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The principle  of  maximum  entropy has played an important  role 

in  the  solution  of  problems  in  which  the measurements corre- 
spond  to  moment  constraints  on  some many-twne mapping zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh(x). 
In this paper we  explore its role  in  estimation  problems in  which 
the measured data are statistical observations and  moment  con- 
straints on  the observation function h(x) do  not exist. We conclude 
that: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I )  For the class of  likelihood  problems arising in  a  complete- 
incomplete data context  in  which  the  complete data x are non- 
uniquely  determined  by  the measured incomplete data y via the 
many-twne mapping y = h(x), the  density  maximizing  entropy is 
identical to  the  conditional  density  of  the  complete data given  the 
incomplete data. This equivalence results by viewing  the measure- 
ments as specifying  the  domain over which  the  density is defined, 
rather than as a  moment  constraint on h(x). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2) The identity  between  the  maximum  entropy  and  the  condi- 
tional  densify results in  the fact that  maximum-likelihood esti- 
mates  may be  obtained via a joint maximization  (minimization)  of 
the  entropy  function (Kullback-Liebler divergence). This provides 
the basis for  the iterative algorithm  of Dempster, Laird, and  Rubin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[I] for the  maximization of  likelihood  functions. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

3) This iterative method is used for  maximum-likelihood esti- 
mation  of image parameters in  emission  tomography  and gamma- 
ray astronomy. We demonstrate  that  unconstrained  likelihood esti- 
mation  of image intensities  from  finite data sets yields unstable 
estimates. We show  how Crenander's method  of sieves can be 
used with the iterative algorithm  to  remove  the  instability. A band- 
width sieve is introduced  resulting  in an estimator which is 
smoothed via exponential splines. 

4) We also derive a recursive algorithm  for  the  generation  of 
Toeplitz constrained maximum-likelihood estimators which at  each 
iteration evaluates conditional mean estimates of  the lag products 
based on  the previous estimate of  the covariance, from  which  the 
updated  Toeplitz covariance is generated. We prove  that  the 
sequence of  Toeplitz estimators has the  property  that they increase 
in  likelihood, remain in  the set of  positive-definite  Toeplitz covari- 
ances, and has all  of its limit  points stable and satisfying the nec- 
essary conditions for maximizing  the  likelihood. 

INTRODUCTION 

There has recently  been a tremendous increase in the 
application of maxirnum-entropy  techniques to constraint 
problems with  nonunique solutions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[2]-[6]. The rational, as 
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first  proposed by  Jaynes [7l is  that  of all candidates  con- 
sistent with  a set of  constraints the maximum-entropy(max- 
ent)  solution is  the  one  which  occurs  with greatest multi- 
plicity. The  success of  the  entropy  function is due to the 
property  that  the  candidate  solutions are concentrated 
strongly near the maxent  one; solutions with appreciably 
lower  entropy are atypical  of  those  specified  by the data [8]. 
The  fact that  entropy  methods have  been  successful for  the 
solution  of  underdetermined  inference  problems suggests 
that these methods may play an important  role in the  solu- 
tion of  maximum-likelihood (ML) parameter estimation 
problems. In particular,  problems encompassed  by a com- 
plete-incomplete data specification, in which  the mea- 
sured data specify many possible  complete data sets over 
which  the estimates  may  be obtained via maximization  of 
the  likelihood seem particularly  well-suited  for  entropy 
techniques. For. the  problems  examined in this paper, a 
function is estimated which parameterizes a  known  prob- 
ability density; the actual  data (denoted as the  complete 
data) described  by the density are not observed.  Rather, 
observations  consist  of data (denoted as incomplete data) 
which  nonuniquely  specify  the  complete data  via  some  set 
of many-to-one  mappings. 

Our  motivation is  that  we have been working  on  prob- 
lems in image reconstruction  and  spectrum  estimation in 
which parametersareestimatedfrom measurementswhich 
are both noisy, i.e.,  samples of a stochastic  process, as well 
as incomplete [9]-[14]. For the former, images  are recon- 
structed which are the  intensity  of  a Poisson  process; due 
to errors  introduced  by  the measurement  device, the data 
do  not  uniquely specify the  point process. In  the spectrum 
estimation  problem, the Toeplitz covariance of  a Gaussian 
random process is  estimated from  finite measurements of 
a  stationary process.  For both problems, ML techniques are 
an obvious  choice for generating  the parameter  estimates; 
however, the fact that the measured  data do  not  uniquely 
determine  the  underlying stochastic  processes  suggests 
that  entropy may play  a key role. In fact, both  entropy and 
likelihood approaches  have been  applied  for  the  solution 
of these problems [2]-[6],  [9], [15], [16]. 

We  shall explore  the  role  that  the  entropy function plays 
in  the generation  of  maximum-likelihood estimates (MLEs) 
when  the data in the  likelihood  function are nonuniquely 
determined.  Given  a prior density f, the maxent density to 
which we refer is the density q maximizing the entropy 

E(q ,  f )  = - 1, q ( x )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlog [E] dx (1 a) 
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subject to theconstraints Hfixing mean  values of  theobser- 
vation function given  by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

H = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs q(x)h(x)  dx. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1 b) 
D 

The  maxent density 9 is 

The  Lagrange multiplier vector vis  chosen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso that 9 satisfies 
the  constraints of (1 b) over its support set D, with  tdenoting 
matrix transpose. Alternatively -E(9, f) has been  called  the 
ldivergence, K-L number,  or  cross-entropy  between zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 and 
f [VI, [W.  

The problem we set up is  similar to that  which generates 
9 of (IC) in that  we assume a prior density f(x; 4) describing 
the  complete data x, parameterized by  some function 4, 
and observations  y = h(x) whereh(x) is a many-tmne vector 
mapping from  the  complete data observations. We  are 
interested in  finding  the maxent density zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 although we do 
not assume that  the  observations  y  provide  moment  con- 
straints on h. For the  estimation  problems in  which we  are 
involved, the set of  observations h(x,) for i = 1, . * , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN is  
small so that  the average of  h(xJ may not be close to its 
expectation. This i s  in contrast to the  results  of Van  Cam- 
penhout  and Cover [I91 who proved  that  for  large N, the 
conditional  distribution of  a  random  variable x, given the 
empirical  observation  vector 

I N  - h(xj), where xl,  x2, . * 

are  i.i.d. random variables with common prior f, converges 
to the maxent distribution given in (IC). That is, for N large 
so that 

N ; = I  

I N  - C h(x;) 
N ; = I  

is close to  the expectation  of h, the exponential  density  of 
(IC) is  identical to that based on rules  of  conditional  prob- 
ability. 

Toanticipatethe resultsforfiniteobservations, it isshown 
in Section I that  by  viewing  the  incomplete  datayas restrict- 
ing  the  domain over which  the maxent density is defined, 
rather  than as a moment  constraint on h(x), the  density max- 
imizing E(q, f )  is  identical to the  conditional  density  derived 
via formal rulesof  conditional  probability. This equivalence 
results in  the fact that  a large  class of M L  problems may  be 
posed as a  joint maximization  of the  entropy  function. This 
joint-maximization  view is  then related to  the expectation- 
maximization (EM) algorithm  of  Dempster, Laird, and  Rubin 
[ I ]  and the  alternating  minimization of Csiszar and Tusnady 
[20], and then  applied to the  iterative  generation of MLEs 
in image reconstruction  and  Toeplitz  constrained  covari- 
ance estimation. 

I .  THE EQUIVALENCE OF THE CONDITIONAL AND MAXENT 
DENSIN 

Our strategy in  this section i s  to set up the  complete- 
incompletedata models, from  which it follows  that  the  con- 
ditional  and maxent densities are identical. This, in turn, 
results in the  solution  of classical likelihood problems via 
a maximization of  the  entropy  function  of (1). 

A. Generation of  the  Complete-lncornplete Data Model 

We begin by defining  the  underlying  probability space 
(Q, dl), P), with sample points w in n, events in the sigma 
field 4Q) of subsets of n, and probability measure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP .  Then 
we define  the  complete-data  random  variable X as a mea- 
surable function so that X: (Q, dn)) + (x, d ~ ) ) ,  with  the prob- 
ability  of an event B E dx) given by P A B )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP { o : X ( w )  E B } .  
We  shall for  the  entire paper  assume that P A  ) i s  absolutely 
continuous  with density f(x; 4). The family of densities 
f(x; 4) parameterized by 4 we term  the  complete-data  den- 
sities.  We say that we  are given  incomplete data if  instead 
of observing  x in x, only  the sample y is available, where 
y = h(x) for some  measurable m-dimensional vector m a p  
ping h; this  mapping is, in general,  many to one, so x is  not 
uniquely  specified  by y. Thus the  incomplete data y  result 
from  the existence  of m + 1 sample spaces, the  complete 
data space x, and  the m incomplete data spaces Y,, Y,, * * * , 
Y,. We denote  the product space describing  the  incom- 
plete data vector Y = Y1 X Y, X X Y,. 

The complete data x are a particular  realization from x, 
and the  incomplete  observed data y are a particular real- 
ization from Y. Therefore, the  many-to-one  mapping h(x) 
taking x to Y specifies the subset x(y) c x in  which  the com- 
plete data x is  an element, with  x(y) given by the  following 
relation: 

x(y) = {x:h(x) = Y}. (2) 

The family  of  densities  g(y; 4) describing  the  incomplete 
data  are derived  according to the  following relation: 

g(y; 4) = 1 f(x; 4) dx. (3a) 
X(Y) 

The conditional  density  of  x  given  y is  then 

kblx E XCY), 4) = , for  x E X(Y) 
f(x; 4) s f(x; $4 dx 

X ( Y )  

= 0, for x x(y). (3b) 

B. Equivalence of  Maxent and Conditional  Density 

By incorporating  the  complete-incomplete  model  of  the 
measurements y = h(x) into  the  entropy formalism  of (1) it 
follows  directly  that  the  density  maximizing  entropy E(q ,  f) 
is identical to  the  conditional density k(xlx E x( y), 4). Stated 
inanotherway,thedensitygclosesttofinthecross-entropy 

sense becomes the  conditional  density. 
Following  the  maximum-entropy  approach  given by ( la, 

b) we find  the density 9 maximizing E(9, f) subject to  the 
constraints  determined bythe data y? Since moment values 
on h do  not exist, the  solution  of  the  incomplete data prob- 
lem is  different  then  that stated in (1). The  data ydetermine 
thedomainx(y)asgiven by(2)overwhichthecompletedata 

are defined. Therefore, rather  than  specifying  moment  con- 
straints on h(x) the data y specify the  domain D over which 
the maxent density has support, with  the constraint  given 
by 

q(x)  dx = 1. 
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From  Jensen's inequality, thedensity9 maximizing  entropy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg(y ;  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4). Applying (3a, b) the log likelihood  of y is given  by 
49, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf )  subject to the  support  constraint 

log g(y;  4) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlog f(x; 9) - log k(x)x E x(Y) ,  44 (6) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 q(x)  dx = 1 (4) and evaluating  the  expectation  of logg(-) in (6) with respect 

X ( Y )  totheconditionaldensityk(xlxEx(y),#)yieldsthefollowing 

becomes log likelihood  to be  maximized: 

numerous  results (see  Jaynes  [21] collected  works  for var- 
ious examples), demonstrating  that  the set of maxent den- 
sity  are equivalent to those  generated with  formal rules of 
conditional  probability. It is not of the same exponential 
form as in (IC) because moment  constraints on h are not 
assumed. 

The density of (5) may be  related to the  maxent  density 
of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(IC) via the results  of Van Carnpenhout  and  Cover. For 
purpose of illustration, we  choose  a  particularly  simple 
many-to-one mapping  for  the  incomplete data and  apply 
their Theorems I and 11. Assume  {x1, - - , xN}  are the com- 
plete data which are  i.i.d. discrete  random variables with 
mass function f(x) on the range x E {I, 2, - , m}. Given 
the incomplete data 

N 

y = ,c xi 
r = l  

with q a  density  over x (y ) ;  that is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I,, 9(x) dx = 1. 

The MLE is  then  simply 

It follows  that  the MLE 4 is  given  by  the following  joint max- 
imization: 

the  conditional  probability  of (xl, x2, * , xN} given  y is  The notation "argmax"  means the MLE 4 is  the  argument 
from (5) which maximizes the expectation  of log f(x; 4); the  notation 

k(xl jl, . * , XN = jN) y)  Because of  the equivalence  between the  conditional  and 

ply  the  joint maximum with respect to  9,4  of  the  entropy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
((it,...,iN):jl+...+iN=yl function f(q, f(#)). This results in the  estimation  problem 

being  expanded to  what appears to be  a  larger  problem in 
and from  the independence  of  the xi's it follows  that  which both the parameters # as well as density  9  must be 

estimated, which  in  turn implies  the following iterative 
algorithms. 

"denmax"  means the density t? maximizes E(q,  0. 

- f(x1 = ill ' ' XN = jN) maxent  densities, the  incomplete data log likelihood is sim- - 
f(x1 = jl, * * , XN = / N )  

k(xl = i l l  y) = f(xl = ill 
r N 7 

c n f(Xi = ji) 
((j2,...,jN):j*+...+jN=y-jt) i - 2  

N 
D. Iterative joint Maximization of  the  Entropy Function 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc IT f(xi = j i )  J 
( ( j t ; . . , j N ) : j i + . . . + j N = y )  i=l 

For N - 00, by Theorems I and II of Van Campenhout  and 
Cover, the above density converges to the  maxent  one of 
(IC), with h(x)  replaced  by x. 

C. Maximum-Likelihood Via joint-Maximization of  the 
Entropy Function 

Now it follows d i r w l y  that the MLE & may be  posed as 
a jointentropy maximization. The MLE is  obtained by  max- 
imizing  the log likelihood  of  the  incomplete data log 

The Expectation-Maximization  Algorithm of Dempster, 
Laird, and Rubin: The fact  that  maximum-likelihood  prob- 
lems  may  be viewed as a joint maximization of the  entropy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E ( q ,  f )  results in the EM algorithm  of  Dempster etal. [I] for 
the iterative solution  of  maximum-likelihood  problems. The 
EM algorithm  yields  the sequence of iterates (&'); p = 0, 
1, } defined  via  the  recursive  maximization 

&'+l) + ar  max {Q(#l&'3} (9a) 

where Q(I$I&" is the expectation of the  complete data 
log likelihood given the  incomplete data and the pth 

9 6 )  
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iterate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA#p): zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Q(4ldp)I = 1 k(xlx E X C Y ) ,  &')) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlog f(x; 4) dx.  (9b) 

Note, this is  precisely zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(8a) with 9 Q  = k(xlx zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE ~ ( y ) ,  &" for 
4'p'thepth iterate. The iteratesof (8a) have the  property  that 
logg(y; +'03,10gg(y; dl)), * * is  a  monotonic  nondecreasing 
sequence.  This  may be seen by defining  the  function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

H(+I@'3 = 1 kDrlx E x (Y) ,  &" log k(xlx E x ( y ) ,  44 dx 

x( Y) 

dY) 

and from (7) noting that 

log g( y; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI$@ + '3 - log g( y; @3 = Q w + ' ) l I # J ( P 3  

- Q ( ~ ' P ' ( ~ ( P 3 + H ( ~ ( P ) I ~ ( P 3  - H(fp+ ' ) ( tp3.  

Jensen's inequality  yields H(&"I&" - H(&"')(c#a(P3 2 0, 

and since the  function Qb$l&'3 is  maximized at  stage 
p + 1, it follows  that log g(v; &'+'3 zz log g(y; &". 

The Alternating Minimization of  the K-L Divergence: In 
the  derivation  of (a), the  joint maximization of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE(q, f )  may 
be  viewed as a joint  minimization  of  the K-L divergence 
-E(q,f) between the densities q and f, where f is varied via 
the  parameter 4. This leads to  the elegant  results of Csiszar 
and Tusnady [20] and  Musicus [22] demonstrating  that the 
EM sequence of (9) is a  particular  example of an alternating 
minimization  of (8). The iteration sequence  becomes 
{ p ,  f(V,  f(a, . . . }, where q ( P + ' )  and f(p+') are given 

by 

and 

Note, "denmin" is  a  minimization over the  densities q and 
f, where  for  the MLE setting f is varied  via  the parameters 
4. 

11 .  ML ESTIMATION OF POINT-PROCESS lNTENSlTlE5 FOR 

IMAGING 

A. Imaging Model 

The  class of imaging  problems which we are studying 
involve the estimation  of spatial distributions  of radioac- 
tivity  from  the measurement of discrete  radioactive emis- 
sions [lo], [Ill, 1141. These emissions are modeled as a Pois- 
son  process [23] with a  spatially  dependent  intensity X(z). 
The  image reconstruction takes into account two funda- 
mental  components  characteristic  of  the  imaging systems. 
i)The  number  of  measurement  pointsare  low  and  therefore 
dominated  by Poisson  statistics; and ii) Due to  the physics 
of  the  measurement systems, errors are introduced  in  the 
creation  of the observed data.  The  basis for  the ML solution 
is  a model  which  hypothesizes  the  existence  of two point 
processes.  The first is  the "emission process" denoted as 
N(dz), which corresponds to  the  number  of emission  points 
having  positions  z in [z, z + dz) E Z for Z the space over 
which  the  radioactive  tracer is  reconstructed. The  emis- 
sions N(dz) are a spatial  Poisson  process with an unknown 
intensity { X(z); z E Z}. The second point process i s  the 

"measurement  process" denoted as N(dy), corresponding 
to the  number  of measured points in [y, y + dy) E Y. The 
relationship  between the radioactive emissions occurring 
at z  and  a measurement formed at y is given  by 

y = Z + E  (11) 

where E is a  random  measurementerror  vector with density 
p ( - ) ;  since the errors are due  to  the measurement system, 
the  density p ( . )  will depend on the imaging  modality. For 
example, in time-of-flight  positron-emission  tomography, 
the  error  density is an elliptically shaped  Gaussian function 
[24]; in electron-microscopic  autoradiography it is "Cau- 
chy-like" with  long tails [14]; in single-photon  tomography 
it is  a  symmetric  one-dimensional Gaussian density [ll]. 

The error vectors  are  assumed to be  independent of  the 
creation  of  radioactive events. It follows  that  the measure- 
ment process  N(dy) is  Poisson with an intensity  e(y),  result- 
ing  from  the  convolution  of  the radioactivity distribution 
with  the point-spread function [24],  [25] given  by 

e(y) = 1, p(y - z)X(z)  dz, for  y E Y. (12) 

Taking a  direct assault on  the  estimation of X via ML tech- 
niques  yields  the following log likelihood to be  maximized: 

log g(y; X) = - j y I z  p(y - z)X(z) dzdy 

+ IY log [ IZ p(y - z)X(z) dz]N(dy). (13) 

The  data  vector y denotes the measured incomplete data 
N(dy). Maximizing  with  the calculus  of  variations  yields the 
following  nonlinear  integral  equation  which  the MLE f i  must 
satisfy: 

1 = 1 P(Y - Z)N(dY) (1 4) lz p(y - r)fi(r) dr' 

The integral  equation  of (14)  has not been, to date, explicitly 
solved. 

The fundamental  difficulty with a  direct  maximization of 
the  likelihood  of (13) resulting in (14) is  that the measure- 
ment point process  does not  uniquely specify the under- 
lying emission point process. Recognizing  this  results in  the 
introduction  of  the  complete-incomplete data model  and 
its iterative maximization. 

6. Complete-Data Model 

The complete data  are defined as follows. Suppose that 
each point  of  the complete data is formed  by  labeling  the 
emission  points with a  mark E indicating  the  error associ- 
ated with i ts measurement.  The result is a  marked point pro- 
cess [25l, wherein each event in  the complete data (z j ,  e j )  
identifies  the  location zj  of  the  jth emission as well as the 
error ej associated with its measurement.  The vector  func- 
tion I d . )  mapping  points  from  the  complete data  space x 
totheincompletedataspaceYisdefined bythecomponent 
maps 

h(zj, ej) = zj + ej = yj, for j = 1, 2, * * , N T  

with NT the  total  number  of measurements.  The complete 
data x are the set of emission  points  and  error vectors 
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{(zl, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE,) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(z2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe2), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA* * - , (zN,, eNJ}, with  the  incomplete data zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy 
being  the set of measurements { yl, y2, * * , yNT}. Note, 
given the measurement vector y, the emission  locations as 
well as the  error  vectors are nonuniquely  determined. It 
follows [25] that  the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlog likelihood  of  the complete data is  
given  by 

log f(x; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX) = - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlz X(z) dz + lz log [X(z)]N(dz) 

NT 

/ = 1  
+ .x log [p(q)l. (15) 

Having established the log likelihood  of  the  complete data, 
the  joint-maximizer  conditions of (8) generate the  following 
necessary conditions  for f i  an  MLE: 

,,l . 

(1 6) 

where f4{ ] is aconditional expectation with respect to  the 
maxent density of (8b).  Evaluating the  expectation with 
respect to $(x) = k(xlx E x ( y ) ,  f i )  yields 

Eq {Mdz)} = fi(z) dz 1 p(y - z)Mdy) 

1, p( y - r)fi(r) dr 

and  performing  the  variation  of (16) over X yields the nec- 
essary condition  for an interior  point  maximizer  given  by 

This is precisely the MLcondition of (14) illustrating  the fact 
that  maximizing log g(y; X) in the  incomplete-data space is 
equivalent to maximizing 

for q(x )  the maxent density  of (8b). 
/terativeSolution:The  maximization sequence is  straight- 

forwardly  derived. The maximizer at iteration p + 1 
is generated by  taking  the  conditional  expectation  of Mdz) 
in (16) with respect to  the density  #'"from thepth iteration, 
and  then  maximizing with respect to X to determine 
This yields the sequence { X@); p = 1, * } defined  via  the 
iteration 

X(P+l)(z) = X'P)  (2) s p(y - z)N(dy) 
, for z E Z. lz p( y - r )  X"%) dr 

(17) 

The  maxent density zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq ( P + ' )  becomes 

= k (x (x  E x(y ) ,  (18) 

The maximization of the discrete  likelihood via (17) was first 
derived and implemented  for  positron-emission  tomog- 
raphy  by Shepp and  Vardi [16], and later by Lange and Car- 

son [26] for  transmission  tomography  and Snyder and Pol- 
itte [9] for  tomography systems with  timeof-flight. We  have 
derived  similar  solutions  for  single-photon  tomography and 
electron-microscopic  autoradiography, with  the  appropri- 
ate imaging  models chosen in each [ I l l ,  [14]. 

Remark 2: Relationship o f  the Poisson  Process Additive 
Error Model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto Gamma-Ray Astronomy:  The  Poisson model 
with intensity  given  by  the convolution of the image with 
a known point-spread function is  precisely the  model  pro- 
posed by both Frieden  and  Wells  [27, [28] and  Skilling, 
Strong, and  Bennett [29] for  reconstructions in gamma-ray 
astronomy. For  gamma-ray detection,  the function p ( . )  
denotes the  point spread of  the detector array and  the  func- 
tion X corresponds to  the two-dimensional  intensity  map 
of gamma  rays.  The  basic departure  between the imaging 
modeldescribed bySkillingetal.[29]andtheonedescribed 

here is, as Skilling  pointsout,  the  point-spread  function  rep- 
resenting  the  operating  characteristics  of  the  telescope 
(Scarsi et a/., 1977 [30]) vary as a function of  the  energy  of 
the  detected  photons. The single  intensity  of the mea- 
surement process 8(y)  in (12) is  not adequate.  The model 
is modified to accommodate  this as follows.  Imagine  that 
each  measurement point is marked with  the value  corre- 
sponding to its energy, resulting in the  multi-energy mea- 
surement processes {N'(dy),  N2(dy), - , NK(dy)},  for  Kthe 
number  of energy  states. Assuming  the measurements 
Nk(dy)are  mutually  independentwith thekth intensitygiven 
by the  convolution  of Ak(z) with  the  densitypk(.),  then the 
intensityXk(z)describestherateatwhichphotonsofenergy 

k are  created.  The log likelihood becomes 

log g(y;  X) = -i, ~ y s z p k ( y  - z)Xk(Z) dzdy 

Assuming, as did Skilling  eta/. [29] that  the  total rate of pro- 
duction of gamma  rays, and not  the  intensity Xk(z) for each 
energy  state is the desired image, then  the sequence 
becomes 

C. Convergence of (17) to the MLE 

Vardi,  Shepp, and  Kaufman [31] proved  that  a  discrete 
implementation  of (17) has global  convergence  properties; 
the initial estimate X(O)(z) can be any positive  bounded  func- 
tion  with  the sequence converging to an MLE fi(z) satisfying 
the necessary and  sufficient  maximizer  conditions. For pur- 
pose of discussion, we outline here  their  proof. We empha- 
size that  their  proof is  for a  discrete  implementation  of  the 
image model  and  iteration sequence. Aswe will show in  the 
next section, the nondiscretized  log-likelihood function  of 
'(13) has no maximum  when  the space of parameters is  not 
restricted,  and  the  iteration will  not converge. 

The  neat proof  of  Vardi  et a/. breaks into  two parts: i) 
Showing  that if  the  iteration  of (17) converges, the Kuhn- 
Tucker conditions are satisfied  and  therefore  the  conver- 
gence point  of  the  algorithm maximizes the log likelihood; 
and ii) Showing  that every  sequence  converges. Proof of i) 
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follows since the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlog likelihood is concave and Shepp and 
Vardi [I61 showed  that the convergence point satisfies the 
necessary and  sufficient  Kuhn-Tucker  conditions. Proof of 
ii) is  much  more subtle, and it is  here  that  Vardi etal. invoke 
the  results of Csiszar and Tusnady [20].  They show that  for 
the  particular  alternating  maximization of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(17, the  K-Ldiver- 
gence between any limit  point of the sequence and suc- 
cessive iterates  of  the  algorithm decreases.  This coupled 
with  the fact that every  sequence has a set of  subsequential 
limit  points  due  to  the compactness of  the  iteration set and 
the fact that the  limit  points are  stable, implies  global  con- 
verge for  the full sequence of iterates. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
D. Inconsistency of Unconstrained-Likelihood Estimation 
of Image Intensities 

Estimatesof radioactivitydistributionsderived viatheML 
method  perform  better, as measured by signal-tenoise ratio 
and  resolution metrics, than  non-likelihood-based  imaging 
methods [14],  [32]-[34]. However,  images produced via the 
algorithm of (17) exhibit  noise-like  artifacts in the  form of 
sharp  peaks  and  valleys located  randomly throughout  the 
image field, with these artifactsworsening as the  algorithm 
climbs  the “likelihood  hill” towards  the MLE [lo], [35].  This 
degradation has been  observed  by  other  investigators [36], zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[37], and  we  argue  that the noise artifact i s  fundamental to 
any algorithm  generating  unconstrained likelihood esti- 
mates. 

To illustrate  the  fundamental  problem, assume that the 
measurements N(dz) are from  a Poisson  process with  inten- 
sity X(z). Then the log likelihood becomes 

- lz X(z) dz + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl log [X(z)]N(dz). (20) 

Direct  maximization  of (20) for  the  estimation  of  the image 
intensity X(z) yields  a set of Dirac  delta  functions,  centered 
at the  points  of  the N observations; that is 

Z 

N 

i(z) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc 6(z - Zi) 
,=1 

wheretheNdatapointsoccuratz,,z,, - * ,z,.Thissolution 
is obviously  unacceptable because it contradicts  our apriori 
knowledge  about  the image. It is expected  that h(z) is  
bounded,  and at least piecewisecontinuous. An uncon- 
strained  maximization of (20) fails to produce  meaningful 
estimates.  The iterative  algorithm  described  for  the imag- 
ing problems will suffer in precisely the same manner, 
whether  measurement  errors exist or  not. The fundamental 
problemisthatthelikelihoodisunboundedaboveoverthe 

unconstrained set of measurable functions. 
We havedescribed  the  imaging  problem  viaacontinuous 

model to illustrate  precisely these difficulties. We  empha- 
size that the discretization  required  for performing  the 
implementation does not  help  matters.  Discretizing  into 
pixelsofwidthAresuItsinanMLEwhichisaseriesofpulses 

with heights  proportional to the  number  of  observations 
in each  pixel; that is  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(i + 1)A 

A(/] = l NW.  
iA 

The unconstrained  maximization will result in an extremely 
rough  estimate of  the  radioactivity  distribution. The imple- 

mentation also has the  undesirable  property  that as it 
becomes finer  with decreasing pixel size, the  problem 
becomes  worse; a  situation  termed  “dimensional instabil- 
ity” by  Tapia and  Thompson  [MI. The discrete  version  of  the 
problem does not remove  the  fundamental  difficulty. For 
finite data sets, unconstrained  maximum  likelihood may 
yield estimates which are  unacceptable. 

Constrained  Estimation Via Penalty  Methods:  We now 
discuss the  application  of  the  method ofsieves, first  devel- 
oped by Grenander [39], for  the  generation  of  consistent 
estimates. Grenander  notes  that in M L  problems such as 
these the parameter space (positive measurable functions 
of finite measure) is too large. He  proposes  maximizing  the 
likelihood over a  constrained subspace S,, and  then relax- 
ing  the  constraint with sample  size  by allowing  the sub- 
space to grow.  Under the  condition that the sieve grows 
sufficiently  slowly  this  produces  consistent estimates.  For 
the  conventional  tomographic  imaging  problem,  band- 
width constraints are introduced via the  choice of recon- 
struction  filters  which have high-frequency rolloffs. This 
leads to a particularly  attractive sieve for the M L  problem 
given bythesequenceofsubsetsS,,form = 1,2, ,spec- 
ified by 

If  m grows  sufficiently  slowly with sample  size, the MLE 
i E S, is consistent [a]. 

We implement  this sieve using the  penalty  method  of 
Good  and Gaskins [41], where  the MLE is generated by per- 
forming  the  maximization of  the  likelihood  with  a penalty 
@(X) expressing the smoothness constraint of  the sieve on 
the  intensity X. The penalty  constrained MLE is  then  given 
bytheparametersiwhichmaximizethesumoftheloglike- 

lihood and penalty  given  by 

log g(y; X) - @(X). (22) 

As pointed  out  by  Dempster  et al., the EM algorithm is  per- 
fectly  suited  for  the  maximization of  the expression in (22). 
The  sequence { X(P);p = 1,2, . } is  given  by  the following 
recursion: 

with 9‘P) generated in  the previous  iteration.  Maximizing 
(23)  at thep + 1st stage results in the sum of (22) increasing 
at each iteration  of  the  algorithm as well and  maximizing 
(23) is  simpler  than  maximizing  the sum in (22) directly. 

The  sieve constraint of (21) is  implemented  viathe  penalty 

Note, the  constant  m  determining  the size of  the sieve  sim- 
ply  corresponds to the second term  in @(X). At iteration 
p + 1 the  quantity to be maximized becomes 
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The constant zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 corresponds to  the second central  moment 
of  the  energy  spectrum  of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf i  and is  determined  by  the 
choice  of  m in the sieve; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY corresponds to  the scalar 
Lagrange multiplier  weighting  the penalty  function;  and 
h'p' = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA€4 {Mdz)} for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 the maxent density from  thepth  iter- 
ation.  Performing  the  variation over X yields  the following 
equation to be  solved on  the p + 1st iteration: 

The kernel K(.) is given  by 

with ,!? = 1 - ~ ( 2 d ) ~ .  When  there are no measurement 
errors, the MLE becomes a sum of  exponential  splines with 
knots at the data points. We  have  solved the integral equa- 
tion of (24) recursively, thereby requiring an iterative  pro- 
cedure at  each  stage of  the  maximization. (See Snyder  and 
Miller  [lo]  for  other details.) 

Remark 3: Entropy  Penalty  Constraint:  Various investiga- 
tors have maximized likelihood subject to an entropy  pen- 
alty on  the image.  For  example, Frieden  [27, Daniel1 and 
Gull [3], and Skilling et a/. [29]  have maximized  the sum of 
the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlog likelihood  with a Bayesian prior,  where  the  negative 
of the penalty function a( X) corresponds to the Bayes prior 
describing  the image  statistics.  They  have  suggested using 
an entropy  prior,  denoted as %=(X), which was first  pro- 
posed by  Frieden [27  to describe the image  statistics.  The 
entropy prior @.,(X) is proportional to the  function 

- X(z) log X(z) dz. 

They  argue that  for  a large number of  counts, the  entropy 
prior is proportional to the  number zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof ways of  generating 
a  particular image field. Thus they  recommend  maximizing 
log g(y; X) + &.,(X) with respect to X, where log g(y;  X) is  
the  log  likelihood of the data.  The  Lagrange multiplier Y is  
chosen so that the log likelihood and  entropy  function are 
weighted various amounts. For  example, Frieden chooses 
Y = 1, thereby  maximizing  the  total sum. Skilling chooses 
the Lagrange multiplier so that  the log  likelihood attains a 
certain value. 

As Frieden  and Skilling  point out,  maximization  of the 
sum of the  log  likelihood and  entropy  prior is very difficult 
(see, for example, Skilling  and Bryan  [4]). Our results on the 
penalty-constrained  problem pertains, with  the  functional 
to be maximized  given  by 

The maximization with respect to X is much  simpler because 
h(P)(z) is  not varied. In fact,  since the  entropy is  a strictly 
concave function,  unique maxima will exist as the  incom- 
plete data log  likelihood of (13) is  concave. 

E. Simulations Using the  Bandwidth  Constraint 

In this  section we describe the result  of  applying  the 
"bandwidth-penalty"  constraint to the  derivation  of MLEs 
when  there are no measurement errors. These simulations 
are  based on  two one-dimensional  distributions,  one  being 

a smooth Gaussian profile and  one  a  rectangular  profile. A 
Poisson  process  was generated with  a mean in each pixel 
of A(/), where A(i) is the integral  over  one  pixel of  the Gauss- 
ian and  rectangular  distributions. Fig. 1 shows the MLEs of 

(AVG zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC T S * K X X )  
4, I 

1 

(b) 

Fig. 1. Thegraphsshowthemaximum-likelihoodestimates 
of the  one-dimensional Poisson  process, generated  with  a 
Gaussian  (a) and  rectangular (b) mean  rate of discharge.  An 
average of lo00 measurement  points  were  simulated in  the 
512-bin histogram. 

the Gaussian (a) and  rectangular  profiles (b) based on a Pois- 
son simulation  containing an  average of IO00 counts in the 
512-bin simulation. The histogram  shown in Fig. 1 results 
from a direct  maximization of  the  discrete likelihood  of (20) 
and is  therefore  the  unconstrained MLE. 

The one-dimensional  histograms of Fig. 1 demonstrate 
the  "dimensional  instability"  that  the  unconstrained MLEs 
exhibit.  Notice the occurrence  of  large  variations  between 
adjacent  pixel estimates of A; this  effect gets worse if  the 
pixel size or  the  number  of measurement points are 
decreased. 

Plotted in Fig. 2 are the results of  applying  the  bandwidth 
penalty to the Poisson simulations. The  estimates of Fig. 2 
wereobtained  using  the  bandwidth  penalty  resulting in the 
exponential  splineestimateof (24). Forthe  simulations  there 
were no measurement errors so that h(u) in (24a) becomes 
simply  a sum of  delta  Dirac  functions  centered at the mea- 
surement  locations. Since the nonlinear  equation (24)  has 
no obvious  analytic  solution, we solved it recursively. 
Denotingthe iterates byy(o'(x),y(''(x), ,then  the  iteration 
we define is 

where K(x) is given in (24) and 

Y'k+l)(X) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJx;lFTiri. 

For the  initial estimate y(O'(x), we  used the square root of  the 
histogram  estimate  of X(x). While we  have no mathematical 
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Fig. 2. Plots of the  maximum-likelihood estimates gener- 
ated  with  the  bandwidth  penalty of equations ( 2 4 ,  b) for dif- 
ferent values  of the  bandwidth  BW. Both  rows  show the esti- 
mates derived  from  the  simulation  data of  Fig. 1, generated 
with BW = 0.3 (a), (c) and BW = 0.1 (b),  (d). 

proof  of  the  convergence  of  the  iterates to the  solution  of 
(24), we did observe convergence  for all the simulation 
experiments  we  attempted. Each panel in Fig. 2 shows the 
estimates derived  with a different  bandwidth  constraint as 
specified by  the  value B corresponding to the second  cen- 
tral  moment  of  the  energy  spectrum. For this simulation, 
we  selected v(2xB)’ = 0.5 and B = (BW)(0.5/Ax), where Ax 
= 1/512 is the interval width and BW  was either 0.1 or 0.3. 

B of the MLE is  decreased, the  effect is  to smooth  the vari- 
ations  between  adjacent estimates in  the histogram. 

1 1 1 .  ML ESTIMATION OF TOEPLITZ CONSTRAINED 

COVARIANCES 

As first  shown  by Burg, when  given exact  values of some 
finite set of the autocovariances of a  stationary series, the 
maxent spectrum is of the same analytical form as that 
resulting  from an autoregressive  model [5],  [8],  [42].  The 
maxent density becomes a  multivariate Gaussian, con- 
structed  by  maximizing  entropy  subject to covariance con- 
straints in  the  form of (Ib). For the  covariance  estimation 
problem we now address,  samples from  the actual  series 
do exist,  whereas the  autocovariance values  themselves  are 
unknown. In order to apply  the  entropy  theory of  (la, b, c), 
investigators have generated  second-order statistics from 
the series, from  which  moment  constraints in the  form of 
(1b)  are  assumed [5],  [43]. As just  one example, a sum of lag 
products  smoothed with  a triangular window  to reduce  the 
variance at the edge of the data  sequence has been used zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[5]. For this  choice  of  covariance  constraints,  the maxent 
method generates a spectrum  consistent with  the auto- 
regressive model with coefficients  determined  by the  tri- 
angularly  smoothed lag products. 

We instead  derive MLEs of  the  Toeplitz  constrained 
covariances under  the Gaussian model. As shown  by  Burg 
et a/. [15], the MLE problem  involves the  solution  of a dif- 
ficult set of  matrix equations, for  which  no simple  closed- 
form  expression has yet  been  found. The solution we pro- 
pose is  an iterative  one in  which  the measured G-length 
“incomplete” data  series yG with  corresponding Toeplitz 
covariance KG is  embedded in a larger  N-periodic  “com- 
plete” data  series yN having  circulant covariance KN. By so 

doing we  generate a  constrained MLE, where  the  constraint 
set is the set of matrices KG with  the  property that KG E KG 
has  an N-periodic  positive-definite  extension,  and  the MLE 

maximizes likelihood over the constrained set KG. The con- 
strained  maximization overthe sieve  has theadvantagethat 
i) for all observation  vectors yG the MLE exists  and the esti- 
mator is  assured to be nonsingular,  and ii) the  difficult max- 
imization  with respect to KG is  solved  via simpler  iterative 
ones  over the set of  N-periodic  extensions. We see i) as  an 
extremely  important  property as the basic assumption  upon 
which  the  entire ML procedure is based is  the  notion that 
the  underlying process is full  in  the sense that i ts  covariance 
is  nonsingular. 

This section  proceeds as follows. First  we define  the sieve 
of  positive semidefinite matrices KG having an N-periodic 
positive  semi-definite  extension.  Then  we set up the  con- 
strained MLE problem  over KG, derive the complete-data 
model  and  iterative  algorithm,  and discuss the existence of 
the MLE within  the sieve and  the  convergence  properties 
of  the  algorithm. 

A. Definition of Constraint Set KG 

The  sieve  set KG corresponding to the set of all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG X G 
Toeplitz  matrices KG having  N-periodic  positive  semidef- 
inite extensions is  defined via the set of N x N circulant 
positive  semi-definite  matrices KN. The  set KN is given by 

As demonstrated bythe results in Fig. 2 as the  bandwidth KN = { K N : K N  = WtCW} (2%) 

MILLER  AND  SNYDER  ROLE OF LIKELIHOOD  AND  ENTROPY IN INCOMPLETE-DATA  PROBLEMS 899 

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on March 31, 2009 at 09:41 from IEEE Xplore.  Restrictions apply.



for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE a diagonal  matrix  diag zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ao, * , tJN-11 with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAai zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 0 and 
W the N X N matrix  of  normalized  orthogonal  discrete Fou- 
riertransform  columns.The  notation [ ]+denotes  Hermitian 
transpose.  Then  any KG E KG is the upper  left G X G matrix 
of some K N  E KN given  by 

K G  = W L E W ,  (25 b) 

where W G  is  the N X zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG submatrix made up of  the  columns 
of W ,  and the sieve  set KG simply becomes 

KG = { K G : K G  = W & E W c } .  (25~) 

The constrained MLE of KG is found by  maximizing  the like- 
lihood over all KG E KG. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMLE o f  Toeplitz Covariance KC E KG 

We now find  the MLE of KG E KG by  embedding the mea- 
sured yG in an N-periodic process with covariance K N  E KN. 
We do  this  in  two steps.  First  we  assume that yG = yN; that 
is, the  observations are a  full  period of the process. Given 
the MLE for  that  problem, it becomes  clear how to set up 
the  algorithm  for  the  problem in  which  the data yG are of 
length G < N, the  period  of the process. 

7) MLE o f  KN Given yw. Given  the series { yo,  yl, , 
YN-l} of  length N from  a stationary,  zero-mean  Gaussian 
N-periodic process for which yo = yN,  yl = YN+l, * * , we 
want to  find  the MLE of KN E KN. The  Gaussian density 
describing yN = [yo * YN-Ilt becomes 

where  det denotes matrix  determinant. The  necessary con- 
dition for  the MLE is  given  by  the  following trace  expression 
(Burg et a/.)  [15]: 

tr [ (K , ’ y~ykK , ’  - Kil) ~ K N ]  = 0 (27) 

for all allowable  variations of KN E KN. We now  derive an 
explicit  form  for  the MLE kN in terms of  the lag products 
which are the  sufficient statistics for  the  circulant  positive- 
definite covariances. We also  show below  that  the likeli- 
hood is  strictly concave, implying that  the MLE is  unique 
and  the trace condition of (27) is a sufficient  condition. 

Using  the  Fourier  transform  matrix W from  the  orthog- 
onal  decomposition of KN yields the data in the  rotated 
coordinates cN = WyN with C, = [co * * CN-11‘. Viewing  the 
problem in the  rotated data converts it  into  one of esti- 
mating  the eigenvalues urn corresponding to the  spectral 
power at discrete  frequencies  [2r(m)]/N,  for  m = 0, * * * , 
N - 1. Rewriting  the  density in the  rotated  coordinates,  tak- 
ing natural  logarithm, and discarding  terms which are not 
a function of the parameters yields  the following expres- 
sion to be maximized with respect to E: 

-log det C - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcLE-’cw (28) 

With C diagonal, the MLE of the spectral coefficients 
becomes 

6, = (c,(’, for  m = 0, . , N - 1 (29) 

and 2 = diag [Ic01’, - * , I C ~ - ~ I ’ ] .  From (271, the MLE 
kN(k, P), for k,  P = 1, * , N becomes 

1 
N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm=O 

N - l  

kdk, P) = - 6, exp - k)m). (30) 

Note  in (30) that  the covariance is Toeplitz.  Substituting (29) 
into (30) and using  the fact that c, = d m y N  for w, the  mth 
column  of  Wyields  the  following  satisfying  relation  for  the 
MLE: 

kN(k, f) = - 1 N - l  y(m)y*((m + P - k ) ~ ) .  (31) 
N m=O 

The notation ( ) N  denotes modulo Nand y* denotes  com- 
plex  conjugate. For the Gaussian stationary  N-periodic  pro- 
cess, the ML estimates of  the covariances  are just a linear 
sum of lag products. In Appendix  I we  show that  the esti- 
mates of (31) satisfy the  trace  conditions of (27). 

Strict concaviry: Demonstrating strict concavity of  the 
likelihood and  therefore  uniqueness  of  the MLE of (31) is  
straightforward.  Rewriting  the  completedata Gaussian 
likelihood of (28) in  the rotated  coordinates  using V = E-’ 
where 

Demonstrating a unique  maximizer with respect to KN 

amounts to showing strict concavity with respect to V. The 
second variation  of the log likelihood becomes 

= 0, j # k. 

Since the Hessian matrix of second  derivatives is negative- 
definite,  the log likelihood log f ( yN; V )  is strictly concave. 
Now we  generate the MLE of KG E KG given G < N pieces 
of data. 

2) MLE o f  Toeplitz KG E KG Given y~ Given  the series { yo, 
y,, . . , yG-l } from  a stationary,  zero-mean  Gaussian pro- 
cess of  period N > G the  likelihood of yG becomes 

g ( y G ;  K G )  = (2*)-‘12 det-’” KG exp (: y & K Z 1 y G ) .  (32) 

The  necessary interior  point  condition  for  the MLE i s  as fol- 
lows: 

tr [ (KG1yCy&Kt ’  - K;’)6KG] = 0 (33) 

for all variations  of KG E KG. The fundamental  difference 
between  the  trace condition  of (33) and that in (27) is  that 
for yG # yN all of the lag products  of  the  full  period are not 
available. Recognizing  this  results in the  following com- 
pletedata  model and  iteration sequence. 

Complete-data  model:  The proper  choice  for  the  com- 
pletedata becomes the  N-dimensional  vector yN consisting 
of  the  given yc augmented by the N - Gdimensional  vector 
yA = [ yG * with  the incomplete data the  observed 
vector yo The many-toone  function h mapping yN to yG 
ignores all points  corresponding to the  augmented  vector 
of  length N - G; that is, yG = h (  yN) .  The completedata  like- 
lihood is  given  by (26), and  transforming  into  the  rotated 
coordinates  yields  the following  function  to be  maximized: 

N-1 N - 1  

- c log urn - c -. Icm12 
m=O m=O Urn 

PROCEEDINGS  OF THE IEEE, VOL. 75, NO. 7, JULY 1987 

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on March 31, 2009 at 09:41 from IEEE Xplore.  Restrictions apply.



From the complete-data model  we  apply  the  joint-entropy 
maximization  of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(8) to  derive the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMLE conditions. Perform- 
ing  the variation over the eigenvalues zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu,, and  taking  the 
expectation with respect to  the maxent density specified by 
(8b) yields 

Cm = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE {  IC,,,~~~E, yc}, for m = 0, * - , N - 1 (34) 

where .t = diag [Eo ,  * . . , 6N-11. In  the original coordinates 
this becomes 

1 ,-' 
kt.,&, P) = C E {  flm) y*(( m + P - k)N)J YG, k,} 

m=O 

(35) 

fork, P = 1, * , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN. Below we  demonstrate  that kc E Kc the 
first G X G submatrix  of k, satisfying the lag-product  con- 
dition  of (35)  satisfies the trace condition  of (33). This illus- 
trates what  we find  to be most exciting  about  posing  the 
estimation  problem via the  joint maximization  of (8). The 
relatively simple  lag-product  conditions  of (35) resulting 
from a direct  maximization of  the expectation  of the com- 
plete data log likelihood has significant intuitive appeal to 
the trace condition  of (33) derived by  maximizing  the 
incomplete data log likelihood directly. 

lterative algorithm: The iteration is  straightforwardly 
derived. The maximizer K',P+')at iteration p + 1 is obtained 
by  evaluating the  conditional  expectation  of (34) with 
respect to  the eigenvalues from  the previous  iteration, 
yielding  the  following estimates: 

ug+') = E {  IC,(~(E(P), yc},  for m = 0, 1, * , N - 1 

(36a) 

with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E'P"' = diag zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[~f'+'), * * * , (r',P::)l. 

The  covariances at iteration p + 1 are obtained  by  simply 
transforming back to  the original  coordinates 

~ $ + " ( k ,  P) = - C E {  y(m) y*((m + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP + k ) , ) ~  yc, K $ ) } .  

(36b) 

For the  problem  in  which  the observations ycare embed- 
ded in an N-periodic process theconstrained ML procedure 
over the sieve  set Kc requires the augmentation of the lag 
products via generation  of  conditional mean and mean- 
square  estimates of the missing lags. At the convergence 
point,thecovarianceestimatesarethosevalueswhichequal 
the sum of  the  conditional mean of the lag products. 

The iteration  defined  by (36) is generated using  the stan- 
dard  formulas  for the  conditional mean and variance of a 
Gaussian  process  (see  Rhodes 1441, for example). We do  this 
bynotingfrom(36a)thattheeigenvaluematrixC'P+')issim- 
ply made up of  the diagonal elements of  the  conditional 
correlation  matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE{c,c~IE 'P ' ,  yc}, from  which (36b) i s  
obtained via the discrete Fourier transform  operation. 
Denoting  the cross  covariance of C, and yc as Kcy the con- 
ditional mean matrix E{c,cL(C, yc} becomes 

1 ,-' 
N m=O 

E{c,cLIE, yc} = KcyK~ 'yc~LK~tK: ,  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE - KcyKZ 'K :y .  

(37) 

Usingthefactthaty,= W~cNimpliesKcy=EWcfromwhich 

the  conditional mean on iteration p + 1 becomes 

E(c& IC@), yc} = C'P' W c K y ' y c  y;KjGP)-twcC'p't 

+ Z I P )  - E(P)WcK(GP)-lM/tCE(P)t. (38)  

The  estimate E@+') becomes the diagonal  entries  of the 
conditional  correlation  matrix € { cNcL IC@', yc} of (38). 

Stable points satisfying the necessary  maximizer  con- 
ditions: The  stable points  of (38) are shown to satisfy the 
necessary maximizer  conditions  of (33)  as follows. If K $  i s  
a stable point  then E"+') = E"). Defining  D[A]  to be the diag- 
onal  matrix with entries  defined by  the diagonal elements 
of an arbitrary square matrix A, then since C'O is  stable we 
have 

D[E{cNcL(E"), yc} - E'? = 0 

with 0 the  null matrix. From (38) it follows  that 

DIC")WcK'G-lycy~K~)-tWt E'Ot 
C 

- C(fw K'O--'WtE(Ott] = 0 
G C  c 

Preand post multiplying  by6EE"'-'and E'"', respectively, 
yields 

D [ G E W ~ ( K ' ~ - ~ Y ~ Y ' , K ' - ~ W ~ ,  - ~ F - l w t , ) ]  = o 

tr  [(K'G-'ycyL~p-+ - /('f'-')Wt c CSEWC] = 0. 

for all 6E. Taking the trace and  rearranging  terms yields 

Since K C €  Kc it follows  that 6Kc = W ;6CWc. Therefore, we 
have proven  that for all 6C the above trace i s  zero, implying 
the trace is  zero  for  all variations 6Kc in  the class of feasible 
ones,  and therefore  the stable points  of (36) and (38) satisfy 
the trace condition  of (33). 

C. Existence and Convergence of the MLE Over Constraint 
Set Kc 

The iterative  procedure of (36) and (38) maximizes the 
likelihood g(yG; Kc) over all covariances Kc E Kc. Clearly, we 
have constrained the ML problem  by  introducing  the max- 
imization over the constrained set Kc. We may  expect that 
the MLE produced  over  the  unconstrained set of Toeplitz 
matrices would be  different  than  the  constrained MLE gen- 
erated via  (36) and (38).  The constraint on Kc has been intro- 
duced  for the  following reasons.  For the Toeplitz covari- 
ance estimation  problem only  one observation vector is  
available.  However, it has been shown (Fuhrmann  and 
Miller [45]) that  given a single vector observation yc there 
i s  a nonzero  probability  that  the MLE over the  uncon- 
strained set of  Toeplitz matrices will  not exist, that is, the 
likelihood may  have no maximizer  over the set of positive- 
definite  Toeplitz matrices and any algorithm  maximizing 
likelihood  will generateasingular estimator. The  necessary 
and sufficient condition  from [45] for  the  failure  of  the MLE 

procedure i s  that  there exists a singular matrix in the set of 
Toeplitz matrices which has the observation vector yG in i ts  
range.  The argument of [45] is  restated as follows. Assume 
KS, i s  singular and in  the feasible region  of  Toeplitz matrices 
and construct  matrix KS, + E /  also Toeplitz with E > 0. Then, 
yc in  the range of KS, implies 

M 

YG = UiYi 
I = '  
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for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAYi the nonzero eigenvectors of KZ, with M zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG. Evalu- 
ating the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlog likelihood yields 

M zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
log g(Yc; KZ, + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE / )  = -log det ( K i  + E / )  - - 

a; 

i = l  ~i + E 

with ui corresponding to the  nonzero eigenvectors of Kt. 
It is clear, that as E + 0 so that KZ, + E l  converges to sin- 
gularity  the  likelihood increases without  bound. The  nec- 
essary part of  the  argument  follows from  the fact that  if  there 
is no KZ, singular with yc in i ts  range, then  the log likelihood 
converges to minus infinity  for any  sequence converging 
tosingularity.ThustheMLEisguaranteedtobenonsingular 

if there exists no K t  in the feasible  region with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy, in its 
range. 

The difficulty  of maximizing the  likelihood over  the 
unconstrained set of Toeplitz  matrices is  analogous to  the 
one we  faced in the  imaging  problem in  which  the set of 
functions  containing X were too large. By restricting  the 
maximization to  the  constraint set the  estimator does  exist. 
This is precisely  what we recommend here, in  which  the 
smaller set Kc over which  the maximization is  performed 
forces the existence of  a well-defined  nonsingular  positive- 
definiteToeplitz MLE. The  existence of  the MLE over  KGfol- 
lows (see Fuhrmann  and Miller [45] for a more general 
description)  simply from  the fact that  the  probability  that 
a data vector yc is  in the range space of any singular KZ, E 

KG iszero. This is  becausey, being in the  rangeof a singular 
KZ, E KG implies  that it lies in some M I G - I-dimensional 
space spanned by  the M discrete  Fourier  transform  col- 
umns  of W,. However,  since the  actual  covariance of  the 
process is  assumed nonsingular,  the Gaussian  measure of 
the  Mdimensional subspace  spanned by M columns  of W, 
is  zero. Therefore, with  probabilityone there exists no data 
vector yc in the range of a singular Kt; E Kc and  the MLE over 
Kc'is  well  defined. 

Remark 4: Relationship zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto the Full Rank Outer  Product 
Condition of Burg et a/.  The fact  that with  probability one 
thereexistsnosingularKZ,eKGhavingy,initsrangeimplies 

that covariance  sequences converging to any singular 
KZ, E KG have log likelihoods  which  converge to -=. This 
follows from  preciselytheargument  of  Burg etal. [I51 where 
theydemonstrated  that  undertheassumption thattheouter 
products of  multiple  independent data vectors  were full- 
rank  implied  that  algorithms  with  increasing  likelihood will 
not converge to singular estimates in the  constraint  region. 
The  essence of the  proof is in Appendix II as part  of Theo- 
rem 1. Weemphasize,thatfortheToeplitzproblem it seems 
unnatural to us to introduce  multiple  independent  vector 
copies into  the  problem since a  single  observation  vector 
supports  longer lags.  By performing  the  maximization over 
theset  &With  circulant  positivedefiniteextensionwe have 
assured the  existence of  the MLE without assuming mul- 
tiple vector  copies. 

Convergence to the MLE: Proving  convergence  of (36) 
and (38) to the set of MLEs involves  three parts. i) Showing 
that a maximizer  of  the likelihood is  bounded  over Kc and 
attains i ts bound  in  the set. ii) Showing  that all limit  points 
of  the sequences of (36) and (38)  are stable which implies 
the set of  limit points satisfy the necessary maximizer  con- 
ditions. iii) Showingthat every sequenceof (36)and (38)con- 
verges.  We  have proven i) and ii) in Appendix I I .  Our  proof 
of ii) basically follows  that of Cover [46]. We sketch  briefly 
here the ideas in  the  proof  of  the Appendix. 

Parti) relies on  the fact  that  over  the  constrained set the 
Gaussian density has value zero  for all singular  matrices 
Kc E Kc. This then assures that  algorithms with increasing 
likelihood such as  (36) and (38) will  not converge to sin- 
gularity,  the  iteration sequence is contained in a  compact 
set in KG, and that  the log likelihood is  upper  semicontin- 
uous  and finite  from above over  the  compact set. Then it 
follows  that  the  likelihood is both  bounded above and 
attains i ts  maximum. 

Partii) is  proven  by  showing  that  the  algorithm  produces 
a  monotonic sequence of likelihoods,  the map defined  by 
(38) is  continuous  over  the set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof positivedefinite iterates, 
and  the set of  limit  points of  the sequences of  the  algorithm 
are all stable and  therefore satisfy the  maximizer  condi- 
tions. 

For part  i i i) we must show that the  full sequence con- 
verges.  This still  remains an open research question. 

D. Simulations  Comparing MLE and Conventional Lag 
Product Estimators 

Now we  show simulation  results from two different 
experiments in  which an N-periodic Gaussian  process  was 
simulated with  period N = 32. We  have examined  the  per- 
formance of  the  iterative M L  estimator of (35) and (36) by 
choosing G = 16 pieces of  the  full  period of  the process  and 
generating estimates of  the  first 15 covariances. For the  per- 
formance  comparison  we have  made  we  have generated 
four  different estimators.  These four are as follows: 

1) N-Lag  ML Estimator:  The first is  the lag-product esti- 
mator  given  the  complete period of the  N-length process, 
which is  just  the MLE given  the  complete data as demon- 
strated in Section Ill-Bl. It is given by (31)  as 

- N - 1  

2)  G-Lag ML €stimatoc This is  the M L  estimator  given the 
incomplete data corresponding to the  first G c N pieces 
of the process, and is given  by  the  convergence point  of  the 
iterative  algorithm  of (35) and (36).  For the  simulations we 
show,  we  have found 10 iterations  of  the  algorithm to be 
sufficient  for convergence. 

3) G-Lag Biased  Estimator:  This estimator is the  conven- 
tional biased estimator  given by 

4) CLag  Unbiased Estimator:  This estimator is the con- 
ventional  unbiased  estimator  given by 

C - 1 - r  

KJ7) = - C f l i )  y*(i + 7).  
G - 7 i = o  

In Fig. 3 we  show the covariance  and  spectra from  both 
experiments in  which the  stationary zero-mean  Gaussian 
processes  were  generated.  The left  column, Fig.  3(a), shows 
thecovariance  for both processes; the  right (Fig.  3(b))  shows 
the spectra  given  by the DFT of  the covariances.  We  have 
chosen  these twocovariances  asthey illustrate twoextreme 
examples.  The first process has a relatively  broad  low-fre- 
quency  spectrum, with  the second having  a sharp high-fre- 
quency spectrum. 

With the  specified covariances shown in Fig.  3, a  total  of 
300 independent  realizations  of  the stationary periodic  pro- 
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Fig. 3. Plots of  the covariance (a) and spectra (b) of thezero- 
mean  Gaussian N-periodic processes  used in  the simula- 
tions. The period  of  the process was N = 32. 

cesses were generated.  From  each  realization, the  four  dif- 
ferent estimators of  the covariance  sequence  were  gen- 
erated, and the sample  bias and standard deviation were 
calculated.  Shown in Figs. 4 and 5 are the  four estimators 

N-LAG ML ESTIMATOR G-LAG ML  ESTIMATOR 
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Fig. 4. Plots of  the bias (top row) and standard deviation 
(bottom row) of the N-lag MLE (left  column) and the Clag 
MLE (right  column) given by the iteration  of (36). Sample  sta- 
tistics were generated from 300 realizations of the process 
with covariance and spectra given in the top row of Fig. 3. 

G-LAG BIASED  ESTIMATOR G-LAG UNBIASED ESTIMATOR 

The results of Figs. 4 and 5 show that  for  this process, the 
estimators have extremely small  biases. We should expect 
this,asneartheedgeofthedatacollectionwindowthetrue 
covariances are virtually  zero so that  the actual value of  the 
biases  are extremely small. The  major  result  illustrated by 
this experiment is that the G-lag  unbiased  estimator has a 
variance which grows  exponentially at the edge of  the data 
collection  window. The  G-lag  MLE  shows a standard  devia- 
tion  which i s  roughlyconstant  and  only  slightly larger than 
the N-lag MLE. 

Plotted in Figs. 6 and 7 are the results from  the second 
experiment, in  which we simulated the high-frequency  pro- 
cess with covariances given in  the  bottom  row  of Fig. 3. The 
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Fig. 6. Plots of  the bias (top row) and  standard deviation 
(bottom row) of the M a g  MLE (left  column) and the Clag 
MLEgiven bytheiterationof(36).Samplestatisticsweregen- 
erated from 300 realizations of  the process with covariance 
and  spectra given in the  bottom  row  of Fig. 3. 
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Fig. 7. Plots of  the bias (top row) and  standard deviation 
(bottom row) of the Clag biased (left  column) and the Clag 
unbiased (right  column) estimators.  Sample  statistics were 
generated from 300 realizations of the process with 
covariance  and  spectra given in the  bottom row of Fig. 3. 
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Fig. 5. Plots  of the bias (top row) and standard deviation 
(bottom row) of the  Clag biased (left  column) and the Clag 
unbiased (right  column) estimators.  Sample  statistics  were 
generated from 300 realizations of  the process with 
covariance and spectra given in  the  top row  of Fig. 3. 

generated from  the low-frequency process having covari- 
ance  given in the top row  of Fig. 3. In the  left  column  of Fig. 
4 is  the  N-lag MLE. Plotted in  the  right  column is  the G-lag 
MLE. Plotted in Fig. 5are the G-lag  biased  and Clag unbiased 
estimators. 

left  column  of Fig. 6 shows that the N-lag MLE is unbiased. 
The  G-lag  MLE is  only slightly  more biased for  the longer 
lags where  there i s  little data. Comparing  the actual size of 
the bias of  the G-lag  MLE to  the value of  the  underlying 
covariances we see that  the bias is a small  percentage of  the 
true value.  For this process, the standard deviation is  vir- 
tually  identical for  both estimation  algorithms. 

These resultschange sharplyforthe biased and unbiased 
estimators. As seen in  the  left  column  of Fig. 7, the G-lag 
biased  estimator  has a large amount  of bias,  far more  than 
the  Clag MLE. The  G-lag  unbiased estimator, although 
slightly less  biased than  the Clag MLE,  has a standard  devia- 
tion  which is  much larger than  the MLE. 

These results are  summarized in the  plot  of Fig. 8 showing 
the mean-squared error (MSE) of  the 17 unique covariance 
lags K(7), 0 5 7 5 16. The M S E  was generated by  summing 
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Fig. 8. Plots of the  mean-squared error of the  N-lag MLE 
(solid bars), Clag MLE (dashed  bars),  and Clag unbiased 
(open bars) estimators. 

the square of the bias and the variance of the estimators in 
each bin.  Plotted in the  figure are the N-lag MLE (solid bars), 
the Clag MLE (dashed  bars), and the  Clag unbiased esti- 
mator  (open bars).  Since the estimators based on G = 16 
data points  cannot  estimate K(16), only  the MSE for  the 
M a g  estimator is plotted  for lag 16 as seen by  the last solid 
single bar. 

The plot derived from process 1 (top row) shows that  the 
MSE of  the  unbiased  estimator  grows  towards the edge of 
the data window,  and  the  N-lag  estimator has approxi- 
mately  one  half  the MSE of  the Clag MLE. This  results from 
thefactthatprocessl is”relativelywhite”therebyimplying 
that each piece  of data  carries independent  information. 
Since the  N-lag MLE is  based on twice  the  number  of lags 
as the Clag MLE (N = 32, G = 16) the variance and  resulting 
MSE is approximately  one  half  for  the  N-lag MLE. 

For process 2 (bottom row), we see the major  result of  the 
new  maximum-likelihood  method. Here, the spectrum is  
fairly concentrated so that the missing data  can  be fairly 
well  estimated via the  conditional expectations, resulting 
in  the fact that  the MSE of the G, N-lag MLEs are identical 
for  the lags which  the data support (up  to 7 = 15 for G = 
16).  We conclude  from these two extremely  simple  prelim- 
inary  simulations  what we find  to be  most  encouraging 
about  the ML method  for  estimating  Toeplitz covariances. 
In an attempt to decrease the bias of  the estimator  the MLE 

fills  in  the missing lags with  conditional mean  estimates. 
The resulting decrease in bias would  imply an increase in 
spectral resolution. This  increase in spectral resolution does 
not seem to accompany a  large increase in variance as 
exemplified  by the mean-squared error  plots. 

CONCLUSIONS 

We  have shown  that  when  given finite observations h(x)  
of  a  random process x with density f (x ;  41, the set of max- 
imum  entropy  densities are identical to those  generated via 
rules of  conditional  probability. By viewing  the measure- 
ments as specifying  the  domain over which  the maxent den- 
sity 9 ( x )  is  defined,  rather  than as a  moment  constraint on 
the  observation function h, the maxent density closest to 

the  prior  in  the cross-entropy sense i s  just  the  conditional 
density k(x lx  E ~ ( y ) ,  4). Because of  this  identity,  maximum- 
likelihood parameter estimates  may  be obtained  by  solving 
a joint maximization  (minimization)of  the  entropyfunction 
(K-L divergence). This reduces to  finding  the parameters 4 
which maximize  the  expected value of the  log of  the  prior 
E {  log f (x ;  4)}, where the expectation is taken with respect 
to the maxent density. 

It is  precisely  this  view which results in the  application 
of  the  iterative  methods of Dempster  et a/. and Csiszar and 
Tusnady for  the  generation  of ML estimates in tomography 
and  gamma-ray astronomy. By performing constrained 
maximum-likelihood  estimation  subject to the  bandwidth 
constraints, the ML problem becomes well-posed. The iter- 
ative maximization is  ideally  suited  for  generating  con- 
strained MLEs, and  we have demonstrated  that  the  band- 
width constraint  results in exponential  spline  smoothing 
which yields  much  improved estimates. 

This constrained ML approach has also been  adopted  for 
the  Toeplitz  covariance  estimation  problem in  which we 
find  the MLE within  the set of positivedefinite Toeplitz 
matrices with  periodic extensions. By imposing  the  peri- 
odic  extension  constraint on  the maximization it insures 
theexistenceof  a  nonsingular  estimator. We demonstrated 
that  when  given the  complete data of a full  period  of  the 
process the MLE of  the  Toeplitz  constrained covariance 
involves  the sum of  the usual lag-product statistics.  For the 
problem in which  the  observed data is  of  length  G < N the 
assumed period  of  the process, conditional mean  estimates 
of  the lag products which are outside of  the data collection 
window must  be generated, from  which  the  Toeplitz 
covariancesareobtained.Wealsoshowviasimu1ationsthat 

estimatesgeneratedusingtheMLprocedure haveexcellent 
bias and variance properties  when  compared with con- 
ventional  lag-product  estimators. 

APPENDICES 

1. The MLE o f  (37) Satisfies the Trace Condition o f  (27) 
Given YN 

Given  the  complete data yN from  a stationary zero-mean 
Gaussian  series of period N, we show the MLE of (30) 

1 N-’ 
k N ( 7 )  = - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc v(m) y * ( ( m  + 7 ) N )  

N m=O 

satisfies the necessary trace  conditions  of (27) for an interior 
point maximizer. 

Rewriting  the Gaussian log  likelihood  of  the  complete 
data of (25) via the  matrix  trace  yields 

1 
log f (yN; KN)  = -2 tr [Ki ’YNYk] 

(AI ) 

where m(dyN)  is the  Ndimensional Lebesgue  measure. 
Denoting  the  sufficient statistics as S = yNyk,  and using  the 
fact that 6Ki ’  = - K i 1 6 K N K i 1  yields  the following variation 
equation: 
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The  necessary condition is the  gradient is orthogonal to all 
variations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6KN in the class of  feasible  variations 

tr [ (K i ’SK i ’  - Ki1)6KN] = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( A 2 1  

Rewriting Kil  of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(25) as W-’C-lW-t yields 
Ki lSK; ’  = W-1C-1W-tSW-1C-1W-t. 

Substituting  this into (A2) for the  first term, and  noticing 
that 6K = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWt6CW yields the  following expression  for the 
variation  of the log likelihood: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

6 log f(y,;  KN) = tr [(C-lW-tSW-’C-l - C-’)6C]. 

Using  the  fact  that 6C-’ = C-’GCC-’, and  rearranging  terms 
yields  the following equation: 

6 log f (yN;  K ~ )  = tr [(w-~sw-’ - C)6C-’]. 

Substituting  the estimates of (29) into E, and  performing  the 
trace operation  results in  the variation  being  zero as we  had 
set out  to prove. 

11. Convergence of  the  Algorithm o f  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(36) and (38) to the 
Set o f  Limit Points Satisfying  the Necessary Maximizer 
Conditions 

InthisAppendixweprovethatgiventheobservationvec- 

tor yG the set of  limit  points  of  the  iteration  of (36) and (38) 
are all stable and satisfy the necessary maximizer  condi- 
tions. 

Definition:  Define the set Kb, as the set of all positive-def- 
inite Toeplitz  matrices KG of  dimension zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG with entries 
bounded  by some b with positive  semidefinite  extensions 
K,~K,,andzb,itsclosurethesetofallnonnegativedefinite 

bounded  Cdimensional Toeplitz matrices. 

Define  the sequence of covariance estimates K‘cp’ via the 

K‘P + 1’ 
iteration  of (36) mapping KG + M(KG) such  that each  step 

= M(K‘cp’) is  given  by  the following equation  for 
k , P = l , . . . , G :  

1 N - l  
~‘cp+l’(k, P) = - E{y(m) y*((rn + P - 1 < ) ~ ) 1 y ~ ,  ~‘cp)). 

N m=O 

(143) 

The full N-periodic  covariance KN is  given  by (A3) for k,  P = 
1, , N. The log likelihood L(KG) = logg(yG;  KG) is  defined 
for Kc E Kb, to be 

G 1 1 

2 2 2 
L(KG) = - - log ( 2 ~ )  - - log det KG - - yLKC’yG (A4a) 

and for singular K L  E zb, given  by 

,!(Kt) = -03, for K L  E zb,. (A4b) 

Then with 

Lm” = ma- L ( K 3  
( K ~ : K G G K ~ ~  

we will show that 

1) L(KG) is  both  bounded above and  attains i ts  max Lm” 

2) L(K‘cp’), for K‘cp’ defined via  (A3), is a  monotonic  non- 
over the set zb,; and, 

decreasing sequence;  and, 

3) all limit  points  of  the sequence K‘cp’are stable  and  sat- 
isfy the necessary maximizer  conditions  of (33). 

We first show that  for all KG E K t  the log likelihood L ( K 3  
is  continuous.  Over i ts  closure Kb, it is upper  semicontin- 
uous. It is  therefore  bounded  and has a max in zb,. 

Theorem 1: Given the set zb, defined above, then 

a) is compact in G2-Euclidean norm. 
b) L(KG) given  by (A4) is  continuous  over  the  interior  of 

c) LmaX = max L(KG) c 03. 
( K G E P ~ , )  

Kb, and  upper  semicontinuous over i ts closure zb,. 

Proof: Clearly a) follows because zb, is  a set of  covari- 
ances closed  and  bounded in G’dimensional Euclidean 
space.  To prove  upper  semicontinuity  we  note  that L(K3  is  
continuous over the  entire  interior K t ;  therefore, we must 
examine i ts  behavior at the boundary, in particular  those 
covariances K’,~zb, which are singular.  We  must show that 
forallsequences {K‘cp)} c Kb,convergingtoKLEzb,singular 

that 

lim ~ ( ~ g 3  = -03. 
( K ~ L K I , )  

We do  this by constructing  a  particular sequence K t ”  + 

K t  with L(K‘cp”) + -03. Then  by the  continuity of L over 
K t  it follows  that all sequences converging to  the singular 
covariance  have likelihood which,converge to minus  infin- 
ity. We proceed  by  choosing K‘cp) as K; + e l  with E > 0. 
Clearly K L  + e l  E Kb, and can, therefore,  be written as 

M 

where  there are M 5 G - 1 eigenvectors 7; of K L  corre- 
sponding to  the nonzero eigenvalues ui, and G - M eigen- 
vectors Bi spanning the G - Mdimensional  orthogonal 
complement of  the yi’s. Writing yc via the  eigenvectors as 

M C 

yc = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc a ; y /  + c a;& 
i = l  i = M + l  

then  the log likelihood becomes 

-log [a; + e ]  + - 
u; + e ) 

G 

+ i = M + 1  c (-log [E] + 9 .  
E 

Since K t  E it can  be written via (25c) as K t  = WLCW,. 
Any G columns of WG are linearly  independent  and  there- 
fore K t  lies in the space  spanned  by M of those  columns 
which is, of course, the same  space  as is spanned by the set 
{y1, * , y M } .  Since the  underlying  covariance  of  the  pro- 
cess is  nonsingular, the data vector yG will  with  probability 
one have a  component in  the  orthogonal complement  of 
the  Mdimensional span of {yl, * * * , y M } ,  implying ai # 0 
for some i L M + 1. Therefore, with  probability one 

lim L ( K t  + e l )  = -03. 
f -0 

It follows by continuity  of L(KG) that  for all sequences in 
Kb,,converging to  Kt the log likelihood converges to minus 
infinity,  and  upper  semicontinuity is proved. Part  c) follows 
from  the fact that every upper  semicontinuous function 
over a  compact set is bounded  and achieves its maximum. 
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Next  we  show that each  step of  the  algorithm  yields an 

Theorem2: Forthe iterates  defined in (A3) and  the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlog like- 
improved log likelihood. 

lihood  of (A4) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Proof: This follows  directly  from  the fact that the  iter- 

ation is an instance of an EM algorithm as proved in Section 
Ill-B, and  the  properties  of  that sequence  discussed in Sec- 
tion I-D. 

Corollary: L(K“p”’) = L(K“p’) if and only  if K$+” = K $’. 
Proofi.By definition  of Kc as the  first zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG X G submatrix 

L ( K t ’ ) ,  then Q(K$+”IK$’) = Q(K$’IK$’) by  Theorem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. From 
the strict concavity  of  the  complete data log likelihood 
shown in Section Ill-Bl, K$+” is  the  unique global maxi- 
mizer  of Q(KN(K$’ ) ,  implying  that K $ + ”  = K‘p’ N .  

of K ~ ,  ~ l y P + ’ )  = ~ ‘ p ’  N + K(GP+~) = K‘,P’. NOW if ~ ( ~ ‘ c p + ” )  = 

Now we  show that all the  limit  points are  stable. 
lemma 1: The iterates { K t ) ;  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp = 1,2,  * . } are contained 

in K g  the  interior  of  the  bounded set of  Toeplitz covariance 
- matrices Kk, and do  not converge to some singular K L  E 

Proof: Clearly each iterate is Toeplitz, positivedefinite 
and by the  proof  of  Burg eta/ .  [I51 each entry is  bounded. 
Suppose,  however, that K g ’  -, KS, for KS, singular. Then by 
theargumentinTheoreml,theloglikelihoodL(K~’)+ - w .  

This is  impossible because  we  assumed that L(K8’ )  > -00, 
and  by Theorem 2 the  likelihood  monotonically increases. 

lemma 2: The  set of limit  points AKc of  the sequence 
{ ~ g ) ;  p = 0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI ,  * 1 is  nonempty. 

Proof: By Lemma 1, the sequence is  in  the compact set 
Kg, and  by the compactness of xi has a convergent sub- 
sequence. 

lemma 3: The  map M(Kc) is  a  continuous  function  for all 
Kc E Kg. 

Proof: Continuity  of  the map  over K g  follows  directly 
from (38). 

lemma 4 All  limit  points K F  E AKc are  stable; i.e., 

K i .  

- 

M(Kt)  = K t .  
Proof: Define A(/@’) = f(K(cP+l’) - L(K‘cp’). By Theorem 

2, ,!(Kt\ is  monotonically  nondecreasing  and from Theo- 
rem 1 has  an umer bound LmaX, implying A(@’) + 0. . .  

Let K t  E AKc be  any limit  point of  the sequence { K t ) ;  
p = 0,1, * ] defined  by(A3),and let Ky’beasubsequence 
converging to K E .  Since Kgi ’  + K F  and by  the  continuity 
of  the log likelihood, L(K“’) -t L(K$) .  From  Lemma 2, M(Kc) 
is continuous  with respect to Kc so that K g i ’  + K t  implies 

. .  - 

L(M(K‘cPi’)) .+ L(M(K‘,),. 

Therefore, the  conver ence of  the subsequence Kg’) 
implies A&’’) + A(KL). 8 But A(/@”) + 0 by the  bound- 
edness of  the  likelihood,  implying  that A(K‘,) = 0. 

From Corollary 1, A(K‘,) = 0 implies M(K$ = K $  and  thus 
all the  limit  points are stable  and  therefore satisfy the nec- 
essary maximizer  conditions. 

ACKNOWLEDGMENT 

Discussions with  Dr. E. T. Jaynes  have been  extremely 
helpful  in  connecting  the  maximumentropy techniques to 
maximum-likelihood  estimation  and are greatly  appreci- 
ated. Various  important suggestions were made by  Dr. D. 
Fuhrmann  and  Dr. E. Chornoboy  which  helped  focus  the 
work  on  the Toeplitz  covariance  estimation  algorithm,  and 
M. Turmon  contributed to the  implementation results. 

REFERENCES 

11  51 

A.  D. Dempster, N. M. Laird,and D. B. Rubin,”Maximum like- 
lihood from incomplete data  via the EM algorithm,” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI. Roy. 
Stat. Soc., vol. 839, pp. 1-37,  1977. 
S. F. Gull and G. J..Daniell, “Image reconstruction from 
incomplete and noisy data,” Nature, vol. 272, p. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA686, 1978. 
S. F. Gull and J. Skilling, “The maximum entropy method,” 
in lndirect Imaging, J. A. Roberts,  Ed. London,  UK:  Cam- 
bridge Univ. Press, 1984. 
J. Skilling and R. K. Bryan, “Maximum entropy image recon- 
struction,” MNRAS, submitted 1982. 
J. P. Burg, “Maximum entropy spectral analysis,” Univ. 
Microfilms no. 75-25, Stanford Univ.,  Stanford, CA, 1975. 
J.  E. Shore, “Minimum cross-entropy spectral  analysis,” I € € €  
Trans.  Acoust.,  Speech, Signal Processing, vol. ASSP-29, no. 
2, pp. 230-237, Apr. 1981. 
E. T.  Jaynes, “Information  theory and statistical mechanics,” 
Phys.  Rev., vol. 106, pp. 620-630,1957. 

E € ,  vol. 70, pp. 939-952, Sept. 1982. 
D. L. Snyder  and  D. G. Politte,  “Image reconstruction from 
list-modedata in anemission tomography system having time- 
of-flight measurements,” /€€€ Trans. Nucl. Sci., vol. NS-30, pp. 

D. L. Snyder and M. I .  Miller, “The  use of sieves to stabilize 
images produced with the EM algorithm  for emission tomog- 
raphy,’’ / € E €  Trans. Nucl. Sci., vol. NS32, pp. 3864-3872, Oct. 
1985. 
M. I. Miller, D. L. Snyder, andT. Miller,”Maximum  likelihood 
reconstruction for single photon emission computed tomog- 
raphy,” / E €  Trans. Nucl. Sci., vol. NS-32, no. 1, pp. 769-778, 
Feb. 1985. 
M. I. Miller, “Algorithms for removing recovery related dis- 
tortion  from auditory-nerve discharge patterns,” /. Acoust. 
SOC. Amer., vol. 77, pp. 1452-1464,1985. 
M. I. Miller, N. Karamanos,  and W. E. Bosch,  “EM algorithms 
for estimating parameters from single-memory Markov point- 
processes having a multiplicative intensity,” presented at the 
23rd Annual Allerton Conf., Univ. of Illinois, Urbana, IL, Oct. 
1985. 
M. I. Miller, K. B. Larson, J.  E. Saffitz,  D. L. Snyder,  and L. J. 
Thomas,  Jr., “Maximum-likelihood estimation applied to 
electron-microscope autoradiography,” /. Electron Micros- 
copy Tech., 1985. 
J. P. Burg,  D. G. Luenberger,  and D. L. Wenger, “Estimation 
of structured covariance  matrices,” Proc. / € E € ,  vol. 70, no. 9, 
pp. 963-974, Sept. 1982. 
L. A.  Shepp and Y. Vardi, “Maximum-likelihood reconstruc- 
tion for emission tomography,” / € € E  Trans.  Med. hag., vol. 

S. Kullback, in lnformation TheoryandStatistics. New York, 
NY: Wiley,  Dover, 1959,1968. 
I. Csiszar, “ldivergence geometry of probability  distribu- 
tions and minimization problems,”Ann.  Prob.,vol. 3, pp. 146- 
158,1975. 
J. M. Van Campenhout and T. M. Cover, “Maximum entropy 
and conditional probability,” / € E €  Trans. Informat. Theory, 
vol. IT-27, no. 4, pp. 483-489, July 1981. 
I. Csiszar and G. Tusnady, “Information geometry and alter- 
nating minimization procedures,”  Statistics and Decisions 
(Supplement Issue  no. 1). Munchen, West  Germany: R. Old- 
enbourg Verlag, 1984, pp. 205-237. 
E. T. Jaynes, in Papers on Probability, Statistics andstatistical 

- , “On the rationale of  maximumentropy methods,” Proc. 

1843-1849,1983. 

MI-1, pp. 113-121,  1982. 

906 PROCEEDINGS OF THE IEEE, VOL. 75. NO. 7. IULY 1987 

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on March 31, 2009 at 09:41 from IEEE Xplore.  Restrictions apply.



Physics, R. D.  Rosenkrantz, Ed. Dordrecht: The Netherlands/ 
Boston: USNLondon, England:  D.  Reidel, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1983. 
B. R. Musicus, “Iterative algorithms for  optimal signal recon- 
struction and parameter identification given noisy and 
incomplete data,” MIT thesis, Cambridge, MA, 1982. 
R. D.  Evans, in TheAtomicNucleus. New  York,  NY: McGraw- 
Hill, 1955. 
D. L. Snyder, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL. J. Thomas,  Jr.,  and M.  M. Ter-Pogossian,  “A 
mathematical model for positron emission tomography sys- 
tems having time-of-flight measurements,” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI€€€ Trans. Nucl. 
Sci., vol. NS-28, pp. 3575-3583, 1981. 
D. L. Snyder, Randomfointfrocesses.  NewYork, NY: Wiley, 
1975. 
K.  Lange and R. Carson, “EM reconstruction algorithms for 
emission  and transmission tomography,”).  Comput.  Assisted 
Tomography, vol. 8, no. 2. New York, NY:  Raven  Press, Apr. 

B. R. Frieden, “Restoring with maximum likelihood and max- 
imum entropy,”).  Opt. SOC. Amer.,vol. 62, no. 4, pp. 511-518, 
1972. 
B. R. Frieden and  D. C. Wells, “Restoring with maximum 
entropy. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI l l .  Poisson  sources and backgrounds,”). Opt. SOC. 
Amer., vol. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA68, no. 1, pp. 93-103, 1978. 
J. Skilling, A. W.  Strong, and K. Bennett, “Maximumentropy 
image processing in gamma-ray  astronomy,” Mon. Not. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR. 
Astr.  SOC., vol. 187, pp. 145-152, 1979. 
L. Scarsi, in froc. 72th €SUB Symp., vol. ESA-124, p. 3, 1977. 
Y. Vardi, L. A.  Shepp, and L. Kaufman,  “A statistical model for 
positron emission tomography,”). Amer.  Statist.  Assoc., vol. 
8 0 ,  pp. 8-35, Mar. 1985. 
D. Politte, “Reconstruction algorithms for time-of-flight 
assisted positronemission tomographs,” MS. thesis, Sever 
Institute  of Technology, Washington Univ., St.  Louis, MO, 
Dec. 1983 (supervised by D. L. Snyder). 
M. Mintun, J.  Corman, and  D. L. Snyder,  “Evaluation  of the 
maximum-likelihood method for reconstruction of  images in 
positron emission tomography,” in Proc. SOC. Nuclear Med- 
icine 32nd Annual Meeting (Houston, TX, June 1985). 
J. M. Ollingerand D. L. Snyder,“An evaluation of an improved 
method for  computing histograms in dynamic tracer studies 
using positron-emission tomography,” I€€€ Trans. Nucl. Sci., 
vol. NS-33, pp. 435-438, Feb. 1986. 
M. I. Miller, D. L. Snyder,  and S .  M. Moore, “An evaluation 
of the use of sieves for  producing estimates of radioactivity 
distributions with the EM algorithm for PET,” /€E€ Trans. Nucl. 
Sci., vol. NS-33, pp. 492-495, Feb. 1986. 
L. A.  Shepp, Y. Vardi, J. B. Ra, S. K. Hilal, and Z. H.  Cho, “Max- 
imum-likelihood with real  data,” /€€€ Trans. Nucl. Sci., vol. 

1984, pp. 306-316. 

NS-31, PP. 910-913, 1984. 
[37l R. Carsbn, personal communication, 1985. 
[38] R. A. Tapia  and J. R. Thompson, Nonparametric Probability 

Density fstimation. Baltimore, MD: Johns Hopkins Univ. 
Press, 1978. 

[39] U. Grenander, Abstract  Inference. New York, NY: Wiley, 
1981. 

[a] S. Geman,  “Sieves for nonparametric estimation of densities 
and  regressions,” Repts. Pattern  Anal., vol. 99, D.A.M. Brown 
Univ., 1981. 

[41] I. J. Good and R. A.  Gaskins, “Nonparametric roughness pen- 
alties for  probability densities,” Biometrika, vol. 58, no. 2, pp. 

[42] A. van den Bos, /E€€ Trans. Inform. Theory, vol. IT-17, pp. 493- 

[43] Modern Spectrum  Analysis,  D. G. Childers, Ed. New York, 

255-277, 1971. 

494,1971. 

NY: IEEE Press, 1978. 

[44] I .  B. Rhodes,  “A tutorial introduction  to estimation and fil- 
tering,”/€€€ Trans. Automat. Contr., vol. AC-16, no. 6, pp. 688- 
706, 1971. 

[45] D. R. Fuhrmann and M. I .  Miller, On the Singularity of Max- 
imum Likelihood €stirnates of Structured Covariance Matri- 
ces, Monograph  of Electronic Systems and Signals  Research 
Lab., Washington Univ., St.  Louis, MO, 1986. 

[46] T. M. Cover, “An algorithm  for maximizing expected log 
investment return,” /€E€ Trans. Inform. Theory, vol. IT-30, pp. 
369-373, Mar. 1984. 

Michael 1. Miller received the B.S. degree in 
electrical engineering from  the S.U.N.Y.  at 
Stony  Brook, NY, in 1976, the M.S. degree 
in electrical engineering from the Johns 
Hopkins University, Baltimore, MD, in 1978, 
and the Ph.D. degree in biomedical engi- 
neering from  the Johns Hopkins University 
in 1983. 

Since 1984 he has been on the Electrical 
Engineering and Institute for Biomedical 
Computing Faculty of Washington Univer- 

sity in St. Louis, MO, where he i s  currentlyan Associate  Professor. 
His research interests includespeechcodinginthecentral nervous 
system, image  processing,  and digital signal processing. Most 
recently, his interests have been in  the development of iterative 
algorithms on parallel computers for tomography and spectrum 
estimation in direction  of arrival array  processing.  He is a recipient 
of  the Presidential Young Investigator Award. 

University in St. Lou 
ment of  Electrical Er  

Donald L Snyder (Fellow, IEEE) received the 
B.S. degree in electrical engineering from 
the University of Southern California, Los 
Angeles, in 1961 and the MS. and Ph.D. 
degrees in electrical engineering from  the 
Massachusetts Institute of Technology, 
Cambridge, in 1963 and 1966, respectively. 

From 1966 to 1969, he was on  the faculty 
of the Massachusetts Institute  of Technol- 
ogy.  Since 1969, he has been on the Elec- 
trical Engineering Faculty of Washington 

lis, MO. He  served as Chairman of the Depart- 
lgineering  from 1976 to 1986 and as Associate 

Directorof the Biomedical Computer Laboratory, Washington Uni- 
versity School of Medicine. He i s  presently Director of  the Elec- 
tronic Systems and  Signals  Research Laboratory in  the Department 
of  Electrical  Engineering. He i s  the author of  papers on the theories 
of random processes, estimation, decision, and systems and the 
application of these theories to practical problems arising in com- 
munications, and to radar  and biomedical imaging. Most recently, 
his interest has been in  the development and application of ran- 
dom point process models in optical communication and radiol- 
ogy  and in estimation-theoretic approaches to radar imaging. He 
is the author of the textbook Random Point Processes (New York, 
NY: Wiley, 1975), which develops point-process models with 
emphasis on applications. 

Dr.  Snyder  served as Associate Editor for Random  Processes for 
the IEEETRANSACTIONSON INFORMATIONTHEORY and wasthe1981 Pres- 
ident of the IEEE Information Theory Group. 

MILLER AND  SNYDER  ROLE OF LIKELIHOOD  AND  ENTROPY IN INCOMPLETE-DATA  PROBLEMS 907 
Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on March 31, 2009 at 09:41 from IEEE Xplore.  Restrictions apply.


