg̃ + N = W Φ̃, (1)

where g̃, Φ̃ are the vectors of fluctuations for the non–adiabatic part g̃k of the

distribution and of the electrostatic potential Φ̃k for each mode wavenumber k identified

by the two independent components k = (ky, kx), with x, y respectively the normal and

the binormal to–the–field–line coordinates [33]. The matrix operators are defined as:

Lkk′ =

[

∂

∂t
− v‖

Rq

∂

∂θ
+ iωd + Ĉ

]

k

I kk′ ,

N =
∑

k′+k′′=k

[

(

k′′
yk

′
x − k′

yk
′′
x

)

J0k′′Φ̃k′′ g̃k′

]

= Nkk′ g̃k′ ,

Nkk′(k′′ = k − k′) =
(

k′′
yk

′
x − k′

yk
′′
x

)

J0k′′Φ̃k′′ ,

W kk′ =
Ze

T

[

∂

∂t
+ iω∗

]

k

F0J0kI kk′ , (2)

where I is the diagonal identity matrix. θ is the parallel–to–the–field–lines coordinate.

Equation (1) gives the evolution of the non–adiabatic part g̃ of the total gyro–averaged

perturbed distribution function f̃k = g̃k − Ze/T F0J0kΦ̃k. The usual definitions for the

different quantities are:

ωd = −
(

v2
‖ +

v2
⊥

2

)

Tky

v2
thZeB0R

[

cos θ +

(

sθ − α sin θ +
kx

ky

)

sin θ

]

,

ω∗ =
Tky

ZeB0R

[

∂log n

∂ρ
+

(

E

T
− 3

2

)

∂log T

∂ρ

]

, (3)

respectively for the magnetic curvature drift ωd and for the diamagnetic drift ω∗, F0 is the

Maxwellian distribution, J0k is the zero–order Bessel function of argument k⊥ρLv⊥/vth

with k⊥ =
√

k2
y[1 + (sθ − α sin θ)2] + k2

x the perpendicular wavenumber, v⊥/vth the

perpendicular velocity normalized to the thermal velocity, and ρL the particle Larmor

radius (for passing electrons ρL << ρi, ρi being the ion Larmor radius, giving J0k ≈ 1

in the ITG–TEM wavelengths region, while for bounce–averaged trapped electrons the

banana orbit is considered and ρL ∼ ρi). Z is the species charge normalized to the

electron charge e, T the species temperature, R is the geometrical average major radius

of the local flux surface, q is the safety factor, B0 the vacuum magnetic field at the

plasma boundary geometrical axis, E, v‖, v⊥ respectively the particle energy, parallel

and perpendicular velocity, ρ is the normalized minor radius (or local aspect ratio)

ρ = r/R. L is the linear operator acting on the perturbed g̃, where collisionality is

also contained in the form of a linear collisional operator Ĉ, while N is the non–linear

operator arising from the Ẽ × B · ∇ ∼ e‖ · ∇Φ̃ ×∇ advection of g̃, which causes mode

coupling. The non–linear operator is represented as a matrix operation through the
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coupling matrix N. Let us define a new matrix operator

Dkk′ = Lkk′ + Nkk′ . (4)

We then rewrite the gyrokinetic equation (1) as a matrix system:

Dg̃ = P̃, (5)

where P̃ = W Φ̃ is the vector with elements from the right–hand–side of equation (1).

The solution of equation (5) is obtained through a formal matrix inversion operation:

g̃ = D−1P̃. (6)

Since ω∗ is linear in the equilibrium logarithmic gradients ∂log n/∂ρ and ∂log T/∂ρ, we

can expand the vector P̃ as:

P̃ = P̃n
∂log n

∂ρ
+ P̃T

∂log T

∂ρ
+ P̃P, (7)

where

P̃nk =

[

ky

B0R
F0J0kΦ̃k

]

,

P̃Tk =

[

ky

B0R

(

E

T
− 3

2

)

F0J0kΦ̃k

]

,

P̃Pk =

[

Ze

T
F0J0k

∂Φ̃k

∂t

]

, (8)

We now define α̃n = D−1P̃n, α̃T = D−1P̃T and α̃P = D−1P̃P to finally rewrite the

solution (6) as:

g̃ = α̃n
∂log n

∂ρ
+ α̃T

∂log T

∂ρ
+ α̃P. (9)

Note that this decomposition is valid only in the local limit. If a profile variation other

than the local gradient has to be taken into account, then a global model should be

applied.

The turbulent flux Γturb is produced by the cross–correlation between density and

radial convection fluctuations:

Γturb =< ñṽr
E×B

>kω, (10)

where the superscript ’r’ indicates the radial component of the advection velocity

ṽE×B = 1/B2Ẽ × B. Replacing the solution from the gyrokinetic equation and the

expression for the velocity we obtain:

Γturb = A′ R

Ln

+ B′ R

LT

+ C ′, (11)

where we have defined the normalized inverse length scales for density R/Ln =

−∂log n/∂ρ and for temperature R/LT = −∂log T/∂ρ. The three coefficients A′, B′, C ′
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are given by:

A′ =

〈

ℜ
∑

k

[

ikyΦ̃
∗
k

B0

< J0kα̃nk >v

]〉

,

B′ =

〈

ℜ
∑

k

[

ikyΦ̃
∗
k

B0

< J0kα̃Tk >v

]〉

,

C ′ =

〈

ℜ
∑

k

[

ikyΦ̃
∗
k

B0

< J0kα̃Pk >v

]〉

, (12)

with < ... >v being the proper velocity–space integration and the external brackets

indicate flux–surface averaging. The stationary condition Γturb = 0 provides a direct

link between the normalized density gradient and the other two terms:
[

R

Ln

]

stat

= −CT
R

LT

− CP, (13)

where CT = B′/A′ and CP = C ′/A′ are the two pinch coefficients which relate

the stationary normalized density gradient to the temperature profile through the

thermodiffusive mechanism (CTR/LT) and to another pinch mechanism identified in

CP which arises from the physics of the polarization current. The latter can also be

interpreted as arising from the interplay between the parallel and the perpendicular

dynamics when looking at the gyrokinetic equation for f̃ , for which, in the RHS of

equation (1):
∂

∂t
→ v‖

Rq

∂

∂θ
− iωd.

It is worth noting that equation (13) is only apparently linear in the gradients:

indeed both CT and CP are strongly influenced by R/Ln, R/LT since they enter as the

drivers of the turbulent state. However, the equation becomes strictly linear for a species

with negligible concentration (standardly called a ’tracer’ or a passive species). The two

pinch mechanisms CT, CP appearing in equation (13) have been identified and discussed

in previous works in both the non–linear and the linear regimes (see for instance Ref. [17]

and references therein). However, a systematic study of how their interplay produces the

self–consistent steady–state from equation (13) has not yet been addressed in details.

We will address this issue in the next sections using the linear limit of the theory, which

is discussed in the following subsection. We would like to point out that in Ref. [34]

the authors discuss the non–linear interplay between the unstable and the stable branch

of a given (ky, kx) to provide a new genuinely non–linear inward pinch contribution in

collisional TEM turbulence. This could be added in a quasi–linear model by assigning

a mixing–length weight also to the stable modes, together with subdominant modes

that are not seen by time evolutionary calculations but can be computed by a spectral

code. These new contributions would appear as modifications in the three coefficients

A′, B′ and C ′. In the same way sub–dominant modes, not seen by initial–value linear

calculations, could be added to the model, after having being evaluated, for example,

with an eigenvalue–solver [35].
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Sign Mode type Acronym

ωR > 0 Trapped Electron Mode TEM

Electron Temperature Gradient Mode ETG

ωR < 0 Ion Temperature Gradient Mode ITG

Table 1. Mode real frequency sign convention.

2.1. Linear limit

If we let the non–linear coupling matrix strength ||N|| → 0 we can evaluate the pinch

coefficients directly as:

CQL
T =

∑

k
|Φ̃k(0)|2B′

k
∑

k
|Φ̃k(0)|2A′

k

,

CQL
P =

∑

k
|Φ̃k(0)|2C ′

k
∑

k
|Φ̃k(0)|2A′

k

, (14)

where ’QL’ stands for quasi–linear, and

A′
k

=

〈

1

|Φ̃k(0)|2
ℜ
[

k2
y

B2
0R

< J0kL
−1
kk

(

F0J0kΦ̃k

)

>v Φ̃∗
k

]〉

,

B′
k

=

〈

1

|Φ̃k(0)|2
ℜ
[

k2
y

B2
0R

< J0kL
−1
kk

(

F0

(

E

T
− 3

2

)

J0kΦ̃k

)

>v Φ̃∗
k

]〉

,

C ′
k

=

〈

Ze

T

1

|Φ̃k(0)|2
ℜ
[

ky

B0

< J0kL
−1
kk

(

F0J0k

∂Φ̃k

∂t

)

>v Φ̃∗
k

]〉

. (15)

The value of |Φ̃k(0)|2 is calculated as the value of |Φ̃k(θ)|2 at θ = 0, which is usually

near the maximum value for electrostatic modes with kx = 0. With these definitions

the three coefficients A′
k
, B′

k
, C ′

k
do not depend on the absolute value of Φ̃, avoiding the

problem of the saturation regime. The relative dependence of Φ̃k(θ) on θ, that depends

on the shape of the eigenfunction, will affect the flux surface average. The k–dependence

of the eigenfunction is also obtained from the linear solution. On the other hand the

k–dependence of the absolute value, determined by |Φ̃k(0)|2, need to be given by a

quasi–linear approximation. This is usually done by either the standard mixing length

estimate, i.e. Φ̃k ∼ γ/k2 [36], or with a form such as to model nonlinear or experimental

results [37, 20].

The linearized equation is solved in terms of simple plane waves ∼ ei(kx−ωt) where

ω = iγ + ωR is the complex frequency, γ is the growth rate and ωR the real angular

rotation frequency. Since the magnetic curvature coupling term ωd and the driver ω∗ for

the electrons describe rotation in the positive direction, it follows that if ωR > 0 then the

mode is rotating in the electron diamagnetic direction, and if ωR < 0 the mode is rotating

in the ion diamagnetic direction. We summarize this frequency convention in table 1

to show how to relate the sign of the real frequency to the type of instability. Using

the plane waves decomposition we can obtain the quasi–linear expression of the two
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pinch coefficients which is summarized here for deeply trapped electrons (v‖ = 0), with

a relative concentration ft, and for nearly–adiabatic passing electrons with a relative

concentration (1 − ft):

D0CT =
∑

k

k2
y

∣

∣

∣

∣

∣

eΦ̃k

Te

∣

∣

∣

∣

∣

2
[

√

2

π
ft

∫

J̄2
0k

γ̂
(

E − 3
2

)√
Ee−E

(ωR − ω̄d)
2 + γ̂2

dE

−(1 − ft)

2

√

π

2

1

|k‖v
e
th|

]

,

D0CP = −eB0R

Te

∑

k

ky

∣

∣

∣

∣

∣

eΦ̃k

Te

∣

∣

∣

∣

∣

2
[

√

2

π
ft

∫

J̄2
0k

(νωR + γω̄d)
√

Ee−E

(ωR − ω̄d)
2 + γ̂2

dE

+(1 − ft)

√

π

2

ωR

|k‖ve
th|

]

, (16)

where

D0 =
∑

k

k2
y

∣

∣

∣

∣

∣

eΦ̃k

Te

∣

∣

∣

∣

∣

2
[

√

2

π
ft

∫

J̄2
0k

γ̂
√

Ee−E

(ωR − ω̄d)
2 + γ̂2

dE

+(1 − ft)

√

π

2

1

|k‖ve
th|

]

, (17)

and γ̂ = γ + ν. The over–bar indicates that we have performed averaging over the

mode structure and considered deeply trapped particles only, forcing µB = E. In this

case J̄2
0k, the Bessel function, is given by J̄0k = J0(k⊥ρb

√
2E), ρb being the banana

width, and the curvature drift by ω̄d = f(s, ky, kx)
Te

eB0R
E. Note then that Φ̃k becomes

a number. The particle energy E is normalized to Te. Also each eigenfrequency γ, ωR

varies with k = (ky, kx). Note that, since γ̂ > 0, the diffusivity D0 is explicitly shown

to be positive definite as it should be, while CT, CP can change sign.

2.2. Basic physical mechanisms behind CT and CP

The two pinch mechanisms CT and CP can be understood in terms of basic particle

kinetic physics and emerge as fundamental processes in plasma turbulence, directly

looking at equations (16). We analyze the separate contributions in velocity space re-

gions into the passing electrons contribution (p) and the trapped electrons contribution

(t) (considered here as a whole as deeply trapped).

- Passing electrons pinch: due to their high parallel mobility, the passing electrons are

essentially adiabatic (unless collisionality becomes strong enough or other effects create

strong non–adiabaticity), except for those which have very low parallel velocity and for

which v‖ ≈ ωR/k‖, namely passing electrons diffuse due to parallel Landau damping.

Because of the E − 3/2 T kernel in thermodiffusion, integrating with a delta function

in v‖ and a Maxwellian in v⊥ one finds that C
(p)
T ≈ −1/2 ([26, 38]). For the other

pinch with kernel ∼ ω, the contribution is C
(p)
P ≈ −ωR/ky eB0R/T , i.e. proportional

to the mode real frequency, providing an outward directed pinch in ITG and an inward
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directed pinch in TEM–ETG, large in absolute value for |ωR| ≫ 1. The physics of this

pinch is particle convection due to compression in the parallel velocity (compare with

the impurity pinch found in Ref. [39]).

- Trapped electrons pinch: trapped electrons average out the parallel dynamics due

to magnetic mirror trapping, and thus their dynamics is dominated by the perpendic-

ular drift ωd. As for the passing electrons, for C
(t)
T the kernel is ∝ (E − 3/2 T ), i.e.

low energy trapped electrons diffuse inwards, and high energy trapped electrons dif-

fuse outwards. However in this case the resonance is not provided by Landau damping

but by coupling between the mode real frequency and the drift, namely particles with

< ωd >θ≈ ωR, where < ... >θ is the average over the mode poloidal structure, which

resonate with the wave and diffuse faster, providing a net convection. If < ωd >θ is

positive, since < ωd >θ∝ E, if ωR < 0 (ITG) low energy particles can resonate and we

have a net inward convection. In the opposite case, if ωR > 0 (TEM), the resonance

can favor particles with higher energies, decreasing the net convection, and eventually

leading to an inversion of the direction of the total pinch. Note also that for large nega-

tive values of ωR or for ωR ≫< ωd >θ the resonance is weak and so the thermodiffusive

pinch is expected to be reduced in both ITG or TEM turbulence. With regards to the

other pinch C
(t)
P , it is mainly driven by < ωd >θ and it is found to be inward directed

for positive values of < ωd >θ. It is enhanced in TEM turbulence with respects to ITG

turbulence due to the stronger resonance for trapped electrons. Finally, if the sign of

< ωd >θ is reversed (for example for strongly reversed q profiles or in stellarators) then

the inward pinch becomes outward and viceversa.

- The effect of collisions on the trapped particles pinch: the real plasma has always

a finite collisionality. Its effect on the pinch carried by trapped electrons (the passing

electrons are assumed adiabatic in this calculation) can be extracted from equations (16).

In particular an additional term appears in the CP coefficient in the form:

C
(ν)
P ≈ −eB0R

Te

ωR

ky

ν

γ + ν
, (18)

where here ν is an ’averaged’ collisionality (weighted on the Maxwellian distribution).

It is interesting to observe that this pinch is outward directed for modes rotating in the

ion direction, while it is inward directed for modes rotating in the electron direction.

It saturates at large ν, and its effect is reduced for increasing Te. In addition, since in

general increasing ν has the effect of pushing ωR towards negative values (e.g. towards

more ITG turbulence, due to its stabilizing effects on TEMs), the effect will be synergetic

when ωR < 0, providing a strong enhancement of the outward pinch, while it will be

counteracting when ωR > 0, producing little effect. This can explain why there is a

strong collisionality effect in ITG–dominated regimes like Te ≈ Ti H–modes as shown

for example in Ref. [7], while no apparent ν scaling is observed in TEM–dominated

regimes like Te ≫ Ti L–modes, as discussed for TCV cases in Ref. [3]. Note also that in

the presence of collisions the spectrum is somewhat larger than in the collisionless case,
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which requires taking into account a larger set of modes in ky [40].

Now, the total CT and CP are provided by the two contributions, from trapped and

passing particles, weighted by the respective diffusivity. For low collisionality (νei ≪ ωd)

and moderate magnetic shear (0.5 . s . 1.5), the passing electrons are nearly adiabatic

and we expect a dominance of the trapped electron pinch. The situation can change with

high collisionality or if adiabaticity is broken by other mechanisms (e.g. low magnetic

shear, electromagnetic effects at high βe, collisions) like in the plasma edge, see Ref. [41]

and references therein. We conclude this section by noticing that we did not mention

the dynamics of the barely trapped electrons (trapped electrons with bouncing angles

≈ π), since we assume that the electrons species can be divided in fully passing (no

trapping), and deeply trapped (v‖ = 0) simply factorizing the fraction of each in front

of the integrals. In general the contribution of the barely trapped electrons is important

since they behave almost like the passing electrons (thermodiffusion appears to be not

so sensitive on ωR) but their perpendicular diffusivity is comparable with that of the

deeply trapped electrons. Comparing the numerical (full kinetic electrons) results with

the simplified calculations presented in equations (16) we find that the essential physical

dependencies on parameters like ν or Te

Ti

is retained in the latter case, but discrepancies

in the absolute values are found. In this sense the simplified analytical approach is useful

to understand the key physical mechanisms, but a full kinetic numerical treatment is

required to obtain credible quantitative results, as done in the following sections.

3. Numerical calculations of CT and CP and of the stationary state

In this section we perform numerical calculation of turbulence linear spectra, phase

shifts, and quasi–linear pinch coefficients CT and CP for different parameters scan

to understand how a very general behavior of the stationary state of R/Ln,

provided by equation (13) (we drop the ’QL’), arises with respect to the background

microinstabilities. As we consider only two bulk species, main ions and electrons, from

plasma neutrality follows that we can evaluate the coefficients for electrons with the

resulting stationary state consistent for both species. We thus evaluate CT and CP only

for the electrons.

The numerical tool employed for the calculations is the initial value flux–tube

gyrokinetic code GS2 [42, 43]. We use it in the linear, electrostatic version, with

shifted–circles s − α equilibria. For the first parameter scan, a set of non–linear runs

are performed to confirm the main results. Note that to discriminate the various

linear contributions in the total flux, we adopt the test particle technique. We run

the code with three species: main ions, bulk electrons, and the third species being

a ’packet’ of electrons with npacket
e << nbulk

e , which with respect to quasi–neutrality

satisfies npacket
e + nbulk

e = ni. For the electrons packet, we change the normalized

gradients (R/Ln, R/LTe) in the combination (R/Ln, 0), (0, R/LTe), (0, 0), i.e. three

simulations are launched for each case. Then, using the packet particle flux Γpacket
e

evaluated from the three simulations, we can find the three coefficients of the linear
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relation Γpacket
e = A′R/Ln + B′R/LTe + C ′, where A′, B′, C ′ are in fact determined only

by the bulk species for which no normalized gradient is changed (we stress that this

is a linear relation exactly because it is a passive species). In this way the electrons

packet does not change the background turbulence and we obtain the correct values of

A′, B′ and C ′ at the parameters (R/Ln, R/LTe)bulk, since A′, B′, C ′ are independent

on (R/Ln, R/LTe)packet. Changing the bulk electrons parameters would change the

turbulence and leads to difficulties in deriving A′, B′, C ′.

In the next section we will show the numerical results in normalized form: the

mode complex frequency ω = iγ + ωR is scaled to vi
th/R, i.e. ω̂ = iγ̂ + ω̂R = ω R/vi

th

(we drop the hats in the following), where vi
th =

√

Ti/mi is the ion thermal velocity.

The ’ion’ normalization is chosen to avoid spurious change in the mode frequency or in

the wavenumber spectrum, when changing Te at fixed Ti, due solely to normalization.

We also define the single k particle flux Γk such that Γturb =
∑

k
Γk, and the single k

phase–shift as Γ̃k = Γk/|Φ̃k(0)|2. The quasi–linear single k particle flux is then given by

Γq.l.
k

= |Φ̃k(0)|2Γ̃k where |Φ̃k(0)|2 is evaluated with equation (19).

3.1. Choice of quasi–linear rule

We define now the choice for the value of |Φ̃k(0)|2 to be used in equations (14) for

the evaluation of the two pinch coefficients. Taking into account several results from

previous works [36, 44, 37, 20, 45] we choose to use the following rule:

|Φ̃k(0)|2 = A0

(

γ

< k2
⊥ >

)ζ

∆ky, (19)

where γk is the growth rate of the most unstable mode at wavelength k = (ky, 0) and

< k2
⊥ > is the perpendicular wavenumber averaged over the ballooning angle defined as

in Ref. [37]:

< k2
⊥ >= k2

y

∫

|Φ̃k|2
[

1 + (sθ − α sin θ)2] dθ
∫

|Φ̃k|2dθ
. (20)

The value of the constant A0 does not matter in this context as the pinch coefficients are

defined as ratios of absolute fluxes. The parameter ∆ky takes into account the choice of

a non–uniform grid in ky. The numerical parameter ζ = 2 is used in the following and

will be justified in the comparison with non–linear results. The choice of not considering

a spectrum in kx is not justified a priori since kx 6= 0 modes are fundamental in both

non–linear mode coupling and turbulence saturation. However at this stage we prefer

to leave the study of the full spectrum directly for non–linear simulations.

3.2. Self–consistent stationary state

Note that equation (13) has to be solved self–consistently for each parameters set with

a scan in R/Ln, as the coefficients themselves depend on R/Ln. This means that,

provided an input R/LIn
n to the calculation of turbulence properties, the self–consistent

stationary state is given when the R/LOut
n = −CT(R/LIn

n )R/LTe−CP(R/LIn
n ) = R/LIn

n =
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Parameters R/LTe − R/LTi ν̂ − Te/Ti s − Te/Ti R/LTi − ν̂

ǫ 0.12 0.12 0.12 0.12

q 1.4 1.4 1.4 2.8

s 0.8 0.8 – -1

R/LTe – 9 9 20

R/LTi – 9 7 –

Te/Ti 1.5 – – 2.8

ν̂ 0 – 0.2 –

Table 2. Parameters set.

[R/Ln]stat. At the same time we have the stationary value of CT = CT([R/Ln]stat)

and similarly of CP. The stationary value [R/Ln]stat is stable with respect to small

perturbations if [dXout/dX in]X=Xstat
> 1 where X = R/Ln. In the following we will

show the relevant quantities evaluated at the self–consistent state [R/Ln]stat. In addition,

since a spectrum of modes is taken into account, thus ITG and TEM modes might be

contributing to the total flux, we define a weighted averaged real frequency ωQL
R as

(k = kyρi):

ωQL
R =

∑

k
|Φ̃k(0)|2ωRk

∑

k
|Φ̃k(0)|2

, (21)

We shall see that it helps to understand which type of turbulence is dominating. It

can be interpreted as an average rotational frequency of the turbulent flow. If TEM

dominates, then we expect ωQL
R & 0. In the case of ITG–dominated turbulence, we

expect ωQL
R . 0, even if the frequency itself has different signs at different values of kyρi.

When we are in a mixed regime, where no single dominant instability can be identified,

we find that |ωQL
R | ≈ 0.

3.3. Parameters set

In this paper we consider transport related to the core plasma defined as the region

as typically 0.3 . r/a . 0.8. The parameters used in the following are typical of the

mid–radius region r/a ≈ 0.5 where the driving gradients and turbulent transport are

usually relevant.

The following scans will be performed around fixed parameters as shown in table 2.

Note that the Shafranov–shift parameter α is calculated self–consistently for every case

as α = −q2dβ/dρ where β = 2µ0(neTe + niTi)/B
2
0 with ne = ni = 1 [1019 m−3],

Ti = 1 [keV] and B0 = 2 [T]. We also define a base case parameters set: ǫ = 0.12,

q = 1.4, s = 0.8, R/LTe = 9, R/LTi = 9, Te/Ti = 1.5, ν̂ = 0, Zeff = 1. The first

four scans are devoted to study the relevant dependencies for typical monotonic q

scenarios, while the last scan can be applied to interpret electron Internal Transport

Barrier scenarios with strongly reversed q–profile [16]. The normalized collisionality ν̂ is
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defined as ν̂ = νei R/vi
th where νei is the electron–ion collisional frequency from Coulomb

scattering. With regards to the code numerical parameters that are kept fixed, we use

32 points for each 2π turn in θ, 12 poloidal periods, ∆t = 0.03 in units of R/vi
th, we

set kx = 0 and we solve for 13 values of kyρi which cover the interval 0.08 ÷ 1.5 in a

logarithmic way, such that ∆kyρi ∝ kyρi.

3.4. R/LTe − R/LTi scan, collisionless

The first scan studies the main drivers of the ITG and of the temperature–driven

TEM, causing a smooth transition between the two modes as the relative drivers

strength LTi/LTe is changed. The relative weight between the thermodiffusive part

of the total normalized density gradient, namely −CTR/LTe, and the other contribution

CP, is also changed with R/LTe. The temperature normalized gradients are set at:

R/LTe = [5, 7, 9, 11, 13] and R/LTi = [6, 9, 12].

3.4.1. Linear simulations In figure 1 we show respectively: (a) the average real

frequency ωQL
R , (b) the stationary value of R/Ln = [R/Ln]stat, (c) the two pinch

coefficients CT and (d) CP, versus the parameter LTi/LTe for different values of R/LTe (in

the legend). Since ωQL
R changes smoothly from negative to positive increasing LTi/LTe,

we conclude that the turbulent regime changes globally from ITG–dominated to TEM–

dominated increasing this parameter and figure 1(a) shows that ωQL
R and LTi/LTe are

good definitions to encapsulate this effect. Figure 1(b) shows that [R/Ln]stat has a

maximum near ωQL
R ≈ 0. Indeed, at fixed R/LTe, [R/Ln]stat increases when ωQL

R

approaches zero, either from the ITG domain (ωQL
R < 0) or from the TEM domain

(ωQL
R > 0). A minimum in the particle flux Γ at fixed R/Ln was also observed for

LTi/LTe ≈ 1 in recent non–linear simulations [46]. Note also that the global increase

in [R/Ln]stat when changing R/LTe at fixed LTi/LTe is due to the direct increase of the

thermodiffusive pinch −CTR/LTe at fixed CT. Indeed, CT and CP mainly depend on

LTi/LTe as seen in figure 1(c,d). As expected from the simple theoretical considerations

done in subsection (2.2), CT is inward directed and maximized in absolute value near

LTi/LTe ≈ 1 (or rather ωQL
R ≈ 0), and decreases strongly going to TEM–dominated

turbulence at LTi/LTe > 1. It also means that trapped electrons dominate the pinch.

On the other hand, CP is found to be inward directed and growing higher in absolute

value going into TEM–dominated turbulence, with values |CP| ∼ 1. The interplay

between the two pinches explains the behavior shown by [R/Ln]stat, and it is mainly due

to the change in background turbulence, i.e. in ωQL
R , following the drivers ratio LTi/LTe.

3.4.2. Detailed spectrum analysis It is interesting to check how the stationary state

is made up by the interplay of different wavenumbers in the spectrum. We take as an

example the stationary case with R/LTe = R/LTi = 9 of figure 1 (middle point of the

diamonds curve), and show in figure 2: (a) the growth rate γ, (b) the phase velocity

ωR/(kyρi), (c) the phase shift, and (d) the quasi–linear flux per mode. The growth rate
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is maximum around kyρi ≈ 0.3, while the value of γ/ < k2
⊥ > is maximum around

kyρi ≈ 0.15. Looking at the phase velocity ωR/(kyρi) we observe that the dominant

modes are TEM at low wavenumbers and ITG at intermediate wavenumbers, while

another electron mode branch appears in the short wavelength region. The phase–shift

reveals that the transport is outward in the long wavelength TEM region, inward in the

ITG region, and inward in the short wavelength TEM region. Finally, the quasi–linear

flux per mode plot shows that the total zero flux is provided by a compensation of

opposite contribution at different wavenumbers, namely outward flux in the low kyρi

region and inward flux in the high kyρi region. This compensation evolves when the

plasma parameters are modified. This is why a summation over the kyρi spectrum is

needed and why the definition of ωQL
R , equation (21), is very useful to be able to follow

the main background turbulence.

3.4.3. Comparison with non–linear results We now compare the quasi–linear results

with non–linear simulations performed with the GYRO code [47]. The resolution used

in these simulations is of 32 toroidal modes, a box size of 100ρs in x and 135ρs in y,

with ∆x/ρs = 0.5, and 128 grid points in velocity space. We employ the base case with

R/LTe = 9 and perform a scan in R/LTi = [4, 9, 14] at two values of R/Ln = [3, 5]. In

figure 3 we show the results for the non–linear particle flux (plotted in arbitrary units,

solid lines) as a function of R/LTi for the two R/Ln values (legend). The quasi–linear

flux (dashed lines) is also shown for comparison. Let us first look at the result for

R/LTi = 9 and R/LTi = 14 (R/LTi ≥ R/LTe). The non–linear Γ is slightly inward for

R/Ln = 3 and outward for R/Ln = 5. Therefore the predicted quasi–linear [R/Ln]stat is

between 3 and 5, probably closer to 3. The quasi–linear result predicts [R/Ln]stat ≈ 4

for these cases. They correspond to the two left points in figure 1(b) for the diamonds

(R/LTe = 9). As seen from figure 1(b), the predicted [R/Ln]stat is much lower when

LTi/LTe > 1. We see that the non–linear result is consistent with this quasi–linear result

since the non–linear Γ is positive at R/LTi = 4 even for R/Ln = 3. We also see that the

quasi–linear result in figure 2 follows well the non–linear results. We have used ζ = 2 in

equation (19) which gives the best overall agreement and we keep this value in all the

scans presented in this paper.

3.5. ν̂ − Te/Ti scan

The previous scans have been done in a collisionless regime (ν̂ = 0). However the

plasma has always a finite collisionality whatever small it is. From the theoretical point

of view it has been found to have a strong effect on both the instabilities properties

and on the turbulent pinch itself [9]. In some experimental regimes ν̂ appears to be

the only relevant parameter in regression studies from databases of H–mode plasmas

from different machines [7, 48, 49]. To understand this behavior we perform a set of

simulations with: ν̂ = [0, 0.02, 0.1, 0.3, 0.8] and Te/Ti = [1.1, 1.5, 2.5]. In figure 4 we show

the same quantities as in figure 1, now for different values of Te/Ti (legend) and ν̂ (x–
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axis). The stationary, averaged values, shown in figure 4, show an interesting behavior:

the average frequency ωQL
R in (a) goes deeply into the ITG regime as ν̂ increases, and it

shifts up to TEM as Te/Ti increases. This comes from the fact that TEM are stabilized

with increasing collisionality and destabilized with increasing Te/Ti [8, 14]. The value

of [R/Ln]stat shown in (b) is strongly decreased by ν̂ (touching negative values) for

Te/Ti ≈ 1, while higher values of the temperature ratio weaken this effect. At Te/Ti = 2.5

there is no significant effect from ν̂. This behavior can be understood looking at CT and

CP in figure 4(c,d). The thermodiffusion coefficient is essentially constant (in particular

for Te/Ti = 1.5), while CP is strongly influenced by ν̂: increasing ν̂, CP becomes less

negative and even outward directed and large for Te/Ti ≈ 1. For Te/Ti = 2.5 this

decrease is less evident and is well compensated by the slight change in CT. For lower

values of Te/Ti, the change in CP dominates and we observe a reduction in [R/Ln]stat,

larger at Te/Ti ≈ 1. Again this behavior is related to the collisions–induced pinch term,

equation (18), and confirms the interpretation given at the end of paragraph (2.2). In

particular note that the effect of collisions on CP can be guessed by comparing the

strength of the two terms |ωRν̂|÷ |γωd|. In case of turbulence being near the transition,

we find |ωR| ≈ 0 and thus, even at high ν̂, the curvature drift term dominates, providing

an inward directed convection given by CP (e.g. diamond curves in figure 4(d)). On the

other hand, for strong ITG turbulence (e.g. circle curves in figure 4(d)), the frequency

is large and negative, thus one finds |ωRν̂| & |γωd|, which gives a dominant positive

(outward) contribution to CP.

3.6. s − Te/Ti scan, collisional

Magnetic shear is another parameter which experimental dependence is debated. We

now show that the predicted dependence can drastically change when the turbulent

regime is changed. To this purpose we perform a set of simulations with: R/LTe = 9,

R/LTi = 7, ν̂ = 0.2 and s = [0.5, 0.8, 1.1, 1.4, 1.7] and Te/Ti = [1.1, 1.5, 2.5]. The results

are shown in figure 5 as done for the previous scans. As can be seen from the different

plots the effect of shear and of the temperature ratio is highly non–trivial. In figure 5(a)

we observe again the effect of pushing the frequency up with Te/Ti towards TEM regime.

In fact, comparing the behavior of ωQL
R and of [R/Ln]stat, figure 4(a,b), we see that at

low Te/Ti we are in ITG–dominated regime, and a variation of magnetic shear results

in a variation of ωQL
R , and an almost proportional variation of [R/Ln]stat. In particular

increasing s, we move downward in frequency and thus we decrease [R/Ln]stat. On the

other hand, at high value of Te/Ti, we are in the mixed regime (where ωQL
R ≈ 0), and

no clear variation of ωQL
R with s is observed. Instead [R/Ln]stat increases monotonically

with magnetic shear. To understand from which mechanism this behavior arises, we

look at the two pinch coefficients CT and CP, figure 5(c,d). While CT is essentially

increasing in absolute value with magnetic shear, there is a striking difference in the

behavior of CP with magnetic shear depending on the value of Te/Ti: at low values of

this parameter, CP is outward directed and becomes larger increasing s, while at high
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values of the temperature ratio it becomes inward directed and small in absolute value.

We thus conclude that a positive proportionality between the local magnetic shear and

the stationary R/Ln exists only when the turbulence regime is not dominantly ITG but

is in a mixed situation for which CP stays inward directed (or small in absolute value).

Note that in this case this shear dependence comes from the effect of s on CT and

not from CP. In collisional plasmas this regime is found at higher values of Te/Ti with

respect to a collisionless situation. On the other hand, in ITG–dominated turbulence

[R/Ln]stat does not depend much on s or decreases with increasing s due to a strong

outward contribution from CP.

3.7. R/LTi − ν̂ scan in eITB scenario

The parameters set for this scan are taken from a typical plasma obtained in the electron

Internal Transport Barrier scenario (eITB) in the TCV tokamak [16, 50]. The main

characteristics are the large local normalized gradients in electron temperature and

density (R/Ln ∼ 9 ∼ 0.45R/LTe) and the strong reversed q profile that can provide

q ∼ 3 and s . −1 in the barrier region. However the ion temperature is not known with

precision and a scan in R/LTi is useful to look at the predictions of the theoretical model

with respect to this parameter. Collisionality in the eITB is usually of order ν̂ ∼ 10−2

and it can have an effect on the TEM instability, and thus will be scanned. These two

parameters are taken as: R/LTi = [0.3, 0.45, 0.6, 0.75, 0.9]R/LTe and ν̂ = [0, 0.02, 0.04].

In the same fashion as previous subsections, we plot the relevant results in figure 6.

Looking at ωQL
R , figure 6(a), we see that there is a smooth transition from TEM to

ITG turbulence increasing R/LTi at fixed ν̂. The point where ωQL
R ≈ 0 shifts to lower

values of R/LTi increasing ν̂. This automatically shifts (for the physical reason already

discussed previously) the maximal value of [R/Ln]stat, as a function of R/LTi down

in R/LTi for increasing ν̂, figure 5(b). Note that, as R/LTe = 20, the [R/Ln]stat is

essentially given by [R/Ln]stat ≈ −CTR/LTe, while CP is practically negligible, as seen

in figure 5(d), all along the scan. So, for these parameters, the stationary state is

driven almost exclusively by thermodiffusion, and thus strongly linked to the dominant

instability. It is maximized when ωQL
R ≈ 0, at a values of |CT| ≈ 0.3, figure 5(c).

3.8. Addressing the experimental observations

Now let us discuss the relevance of these results with respect to some issues in

interpreting experimental results. In figure 7(a) we compile the stationary normalized

density gradients versus −ωQL
R , such that the transition from a TEM to an ITG

dominated regime is read from left to right, for the ν̂ − Te

Ti

scan (solid symbols: circles,

right triangles, diamonds) and the s− Te

Ti

scan (open symbols: pentagrams, hexagrams,

squares, crosses). We also add points from two additional s − ν̂ scans performed at

R/LTe = [10, 12], R/LTi = [6, 7] to put in evidence the dependencies in the TEM branch

(smaller open symbols: left triangles, up triangles, stars).

The significant decrease of [R/Ln]stat with (−ωQL
R ) in the ITG–dominated regime is
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consistent with the well–known decrease of density peaking with collisionality observed

in several devices in the H–mode phases [10] (figure 1 of Ref. [7]). In figure 7(a), the

arrow indicates that ν̂ is increased going towards positive (−ωQL
R ) values.

On the other hand, L–modes show an increase of the density peaking with shear (li),

as seen in figure 7 of Ref. [7], irrespective of the collisionality. However these discharges

are near the ITG–TEM transition [7], due to the higher Te/Ti values. They correspond

therefore to the data indicated with vertical arrows labelled ’s’ in figure 7(a) which have

[R/Ln]stat increasing with s near −ωQL
R . 0.

The L–mode behavior in AUG has been shown to have cases with either increasing

or decreasing density peaking with collisionality [9]. The measured R/Ln versus νeff

(figure 3a of Ref. [9]) shows a striking resemblance with our predicted stationary R/Ln

versus (−ωQL
R ) shown in figure 7(a). Since (−ωQL

R ) increases with collisionality, we see

that our quasi–linear predictions can explain many apparently contradicting observed

behaviors when both ITG and TEM regimes are considered together.

In the TEM–dominated regime, left part of figure 7(a), the arrow ’ν̂’ indicates

that one can have situations of increasing [R/Ln]stat with increasing collisionality. This

can happen for example if the starting point is clearly in the TEM regime. Increasing

collisionality will lead to a reduction of the TEM and turbulence will move towards

ωQL
R ≈ 0, therefore increasing [R/Ln]stat. This could explain the recent results shown in

Ref. [13]. Note that increasing Te/Ti would strengthen the TEM and therefore counteract

this effect.

In order to be able to draw more general predictions we show the values of CT

and CP in figure 7(b,c) for the cases shown in figure 7(a). The first point is that the

main dependence of both terms is on ωQL
R . This is particularly true for CP which does

not depend much on other parameters, like s, at fixed ωQL
R , figure 7(c). Moreover,

CP is small and not very important in TEM regime and near ωQL
R ≈ 0. It becomes

significant and outward directed in clear ITG regime, mainly due to the collisionality

effect as explained in paragraph 2.2. The term CT is essentially always inward and |CT|
is maximum near the ITG–TEM transition and much smaller in the TEM regime. Since

R/LTe is easily of order 10, in particular in ECH plasmas [51], −CTR/LTe is of order

4 for (−CT) ≈ 0.4. Nevertheless, CT also depends on shear and collisionality, at the

same ωQL
R , which explains the wider vertical spread of data in figure 7(b) as compared

with figure 7(c). ωQL
R is calculated using equation (21) and ζ = 2 in equation (19). We

have checked that the results shown in figure 7 are similar using a rule as proposed in

Ref. [20].

A final remark on this section is that an ultimate test for the model would be to

compare experimentally measured turbulent frequencies at low and medium kyρi values,

with the prediction from the codes to check if the experimental dependencies are really

due to the underlying turbulent regime [52].
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4. Conclusions

In this work, theoretical results about fundamental mechanisms of turbulent particle

convection for Tokamak plasmas have been presented, together with simulation results

to understand the main dependencies and general behavior of the stationary normalized

density gradient with respect to key plasma parameters. The numerical calculations

employ a quasi–linear model to evaluate the pinch coefficients CT, for thermodiffusion,

and CP, the other pinch term, from the linear spectrum. A quasi–linear averaged mode

frequency ωQL
R is also evaluated to identify the turbulent regime, either ITG or TEM

(or mixed in the transition regime when ωQL
R ≈ 0).

We find that CT is inward directed and maximal in absolute value at ωQL
R ≈ 0,

decreasing slightly in ITG and strongly in TEM for the trapped electrons contribution,

while the passing electron pinch is almost constant (and directed inwards) and small,

albeit increasing with collisionality in weight. CP is found to become more negative

increasing ωQL
R , while it becomes large and outward directed for collisional plasmas in

ITG. The interplay of the two explains why the stationary state is found to be maximal

at ωQL
R ≈ 0 whatever parameter scan. In addition an almost linear proportionality on

magnetic shear of [R/Ln]stat is found at fixed ωQL
R , due to a change in ωQL

d , only when

turbulence is in a mixed ITG–TEM regime with no dominance of the ITG branch. A

few non–linear runs with GYRO show a qualitative agreement with the behavior found

for the collisionless normalized temperature gradients scan.

The comparison of all our scans and of our results with experimental observations

confirms that the dominant effect that determines, through turbulent effects, [R/Ln]stat,

is if the turbulence regime is near the ITG–TEM transition or not. Indeed, this is usually

sufficient to predict the evolution of the local density peaking with plasma parameters.

This is why the parameter ωQL
R , equation (21), is particularly useful when analysing a

particular case. Since the predicted R/Ln is maximal near ωQL
R ≈ 0 one can expect

an increasing density peaking when moving towards ωQL
R = 0 and decreasing otherwise.

For example in ECH eITBs [16] a significant thermodiffusive pinch is observed when

stabilizing TEM and this moving from ωQL
R ≫ 0 towards ωQL

R = 0. In typical H–modes,

increasing collisionality tends to lead towards more ITG–dominated turbulence, ωQL
R

moves away from zero and R/Ln decreases. Moreover, increasing Te/Ti increases TEM

and thus ωQL
R . Starting from ωQL

R < 0 (ITG) then R/Ln can increase because ωQL
R moves

towards zero. Instead, starting from a mixed or TEM regime, like with ECH, then one

moves towards ωQL
R ≫ 0 (strong TEM) and R/Ln decreases significantly.

Our results also explain why one can have a strong shear dependence of the local

density peaking in some cases and not in others. This is due to both the dependence of

CT on s when ωQL
R ≈ 0, which can lead to increasing [R/Ln]stat with increasing s, and to

the dependence of ωQL
R on shear in ITG–dominated turbulence which tends to decrease

[R/Ln]stat, figure 5 and figure 7(a).

This relatively ’simple’ way to encapsulate very different situations through the

dependence of CT and CP on ωQL
R is very appealing. It needs to be compared
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in more details with specific experimental data and with situations where ETG

are also important. More quantitative predictions of course require non–linear

simulations. However these results should allow one to better, or easier, understand

both experimental observations and non–linear simulations.

Finally it should be stressed that the present simulations and analysis pertain only

to core particle transport but might help in understanding edge turbulent transport.

Moreover, we have considered the predicted source–free turbulence–driven stationary

logarithmic density gradient. However the effect of the neoclassical Ware pinch and of

core particle sources are essentially additive with respect to [R/Ln]stat [31] and thus our

predictions should be useful in these cases as well.
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Figure 1. a) Averaged frequency ωQL
R ; b) [R/Ln]stat; c) Thermodiffusion coefficient

CT; d) The other pinch coefficient CP. All quantities are plotted versus LTi/LTe at

different values of R/LTe (legend).
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Figure 2. Spectrum, at stationary state, for the case R/LTe = R/LTi = 9 of figure 1

(diamonds), of: (a) the growth rate γ, (b) ’phase velocity’ ωR/(kyρi), (c) phase shift,

(d) quasi–linear flux.
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fixing the constat A0 of equation (19) to match the average value between the square
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Figure 4. Same plots as in figure 1, here for the ν̂ − Te/Ti scan. We plot the curves

versus ν̂ at different values of Te/Ti (legend).
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Figure 5. Same plots as in figure 1, here for the s − Te/Ti scan. We plot the curves

versus s at different values of Te/Ti (legend).
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Figure 6. Same plots as in figure 1, here for the R/LTi − ν̂ scan. We plot the curves

versus R/LTi at different values of ν̂ (legend).
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Figure 7. a) [R/Ln]stat plotted versus the average frequency ωQL
R for several

parameters scan (in the legend); b) Thermodiffusion coefficient CT for the same scans;

c) The other pinch coefficient CP.


