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Introduction
Iron is a ubiquitous metal that is essential for the function of all mammalian cells and yet also
presents a significant risk to those cells. The developing central nervous system is no exception
to this concept as both iron deficiency and iron overload present significant risks to the
development and function of the young brain. Iron deficiency (ID) is the most common nutrient
deficiency in the world, affecting 2 billion individuals and 30–50 percent of pregnant women
[1,2]. These figures are of considerable importance when assessing the potential impact of a
single nutrient on intelligence world-wide. Much of what has been learned about the role of
iron in neurodevelopment has been from studies of iron deficiency on brain and behavior in
humans and in animal models [3]. In contrast, studies of iron overload tend to concentrate on
the potential toxicity of pathologic amounts of the metal [4]. This review will cover the role
of iron in important neurologic processes. Although it will identify three important time periods
during the child’s life that iron is necessary for proper neurodevelopment, it will concentrate
on the short and long-term consequences of fetal-neonatal iron deficiency on the hippocampus
and cognitive behavior. Newer information on the role of iron in altering gene expression brain-
wide and in the developing hippocampus will be emphasized. A full assessment of the role of
iron throughout the life span on all brain regions is beyond the scope of this review.

Gestational Conditions that Result in Neonatal Iron Deficiency
Iron deficiency occurs commonly during three phases of early life when the brain is developing:
fetal life, toddlerhood and early adolescence, particularly in females. Iron deficiency during
each time period has unique effects on the central nervous system because the developmental
trajectories of brain regions and processes are not uniform with respect to onset, peak activity
and quiescence [5]. Thus, the effect of any nutrient deficiency on the developing brain will be
a function of the timing of the deficiency relative to any given brain region’s need for that
nutrient and the degree and duration of the deficiency [6,7].

Fetal, and by extension neonatal iron deficiency occurs as result of four gestational conditions;
maternal iron deficiency anemia, maternal cigarette smoking, maternal hypertension resulting
in fetal growth restriction, and maternal diabetes mellitus [8]. Maternal anemia is by far the
most common cause world wide. Maternal anemia and maternal hypertension restrict the
amount of available iron to the fetus. Maternal diabetes increases fetal iron demand for
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augemented erythropoiesis due to fetal hypoxia and rapid expansion of the fetal blood mass
associated with rapid somatic growth [9]. All of these conditions decrease hepatic iron stores
as indexed by abnormally low serum ferritin concentrations [8]. Brain iron concentrations are
at risk if hepatic iron stores are sufficiently compromised since iron is preferentially shunted
to the red blood cells for hemoglobin synthesis over delivery to the brain [10,11] and may be
as low as 60% of normal [10]. The neonatal ferritin concentration that correlates with low brain
iron status and neurodevelopmental abnormalities appears to be <35 mcg/L [12].

Neurodevelopmental studies of humans with fetal or neonatal iron deficiency are less abundant
than those assessing outcome of infants and toddlers with postnataly acquired iron deficiency
but indicate abnormalities in three domains that have been well explored in animal models,
including abnormalities in hippocampal dendritic structure, monoamine transmitter
metabolism, and myelination (see below). Although few in number, the extant studies identify
short and long-term effects in the same manner as the more extensive studies on postnatal
dietary iron deficiency [3].

Acutely, infants with cord serum ferritin concentrations <35 mcg/L have electrophysiologic
evidence of abnormal auditory recognition memory, where these infants to not discriminate a
familiar stimulus (e.g. maternal voice) from a novel stimulus (e.g. stranger’s voice) with the
same robustness as iron sufficient infants [12,13]. The findings suggest abnormalities in
structures that mediate recognition memory function including the hippocampus [14]. Term
infants born to iron deficient anemic mothers also exhibit alterations in temperament and
activity [15]. These findings are consistent with alterations of iron-dependent neurotransmitters
such as dopamine and serotonin and are similar to abnormalities more extensively studied in
toddlers with postnatal dietary-acquired iron deficiency [16]. Preterm infants with ferritin
concentrations in the lowest quartile at 36 weeks post-conceptional age have more abnormal
reflexes than preterm infants with normal ferritin concentrations [17]. Abnormal reflexes may
be consistent with either neurotransmitter or myelination deficits.

Long-term studies support the concept that early postnatal dietary iron deficiency alters
developmental trajectory and results in neurodevelopmental deficits in spite of iron repletion
[3,18]. Similar evidence exists with fetal/neonatal iron deficiency. Term infants born with
ferritin concentrations in the lowest quartile exhibit poorer early school performance [19].
Infants of diabetic mothers who were at risk for neonatal iron deficiency have poorer immediate
and delayed recall of object sequences at 3.5 years, directly related to the degree of iron
deficiency [20]. Interestingly, these infants can perform equal to controls only if sequential
steps of the deferred and elicited imitation paradigms are enabled, a finding remarkably similar
to results in maze solving tasks by rat and mouse models of fetal/neonatal iron deficiency
[21,22]. Event related potentials (ERPs) recorded during memory tasks of these formerly iron
deficient infants demonstrate abnormal electrophysiology [20].

The Role of Iron in Neurodevelopment- Animal Models
Most of what is known about iron’s role in brain development and function has been gleaned
from studying timed models of dietary induced iron deficiency in rodent models during periods
of rapid brain development [23–26] although mouse and non-human primate models have also
been utilized [27]. The detrimental effects of ID have generally been ascribed to its lack of
post-translational incorporation into hemoproteins such as hemoglobin and cytochromes or
into proteins with iron-sulfur clusters [24]. Prior to the 1970’s, the neurologic consequences
of iron deficiency were thought to be due primarily to anemia and its attendant effect on cerebral
oxygenation and metabolism. Dallman [23] demonstrated that iron deficiency had primary
effects in the brain tissue independent of anemia by documenting reductions in brain
cytochrome c concentrations. He proposed that reduced brain tissue iron concentrations altered
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cerebral energy metabolism through loss of cytochromes and inefficient ATP generation and
electron transport. These findings are supported by regionally distributed losses of cytochrome
c oxidase, a marker of neuronal energy status, particularly in the hippocampus and frontal
cortex [26]. Hippocampal and striatal abnormalities in energy metabolism as assessed by
sequential magnetic resonance spectroscopy studies of live rodents indicate acute (while ID)
and persistent (during iron repletion) changes [28,29].

Youdim and colleagues and Beard and colleagues have extensively established that iron
deficiency has widespread short and long-term effects on dopamine metabolism that they
postulate is due to the dependence of this neurotransmitter on the iron containing enzyme
tyrosine hydroxylase [25,30]. These groups have documented significant acute effects not only
on the monoamine neurotransmitters themselves, but also on their receptors and re-uptake
mechanisms.

A third major neuropathology was defined by a number of investigators who noted altered fatty
acid concentrations in the iron deficient brain and postulated that iron containing enzymes
responsible for their synthesis into myelin were compromised [31,32]. These seminal findings
laid the groundwork for the three major theories of why iron was needed for proper brain
development and function in the child.

The findings of altered energy metabolism particularly in the hippocampus laid the groundwork
for the assessment of form-function relationships to explicate the memory deficits found in
human infants with neonatal iron deficiency [23,26,28]. The rat has proved a useful model
since its hippocampus is relatively large, matures in the late fetal period and becomes functional
in the early neonatal stages like the human, and is able to be interrogated at the level of its
molecular biology through behavior supported by the structure. Dietary restriction of iron in
the dam from the beginning of gestation can induce a 40–50% decrease in brain iron by
postnatal day (P) 10, which coincidentally is the approximate equivalent of term human birth
for multiple hippocampal substructures [33]. Using this model to imitate the degree of iron
deficiency found in human infants at term birth, our group has used a multi-tier approach to
provide biological evidence for abnormal memory behavior. We reasoned that energy failure
would compromise highly energy dependent processes such as dendritic arborization and
synaptogenesis at a time when such processes were particularly active, between P10 and P25

The rat hippocampus undergoes a fundamental change between P7 and P14, from expression
of gene transcripts related to proliferation to those involved in differentiation [34]. We found
significant delays and abnormalities in the structural development of the dendrites of CA1 area
neurons as assessed by microtubule associated protein −2 (MAP-2) expression [35] This
protein that is important for dendritic scaffolding may have been affected secondarily by lack
of adequate energy to support complex dendritic growth or by a direct effect on MAP-2 gene
expression, as is found in whole brain [36]. Accompanying this altered structure were magnetic
resonance spectroscopy findings consistent with intracellular sequestration of the
neurotransmitter glutamate [28], reduced concentrations of the activity dependent signaling
molecule CaMK II-alpha, and reduced trancript and protein concentrations of an important
post-synaptic desnsity protein, PSD-95. In all, these findings would predict impaired synaptic
efficacy in the area of the hippocampus most closely implicated in learning and memory.
Indeed, hippocampal slice recordings in response to entrainment of electrical stimulation to
induce long-term potentiation while iron deficient demonstrate significant delays in the
maturation of this response [37]. Behaviorally, multiple studies have confirmed abnormalities
in hippocampally dependent behaviors including trace conditioning [38], Morris water maze
[39], and win-shift radial arm maze [21]. These abnormalities “map onto” the biochemical,
structural and electrophysiologic abnormalities noted in the models.
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While these protean effects of iron deficiency may well be due to the lack of post-translational
incorporation of iron into functional hemoproteins and iron-sulfur proteins, two recent studies
have defined the effects of early iron deficiency on gene expression of proteins involved in
myelination, dendritic morphology, the neurometabolome, and cellular energetics in the whole
brain [36] and in the hippocampus [40]. For example, in the hippocampus 250 known gene
transcripts were identified by microarray to be altered by iron deficiency at P15; 30% were
involved in primary metabolism, 20% in signal transduction, and 11% in establishment of
localization [40]. Pathway analysis of these genes indicates upregulation of two major
pathways that may explain early and late findings. These include the mammalian target of
rapamycin (mTOR) pathway and genes that regulate expression of amyloid precursor protein,
thought to be involved in the pathogenesis of Alzheimer’s disease. The mTOR pathway is an
intracellular signaling pathway that integrates favorable metabolic conditions (e.g., nutrition,
growth factors) and unfavorable metabolic conditions (e.g., hypoxia) to determine rates of
protein translation, cell differentiation and autophagy [41]. The fact that iron status has a
significant impact on this system may explain the altered differentiation and synaptogenesis
iron deficient neurons exhibit. Specific genes and proteins critical for hippocampal neuron
differentiation and plasticity were involved [40]. The transcripts for brain-derived neurotrophic
factor (BDNF) III and IV, as well as the trancript and protein levels of its receptor are
downregulated throughout the period of iron deficiency [42]. Modulation of this growth factor
expression may feedback on the mTOR system to affect differentiation and synaptic plasticity.

It is not surprising that iron deficiency causes dysfunction of the brain during the period of iron
deficiency. What is of interest is that long-term effects are seen in all three domains,
hippocampal structure/function, monoamine metabolism and myelination, in adulthood long
after iron repletion [3,32,35–37,40]. These findings suggest two possibilities. The most
commonly invoked hypothesis is that if there is a lack of iron during crucial developmental
periods when specific brain regions have high requirements, the physical developmental
trajectory of those regions is permanently altered. In this model of critical periods, repletion
of the nutrient after a certain (as of yet undetermined) timepoint, will not rectify a poorly or
abnormally constructed region [6). The data on dendritic arborization in CA1 of the
hippocampus are consistent with this possibility. The bulk of dendritic arborization in this area
occurs between P15 and 25 [43). Repletion of an iron deficient state after this time frame results
in long-term arbor changes [35] accompanied by reduced LTP [37] and poorer learning of
spatial mazes [21]. Regional brain and behavioral specificity seems to be key to these critical
periods. For example, early treatment appears to reverse many iron deficient findings in the
striatum, but not in the hippocampus or in myelination [21,35–37,40,44,45]. Similarly, Beard
and colleagues found long term changes in monoamine metabolism, particularly in nucleus
acumbens, accompanied by behavioral changes if iron therapy is delayed [44,46].

A second and not mutually exclusive possibility is that early iron deficiency alters regulation
of genes involved in experience dependent changes in the central nervous system including
synaptic plasticity. Clardy et al identified five genes in the formerly perinataly iron deficient
rat whole brain that remained significantly dysregulated at 180 days of age [36]. One of these,
MAP-2, is a gene that codes for a scaffolding protein important in dendritic morphogenic
response to external stimuli during memory formation [47]. In hippocampus, several genes
involved in experience dependent synaptic plasticity were down regulated at P65 in spite of
complete iron repletion of the structure and provision of adequate iron in the diet [40]. The
transcripts that were apparently permanently changed include include CamKII-alpha, Fkbp1a,
Dlgh4 (PSD-95) and Vamp1 (Synaptobrevn-1), BDNF and its receptor, TrK B. The mechanism
of these long term alterations in regulation remain unstudied but, consistent with the
developmental origins hypothesis, may involve epigenetic phenomena altering chromatin
structure and gene expression early in life.
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Summary
Iron deficiency early in life confers a risk to developing brain structures, neurotransmitter
systems and myelination that result in acute brain dysfunction during the period of deficiency
and long-lasting abnormalities even after complete brain iron repletion. The findings in rodent
models map onto the findings in humans who are iron deficient either as a result of gestational
conditions that cause late fetal and early neonatal iron deficiency or postnatal iron deficiency
after six months of life. While structural changes that occurred early in the course of iron
deficiency may account for much of the long-term pathology, the persistent dysregulation of
genes long after iron repletion suggests significant changes to gene structure and transcription
consistent with a developmental origin of later disease etiology. Future research is needed to
determine the critical windows for iron delivery vis a vis brain development and a better
understanding of the interaction of iron with the genome.
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