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Diabetes is predominant risk factor for cardiovascular diseases such as myocardial
infarction and heart failure. Recently, leukocytes, particularly neutrophils, macrophages,
and lymphocytes, have become targets of investigation for their potential role in a
number of chronic inflammatory diseases such as diabetes and heart failure. While
leukocytes contribute significantly to the progression of diabetes and heart failure
individually, understanding their participation in the pathogenesis of diabetic heart failure
is much less understood. The present review summarizes the role of leukocytes in the
complex interplay between diabetes and heart failure, which is critical to the discovery
of new targeted therapies for diabetic cardiomyopathy.

Keywords: diabetes, heart failure, leukocyte, lymphocyte, inflammation

INTRODUCTION

Diabetes is a metabolic syndrome that manifests a low grade of systemic inflammation, leads to
an increase in all-cause mortality and contributes to the development of number of cardiovascular
complications (Duncan et al., 2003). Cardiovascular diseases remain the leading cause of deaths
in the United States and in many countries globally, including coronary heart disease, stroke, high
blood pressure, and arterial diseases (Benjamin et al., 2018). Notably, death rates among adults
with both heart disease and diabetes mellitus are 2–4 times higher than those with heart disease
alone, and the mortality rate of patients with heart disease >65 years of age is∼68% in conjunction
with diabetes (Benjamin et al., 2018). Clearly diabetes very negatively impacts the progression
and outcome of heart disease, thus understanding the interplay between the two is an important
endeavor for advancing treatment strategies of patients with diabetic cardiomyopathy (DCM).

The mechanisms contributing to diabetic cardiac dysfunction are complex and involve a number
of molecular phenotypes including insulin resistance, oxidative/nitrative stress (Vita and Keaney,
2002; Creager et al., 2003; Widlansky et al., 2003), activation of mitogen-activated protein kinase
(MAPK) (Malek et al., 1999; Vita, 2002), pro-inflammatory, poly (adenosine diphosphate [ADP]-
ribose) polymerase (PARP) (Calles-Escandon and Cipolla, 2001), transcription factors (Kim et al.,
2006; Bakker et al., 2009), as well as changes in the composition of extracellular matrix (Heil and
Schaper, 2004) and inactivation of pro-survival pathways (Silver and Vita, 2006), eventually leading
to cell death (Korshunov et al., 2007), which have been reviewed elsewhere (Jia et al., 2018). At a
cellular level, high glucose levels negatively impact the function of several cell populations such
as cardiac progenitor cells (Salabei et al., 2016), cardiomyocytes, adipocytes (Wang et al., 2006),
fibroblasts (Russo and Frangogiannis, 2016) and leukocytes (Burke et al., 2004). For instance,
higher levels of glucose and free fatty acids stress pancreatic islets and insulin-sensitive tissue
such as adipose tissue, which leads to local production of the cytokines interleukin-1β (IL-1β),
tumor necrosis factor-alpha (TNF-α) and chemokines CC-chemokine ligand 2 (CCL2), CCL3
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and CXC-chemokine ligand 8 (CXCL8). Exposure to glucose also
results in increased levels of advanced glycation (glycosylation
or glycoxidation) end products (AGEs) that can directly
regulate endothelial cell permeability, monocyte migration, and
ultimately promotes inflammatory gene expression, contributing
to microvascular and macrovascular complications (Goldin
et al., 2006). Glucose levels also correlate with mitochondrial
transmembrane potential in peripheral blood leukocytes attained
from human Type I diabetics (Matteucci et al., 2011), an increase
of which results in elevated superoxide production that may
directly contribute to cell damage (Brownlee, 2001).

Numerous studies have shown that leukocytes and their
subsets (neutrophils, monocytes, and lymphocytes) are involved
in both the initiation and progression of cardiovascular diseases
(Madjid et al., 2004; Hansson, 2005; Sarndahl et al., 2007).
Diabetic cardiac injury is characterized by increased leukocyte
mobilization and secreted pro-inflammatory cytokines, adhesion
molecules, oxidative stress (Yu et al., 2011; Hernandez-Mijares
et al., 2013) and stimulation of nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB) (Lorenzo et al., 2011).
Higher leukocyte counts are associated with predicting the risk
of cardiovascular disease in diabetic patients (Hong et al., 2014),
suggesting a key role of these cells in worsening diabetes-
associated cardiovascular disease.

A number of review articles have summarized the role
of leukocytes in either diabetes or cardiovascular disease
(for instance please refer to: Donath and Shoelson, 2011;
Frangogiannis, 2014); however, increasing rates of heart failure
in diabetic patients warrants an examination of the literature
regarding the role of leukocytes in diabetic cardiovascular disease.
Therefore, this review focuses on the role and behavior of
leukocytes in the pathogenesis of diabetic heart failure.

LEUKOCYTES, INFLAMMATION, AND
DIABETES

Leukocytes are essential mediators of the immune system
that fight against foreign elements and maintain tissue
homeostasis (Fearon and Locksley, 1996). Leukocytes work in an
organized fashion with an impressive range of action (Odegaard
and Chawla, 2008). They are derived from hematopoietic
stem cells (progenitor cells) in the bone marrow. These
pluripotent stem cells produce two distinct lineages: lymphoid
progenitor cells and myeloid progenitor cells. Lymphoid
progenitors are the precursors of T- and B- lymphocytes (T-
and B-cells) and myeloid progenitors are the precursors of
neutrophils, basophils, eosinophils, monocytes, macrophages,
erythrocytes, dendritic cells, and platelets (Kondo, 2010).
Monocytes/macrophages, neutrophils, and lymphocytes in
particular have been demonstrated to both regulate and be
impacted by the pathogenesis of diabetes (Hong et al., 2014).

Chronic inflammatory diseases, including diabetes, are
characterized by dysfunctional and uncontrolled leukocyte
behavior (Graves and Kayal, 2008; Swirski and Nahrendorf,
2013). Leukocyte recruitment is triggered by inflammation
and they can produce a plethora of cytokines, chemokines,

and reactive oxygen/nitrogen species to act systemically during
diabetes (Naguib et al., 2004), and at local sites during myocardial
infarction- or atherosclerosis-induced cardiac injury (Hansson
and Libby, 2006; Eming et al., 2007), thereby contributing to
sustained inflammation. Early inflammatory events in diabetes
triggers the release of pro-inflammatory cytokines including
TNF-α, IL-1β, and IL-6 (Medzhitov and Janeway, 2000), which
gradually increase as the disease progresses (Pickup et al.,
1997). Several studies have demonstrated that initial elevated
levels circulating IL-6, plasminogen activator inhibitor-1 (PAI-
1), C-reactive protein (CRP) and fibrinogen, are associated
with the manifestation of diabetes (Pradhan et al., 2001; Festa
et al., 2002; Meigs et al., 2004). Pro-inflammatory cytokines
downregulate the major anabolic cascades involved in insulin
signaling and impair glucose homeostasis (Hotamisligil et al.,
1995; Lumeng et al., 2007b). In response to pro-inflammatory
mediators, the endothelial lining of the microvasculature will
increase expression of intracellular adhesion molecule 1 (ICAM-
1) and/or vascular cell adhesion molecule (VCAM-1) that interact
with leukocyte-expressed integrins to capture them and allow
their migration to the injured area (Chan et al., 2001; Henderson
et al., 2001). These inflammatory cascades are tightly regulated by
nuclear transcription factors including NF-κB, a master molecule
of inflammation and tissue hemostasis (Lawrence, 2009). NF-
κB activation leads to or boosts the expression of cytokines,
chemokines and adhesion molecules and more prominent
leukocyte recruitment. Thus, the inflammatory cascades - from
leukocyte activation to NF-κB stimulation – work in a positive
feedback loop fashion (Monaco et al., 2004; Lawrence, 2009).

Many leukocyte subsets are involved in diabetes-associated
chronic inflammation, in particular neutrophils, macrophages,
and T-cells. Neutrophils react to and secrete higher levels of
cytokines and growth factors in diabetic patients relative to
healthy controls, including IL-8, IL-1β, TNF-α, and IL-1ra, which
contribute to further migration of neutrophils to inflammatory
sites, phagocytic activity, release of lytic proteases, production of
reactive oxygen species and apoptosis (Werner and Grose, 2003;
Komesu et al., 2004; Baum and Arpey, 2005; Hatanaka et al.,
2006). The excessive production of cytokines and exacerbation
of neutrophil and macrophage activation may contribute to
further tissue damage and increased susceptibility to invasive
microorganisms (Tennenberg et al., 1999).

Macrophages are well-established phagocytic cells, which
renders them effective at the clearance of apoptotic and
necrotic cells (Gordon, 2003; Gordon and Martinez, 2010),
but exist along a continuum of phenotypes that makes them
difficult to definitively classify. As such, various classifications
exist including classically activated macrophages (CAMϕs) vs.
alternatively activated macrophages (AAMϕs) (Gordon and
Martinez, 2010), and the more broad pro-inflammatory (M1)
vs. pro-reparative (M2) macrophages (Nahrendorf et al., 2007;
Mosser and Edwards, 2008; Bajpai et al., 2018). Under diabetic
conditions, macrophages are recruited into adipose tissue (AT)
and activated via local cytokine secretion (TNF-α, IL-12, and
IL-6) (Vachharajani and Granger, 2009), contributing to the
establishment of an inflammatory profile and insulin resistance
within the tissue. A deficiency of MCP-1 (CCL2) or CCR2 (CCL2
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receptor) in mice results in the impairment of pro-inflammatory
macrophage recruitment to adipose tissue, thus impeding the
induction of insulin resistance (Kanda et al., 2006; Yu et al.,
2006) and suggesting an important role for pro-inflammatory
macrophages in the initiation and development of diabetes.
Further, free fatty acids can be recognized by Toll-like receptors
(TLRs), leading to the activation of macrophages, which release
more TNF-α (Shi et al., 2006; Davis et al., 2008). TNF-α, one
of the cytokines most abundantly secreted by CAMϕs, has the
ability to reduce the expression of important genes in the glucose
regulation process, such as the glucose transporter GLUT-4
(Lumeng et al., 2007a); in fact, TNF-α receptor KO mice are
resistant to diabetes stimulation (Uysal et al., 1997), suggesting
the endocrine function of adipose tissue (AT) directly impacts the
development of insulin resistance via recruitment and activation
of CAMϕs. Secretion of cytokines by CAMϕs further activates the
JNK and NF-κB signaling pathways in various leukocytes, thereby
promoting the further production of IL-1β, TNF-α, and MCP-1
and increasing the expression of iNOS, all of which contribute
to insulin resistance in different tissues (Kaneto et al., 2005a,b;
Andreasen et al., 2011). Myeloid-specific Iκκ-β (an activator of
NF-κB)-deficient mice have shown decreased NF-κB activation
and pro-inflammatory cytokine production (IL-1β, IL-6, TNF-
α, and MCP-1), leading to inhibition of the development of
insulin resistance (Arkan et al., 2005). Of note, it has been
shown that IL-10 produced by AAMϕs blocks the pathological
effects of TNF-α in AT (Lumeng et al., 2007b; Prieur et al.,
2011), suggesting that while CAMϕs have insulin resistance-
inducing effects, AAMϕs have a protector role within AT.
Indeed, A-ZIP transgenic mice (that are insulin-resistant and
hyperlipidemic), which have a deficiency in MCP-1, displayed
decreased hyperglycemia, hyperinsulinemia, and hepatomegaly;
moreover, these mice had increased levels of AAMϕs markers,
such as Arg1 and Chi313 (Nio et al., 2012). Notably, AAMϕ

development is dependent on IL-4/IL-13 stimulation, which
activates the transcription factor STAT-6, and STAT-6-deficient
mice are more prone to obesity, oxidative stress in their AT and
susceptibility to T2D development, which, in turn, is associated
with the absence of AAMϕs (Ricardo-Gonzalez et al., 2010).

Recent studies suggest adaptive immune cells, especially T
lymphocytes, also play a pivotal role in diabetes. As with
macrophages, CD4+ effector T cells can be divided into
proinflammatory Th1, Th17, and anti-inflammatory Th2 and
Foxp3+ regulatory T cell (Treg) subtypes based on their
functionality and cytokine production (Raphael et al., 2015).
Once activated, Th1 and Th2 cells show many significant signs
of inflammation, such as cytokine release. For instance, Th1
cells produce interferon gamma- (IFN-γ), interleukin-2 (IL-
2), and tumor necrosis factor beta (TNF-β), triggering cell-
mediated immunity and phagocyte-dependent inflammation
(Raphael et al., 2015). Th2 cells, in contrast, produce IL-4, IL-5,
IL-6, IL-9, IL-10, and IL-13 to regulate antibody responses (Kahn
et al., 2006). Studies have shown that Th1 and Th2 cells have key
functional roles in regulating inflammatory processes, although
they are activated later than macrophages during inflammation
(Cintra et al., 2008; Martinez et al., 2008). Th17 cells, important
pro-inflammatory CD4+ T cell subtypes that secrete IL-17 and

IL-22, have also been associated with diabetes (Zuniga et al.,
2010; Zhang et al., 2014). It was shown that macrophages from
AT express the IL-22 receptor (IL-22R) and respond to Th17-
released IL-22 to secret more IL-1β, thereby further promoting
AT inflammation (Dalmas et al., 2014; Zhao R. et al., 2014). In
all, leukocytes clearly contribute to the pathogenesis of diabetes,
and herein we will discuss the impact of leukocyte regulation in
diabetic cardiomyopathy.

LEUKOCYTES IN DIABETIC
CARDIOMYOPATHY

Heart failure associated with diabetes, or DCM, is a common
hallmark of diabetes progression. As discussed above, diabetes
is associated with chronic systemic inflammation, which leads
to leukocyte activation and recruitment to various organs and
further inflammatory tissue remodeling over time. In general,
this results in organ fibrosis as resident fibroblasts become
activated in response to pathophysiologic conditions, which for
the heart leads to wall stiffening and decreased contractility
(Russo and Frangogiannis, 2016). Reduced cardiac output
ultimately stimulates further cardiac inflammation and fibrosis,
leading to dilation and established heart failure. Leukocytes are
known to modulate cardiac fibroblasts by virtue of secreted
mediators of fibrosis, including transforming growth factor-β
(TGF-β) (Bugger and Abel, 2014; Russo and Frangogiannis,
2016), however, whether DCM-induced fibrosis is preceded by
leukocyte infiltration and activation has not been reported.

Several factors contribute to DCM and the potential leukocyte
responsiveness during its progression, including chronic
hyperglycemia, which leads to obesity, high cholesterol levels,
as well as high blood pressure and coronary artery diseases.
Recent evidence suggests cross-talk between inflammation
and insulin signaling, highlighting a strong relationship
between insulin-resistant states, inflammation, and heart
failure (Kim et al., 2005). For example, altered microvascular
endothelial ICAM-1 expression in diabetic rats has been
shown to be restored with insulin treatment (Anjos-Valotta
et al., 2006). There are also multiple molecular pathways
involved in the induction of diabetic heart failure including
oxidative/nitrative stress (Vita and Keaney, 2002; Creager
et al., 2003; Widlansky et al., 2003), activation of mitogen-
activated protein kinase (MAPK) (Malek et al., 1999; Vita,
2002), pro-inflammatory, poly (adenosine diphosphate [ADP]-
ribose) polymerase (PARP) (Calles-Escandon and Cipolla,
2001) and transcription factors signaling pathways (Kim
et al., 2006; Bakker et al., 2009), as well as changes in the
composition of extracellular matrix (Heil and Schaper, 2004)
and inactivation of pro-survival pathways (Silver and Vita,
2006).

In the early phase of inflammation, proinflammatory
cytokines including TNFα, IL-6 (Dinh et al., 2009) IL-1β

(Masters et al., 2011), Interferon (IFN)-γ, TGF-β (Biernacka
et al., 2015 are secreted by macrophages and/or lymphocytes
and may cause or exacerbate cardiac injury. In addition, these
locally produced cytokines have been found to possess autocrine
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and paracrine properties that can influence neighboring tissues
to enhance vascular permeability (Salt et al., 2003), recruitment
of invasive leukocytes (Hokama et al., 2000; Pettersson et al.,
2011) and reactive oxygen species (ROS) production (Giacco and
Brownlee, 2010; Mann, 2015; Low Wang et al., 2016). Altogether,
disturbances in metabolic and inflammatory signaling pathways
during diabetes progression are associated with alterations
in leukocyte activation and enhanced cardiac inflammation
(Figure 1). Therefore, in this section of review, we will discuss
the role of leukocytes subsets in DCM.

Neutrophils
Neutrophils often provide the first line of defense at sites of
inflammation. These are considered short-lived effector cells,
possessing limited capacity for biosynthetic activity and ROS
generation, but have been shown to be crucially involved in
cardiac repair by polarizing macrophages toward a reparative
phenotype (Horckmans et al., 2017). In addition, they secrete
a number of factors that regulate inflammation, including
peroxidases, cytokines, microparticles (MPs), and neutrophil
extracellular traps (NETs). The activity of myeloperoxidase
(MPO), stored in azurophilic granules of neutrophils and released
during inflammation (Anatoliotakis et al., 2013), has been
shown to be increased in the plasma of patients with diabetes
concomitant with coronary heart disease (Gorudko et al., 2012).

Neutrophil gelatinase-associated lipocalin (NGAL) is one of the
cytokines solely produced by neutrophils and its expression
is increased following acute myocardial infarction and during
chronic heart failure (Yndestad et al., 2009; Villacorta et al.,
2015). NGAL modulates the enzymatic activity of matrix
metalloproteinase-9 (MMP-9) and is an important mediator of
plaque instability in atherosclerosis, suggesting that it might play
a role in thrombo-inflammation (Sivalingam et al., 2017). MPs
are small vesicles (0.1–1.0 µm) released from stimulated and/or
apoptotic endothelial cells, platelets, and leukocytes (monocytes
and neutrophils) (Boulanger et al., 2017). Neutrophil-derived
MPs, which can be regulated by endothelium-derived MPs and
depend on locally released nitric oxide (Muller, 2014), contain the
functionally active anti-inflammatory protein annexin 1, which
inhibits the interaction between leukocytes and endothelial cells
in vitro and in vivo (Hayhoe et al., 2006; Sugimoto et al., 2016).
The changes and roles of MPs in either diabetes, heart failure or
DCM remains largely unknown.

A recently identified process involving NET formation, which
involves the release of DNA and granule proteins of neutrophils
that prime other immune cells to augment inflammation,
may contribute to the development of DCM since studies
have indicated that NET formation is enhanced in diabetic
patients and ultimately contributes to impaired wound healing
(Papayannopoulos, 2015; Wong et al., 2015). The release of NETs,

FIGURE 1 | Schematic diagram depicting infiltration of leukocytes from the circulation and their role in the diabetic cardiomyopathy (DCM). In DCM, a number of
local processes are activated by glucose metabolites, reactive oxygen species (ROS) and pro-inflammatory cytokines together with accumulation of neutrophils and
macrophages into the lesion site. Upon infiltration, neutrophils release extracellular traps (NETs) which induce sustained inflammation. Activated macrophages
phagocytose cellular debris and also release pro-inflammatory cytokines and growth factors which activates fibroblasts to induce fibrosis. Th1 cells secrete
pro-inflammatory cytokines which further exacerbate the inflammation in DCM whereas Treg cells secrete anti-inflammatory cytokines, where the ratio of
pro-/anti-inflammatory cytokines may predict the progression of DCM. Abbreviations: ap-NT, apoptotic neutrophils; B cells, B lymphocytes; CM, cardiomyocytes;
End, endothelial cells; FB, Fibroblast; G-Mets, Glucose metabolites; In-CM, Injured cardiomyocytes; ICAM1, Intracellular adhesion molecule 1; IL6, Interleukin 6;
IL1β, Interleukin 1 beta; IFNγ, Interferon gamma; M1, pro-inflammatory macrophages; Mo, monocytes; Mφ, activated macrophages; NETs, Neutrophils extracellular
traps; NT, neutrophils; ROS, reactive oxygen species; Th1, T helper cells 1; Treg, T regulatory cells; VCAM1, vascular cell adhesion molecule 1.
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termed NETosis, is a proposed cell death mechanism, which,
if dysregulated, can contribute to pathogenesis (Fadini et al.,
2016; Papayannopoulos, 2018). During NETosis, mitochondrial
ROS, inflammatory cytokines and glucose metabolites may each
participate in the activation of NF-κB to transcriptionally up-
regulate peptidyl arginine deiminase 4 (PAD-4), which acts
to promote histone processing, an important event in NET
formation (Azroyan et al., 2015; Wong et al., 2015). Subsequently
the digestion products and granule proteins contents are released
into the extracellular space, providing an extremely strong
pro-inflammatory stimulus (Wong et al., 2015; Silk et al.,
2017). Future studies will be required to determine the specific
impact of NETosis in diabetes progression, and more specifically
in DCM.

Macrophages
Macrophages have been implicated in the pathogenesis of
diabetes, wherein they display impaired phagocytic activity (Tan
et al., 1975; Khanna et al., 2010), reduced release of lysosomal
enzymes (McManus et al., 2001), and reduced chemotactic
activity (Khanna et al., 2010; Raj et al., 2018) in diabetic patients.
These traits are significantly correlated with increased blood
glucose levels (Jakelic et al., 1995) and reversed by decreasing
blood glucose levels in both humans (Jakelic et al., 1995) and
rats (Alba-Loureiro et al., 2006). Normally in injured tissue,
macrophages engulf apoptotic cells and cellular debris to reduce
inflammation, a phenomenon called efferocytosis (DeBerge
et al., 2017). Several molecular processes contribute to this
mechanism and in particular the metalloproteinase disintegrin
and metalloproteinase domain-containing protein 9 (ADAM-9)
was shown to be upregulated in macrophages under conditions
of high glucose, secondary to decreased expression of miR-
126, which increased MER proto-oncogene, tyrosine kinase
(MerTK) cleavage to ultimately reduce efferocytosis (Suresh
Babu et al., 2016). Importantly, human diabetic hearts displayed
the same molecular signatures in terms of miR-126, ADAM9,
and cleaved MerTK expression, suggesting this process may be
involved in regulating human DCM progression. Thus, impaired
efferocytosis would be expected to prolong cardiac inflammation
as dead cardiomyocytes and debris would not be efficiently
removed.

As discussed above, macrophages have been demonstrated
to exist along a spectrum of phenotypes book-ended by either
pro-inflammatory (M1) or pro-reparative (M2) descriptors, and
certainly a regulated balance between the two subtypes is
necessary for homeostasis of inflammation (Nahrendorf et al.,
2007; Mosser and Edwards, 2008; Bajpai et al., 2018). During
diabetes the balance favors the M1 phenotype, which acts to
promote a low level of chronic tissue inflammation and insulin
resistance (Rao et al., 2014). M1 macrophages have been shown
to be upregulated in the myocardium prior to the onset of
cardiac dysfunction (Nahrendorf et al., 2007) and early non-
selective macrophage depletion with clodronate liposomes has
been demonstrated to reduce cardiac inflammation (Schilling
et al., 2012). Conversely, macrophages of the M2 phenotype are
associated with reduced cardiac inflammation under conditions
of experimental diabetes (Jadhav et al., 2013), however, further

investigation is required to elucidate the impact of phenotype-
specific depletion or activation of macrophages in the context
of DCM. Notably, the M1 and M2 classification system is now
thought to be oversimplified, with recognition of a spectrum of
multiple macrophage phenotypes (Xue et al., 2014) that have been
recently identified and which have unknown impact on DCM.

T-Lymphocytes
Distinct T-lymphocytes subtypes, including T-helper subsets (Th)
and T regulatory cells (Treg), regulate inflammation and insulin
resistance. Increased frequency of Th1, Th17, and Th22 subsets
were shown to contribute to coronary artery disease onset in
diabetic patients after adjusting for age, sex, and duration of
diabetes (Zhao R.X. et al., 2014). In another study, increased
serum levels of Th1-associated cytokines (IL-12 and IFN-γ)
with strong suppression of Th2-associated cytokines (IL-4, -
5) were found to be correlated with diabetic coronary artery
disease (Madhumitha et al., 2014). Several clinical studies have
confirmed that Th1-associated cytokines are upregulated in the
peripheral blood from pre-diabetic or T2DM (type 2 diabetes)
patients (Zeng et al., 2012; McLaughlin et al., 2014), whereas
the activation of Th2 cell-mediated immunity is delayed and
impaired in diabetes (Wu et al., 2011). IL17- secreting Th17 cells
are also increased in T2DM patients and may be associated with
dysregulated lipid metabolism (Zuniga et al., 2010; Zhang et al.,
2014; Garidou et al., 2015).

As their name suggests, Treg cells regulate inflammatory
responses and tissue impairment (Sakaguchi et al., 2008;
Nosbaum et al., 2016). In T2DM, Treg cells can suppress
Th1, Th2, and Th17 responses by various pathways, such
as the suppression of cytokine secretion, modulation of the
microenvironment, and altering the expression of surface
receptors to improve insulin resistance (Guzman-Flores et al.,
2013; Bluestone et al., 2015). Foxp3+ Treg cells have been
demonstrated effective in the control of autoimmune disease
(Buckner, 2010), and in DCM patients, a significant reduction
in peripheral TGF-β and IL-10 with decreased Foxp3 expression
contributed to an imbalance in the Treg/Th17 ratio (Li et al.,
2010, 2017; Tang et al., 2010). Given the decreased number
of Treg cells (Jagannathan-Bogdan et al., 2011), as well as
altered Treg/Th17 and Treg/Th1 ratios in patients with T2DM
(Zeng et al., 2012), an appropriate balance between pro-
inflammatory (Th17 or Th1) and regulatory (Treg) subsets of
T cells may be required to maintain overall T cell homeostasis
and prevent chronic inflammation. While it is evident that
T cells play an important role in mediating cardiac injury
(Bansal et al., 2017), and genetic depletion of T cells protects
against cardiac fibrosis and decreased LV function (Laroumanie
et al., 2014; Weirather et al., 2014; Nevers et al., 2015), further
delineation of the role of each T-lymphocyte subset would be
worthwhile exploring specifically in the context of diabetic heart
failure.

B-Lymphocytes
B-lymphocytes are antigen-presenting cells and autoantibody
secretors. B-lymphocyte-deficient mice demonstrated less
inflammation and exhibited improved glucose tolerance (Winer
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et al., 2011). Additionally, Nishimura et al. demonstrated that
mice deficient of programmed cell death protein-1 (PD-1−/−,
a key factor for B-cell differentiation) expressed elevated
levels of circulating autoantibodies that bound specifically
to cardiomyocytes and were associated with progression of
dilated cardiomyopathy (Nishimura et al., 2001). In another
study, B cells from diabetes mellitus patients had elevated
pro-inflammatory IL-8 levels but failed to secrete the anti-
inflammatory IL-10 under a variety of pro-inflammatory
conditions (Jagannathan et al., 2011). In contrast, a recent
study demonstrated that naturally occurring B-regulatory
cells mediate protection against autoimmune destruction
of pancreatic islets by selectively suppressing autoreactive
T-cell responses (Kleffel et al., 2015). Given that B cells are
the earliest cell type that infiltrate pancreatic islets in mice
and directly regulate islet T cell infiltration, B cell-directed
therapy could be effective to protect against diabetes, however,
much more insight into their action under these conditions is
required.

THERAPEUTIC STRATEGIES

Since numerous signaling pathways activated during DCM
ultimately contribute to fibrosis, preclinical studies have focused
on mitigating this effect via targeting of various fibrogenic
aspects. Several studies by the Tschöpe group showed that
pre-clinical streptozotocin-induced DCM rodent models
are associated with increased pro-inflammatory cytokine
and adhesion molecule expression in the heart, as well as
leukocyte accumulation and fibrosis, effects that were sensitive
to treatment with a variety of treatments, including statin,
interleukin converting enzyme inhibitor and monoclonal
antibody-mediated inhibition of TNFα (Van Linthout et al.,
2007; Westermann et al., 2007a,b). In addition, another group
previously demonstrated that the antifibrotic agent tranilast, and
its derivatives FT011 and FT23, act to oppose TGFβ-mediated
fibrosis in a streptozotocin-induced transgenic (mRen-2)27
hypertensive rat model of DCM (Martin et al., 2005; Kelly et al.,
2007; Tan et al., 2012; Zhang et al., 2012). These compounds acted
to attenuate diastolic cardiac dysfunction, which was associated
with decreased fibrosis and, notably, macrophage accumulation
within the myocardium. Since therapeutic strategies for the
treatment of cardiac fibrosis have been reviewed elsewhere
(Russo and Frangogiannis, 2016), here we focus more specifically
on clinical and preclinical evidence for potential therapies that
could mitigate DCM via regulation of leukocytes themselves. As
discussed above, both neutrophils and B-lymphocytes may offer
potential therapeutic targets for the treatment of DCM, however,
more preclinical studies will be required to assess this concept.
As such, the remainder of the discussion will focus on reported
responses to therapeutic strategies involving modulation of
macrophage and T cell activities.

Macrophages
Although inhibition of pro-fibrotic processes appears capable
of decreasing the progression of DCM and cardiac leukocyte

accumulation, reduced leukocyte accumulation within the
diabetic heart has conversely been demonstrated to decrease
cardiac fibrosis during experimental diabetes in rodents. For
instance, treatment of either streptozotocin-induced mice, as a
model for Type I diabetes, or Israeli sand rats, as a model for
Type II diabetic cardiomyopathy, with the CXCR4 antagonist
AMD3100 was able to decrease fibrosis, suggesting that inhibition
of leukocyte recruitment to the heart during development
of DCM is sufficient to decrease pro-fibrotic signaling (Chu
et al., 2015). Additionally, a recent study reported that β2-
adrenergic receptor (β2AR) stimulation of macrophages under
conditions of high glucose inhibited pro-inflammatory NF-κB-
dependent production of TNFα and that long-term treatment
of Zucker diabetic fatty (ZDF) rats with the β2AR agonist
salbutamol decreased monocyte activation, cardiac macrophage,
collagen and fibronectin accumulation, as well as preserved
cardiac function compared to non-salbutamol-treated ZDF
rats (Noh et al., 2017). Notably, β2AR stimulation-mediated
inhibition of macrophage activation in vitro and cardiomyopathy
progression in vivo was context-dependent, occurring only
under hyperglycemic but not normal glucose conditions, while
our own studies have shown that β2AR agonism increases,
while antagonism or deletion decreases, leukocyte responsiveness
(Grisanti et al., 2016a,b). Thus, disease-specific environmental
factors may play a key role in determining the effectiveness of
potential therapeutics.

Additional studies support the involvement of macrophages
in DCM, wherein clodronate-liposome-mediated depletion
of macrophages was demonstrated to reduce the expression
of macrophage and inflammatory markers in the heart and
partially preserve cardiac function in a transgenic mouse
model of cardiac lipotoxity (Schilling et al., 2012). Further,
in streptozotocin-treated mice, pro-inflammatory cytokine
expression, oxidative stress, fibrosis and cardiac dysfunction
were associated with enhanced monocyte accumulation within
the heart, all of which were reduced by treatment with bone
morphogenetic protein 7 (BMP7), the supposition being that
this promoted monocyte conversion into anti-inflammatory
macrophages favoring survival signaling (Urbina and Singla,
2014). Similarly, fibroblast growth factor-9 administration
to infarcted db/db diabetic mice was shown to enhance M2
macrophage polarization, which was associated with decreased
inflammatory cytokine expression, reduced cardiac remodeling
and improved cardiac function (Singla et al., 2015). Further,
activation of peroxisome proliferator–activated receptor gamma
(PPARγ), a ligand-activated transcription factor that controls
the expression of key genes involved in lipid and glucose
metabolism and inflammation (Blaschke et al., 2006), has been
shown to reduce human monocyte chemotaxis (Kintscher
et al., 2000) and suppress macrophage pro-atherosclerotic
osteopontin expression (Oyama et al., 2002), suggesting
that clinically used glitazones may be able to reduce the
infiltration or phenotypic conversion of pro-inflammatory
macrophages.

A more recent study similarly reported alterations in
streptozotocin-treated mouse hearts, including enhanced
pro-inflammatory cytokine expression, fibrosis and decreased
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function that was associated with macrophage accumulation, but
notably highlighted the negative impact of estrogen deficiency
on these processes through the use of ovariectomized female
mice (Jia et al., 2017). These changes were also associated
with increased expression of pro-M1/anti-M2 macrophage
miR155. However, exacerbation of DCM in the absence of
estrogen was prevented via either clodronat liposome-mediated
macrophage depletion or treatment with gold nanoparticle-
conjugated antago-Mir155, which promoted M2 macrophage
marker expression and improved cardiac structure and function.
Finally, induction of heme oxygenase-1 (HO-1) was shown to
enhance M2 macrophage polarization in vitro and in rodent
models, including high fat diet-fed C57BL/6 mice and ZDF rats,
which led to the amelioration of pro-inflammatory cytokine
generation and cardiac dysfunction in the face of diabetic
cardiomyopathy (Sierra-Filardi et al., 2010; Jadhav et al., 2013;
Tu et al., 2014). Altogether, these studies suggest that a balance
between M1 and M2 macrophage phenotypes within the heart
may be an essential component of controlling DCM progression.

T-Lymphocytes
Similar to targeting macrophages, studies have highlighted the
potential therapeutic effectiveness of targeting T lymphocytes
for preventing the development of DCM. For instance,
streptozotocin-treated mice displayed enhanced cardiac T cell
infiltration associated with increased fibrosis and decreased
cardiac function, each of which were augmented by T cell-specific
deletion of hypoxia inducible factor 1α (HIF-1α) (Lin et al.,
2016). Further, genetic depletion of T cell trafficking protected
cardiac fibrosis and LV function by reducing S1P1 and TGF-
β1 expression (Laroumanie et al., 2014; Weirather et al., 2014;
Nevers et al., 2015). Additionally, Rag1KO mice, which lack
mature T lymphocytes, are protected against streptozotocin-
induced cardiac fibrosis (Abdullah et al., 2016). The same
group has also reported that T-cell-specific sphingosine 1-
phosphate receptor 1 (S1P1)-mediated signaling is essential for
the streptozotocin-induced fibrosis as the S1PR1 antagonist
FTY720 was able to attenuate this response, as was T cell-specific
deletion of S1PR1 (Abdullah et al., 2016; Abdullah and Jin, 2018).
Notably, while depletion of T cell-specific expression of S1PR1
exerted protection against cardiac fibrosis in the diabetic model,
non-streptozotocin-treated T cell-specific S1PR1 knockout mice
exhibited enhanced cardiac fibrosis, suggesting that S1P1R-
dependent T lymphocyte signaling differentially alters cardiac
remodeling outcomes in a pathologically contextual manner.

FUTURE PERSPECTIVES AND
UNANSWERED QUESTIONS

Although scientists have explored new phenotypes and functions
of leukocytes in the context of heart failure, their role in
diabetic cardiomyopathy is still developing and there remain
several important avenues of research for the future. First,
although the role(s) of leukocytes in regulating DCM in different
experimental rodent models may overlay, the predominant use
of the streptozotocin-induced Type I diabetes rodent model to
investigate the leukocytes in the development and progression of
DCM potentially leads to limited applicability to the clinically
relevant and highly prevalent type II diabetes-associated DCM
(Holscher et al., 2016). Thus, further studies are required to
understand the potential differences in leukocyte phenotypes
and their underlying mechanisms for promoting DCM using
rodent models that better mimic conditions observed during the
development of type II diabetes mellitus. Second, B-lymphocytes
clearly contribute to cardiac remodeling during the development
of heart failure since systemic B-lymphocyte depletion has been
shown to reduce T cell–, macrophage- and neutrophil-induced
tissue damage by reducing the systemic amplification of the
inflammatory response after myocardial infarction (Zouggari
et al., 2013). However, the role of B-lymphocytes specifically
in the progression of DCM is unknown, therefore additional
studies within this context are needed. Third, there are known
differences between males and females in the progression of
DCM (Natarajan et al., 2003; Laverty et al., 2017). It is evident
that females are protected from cardiovascular diseases due to
multiples factors including estrogen receptor signaling (Pare
et al., 2002), reduced ROS production, and higher antioxidants
(Barp et al., 2002; Ide et al., 2002). As such, future work would
be immensely beneficial in understanding potential sex-specific
leukocyte behaviors during the development and progression of
DCM.
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