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The psychological revolution that follows the onset of independent locomotion in the latter
half of the infant’s first year provides one of the best illustrations of the intimate connection

between action and psychological processes. In this paper, we document some of the

dramatic changes in perception-action coupling, spatial cognition, memory, and social

and emotional development that follow the acquisition of independent locomotion. We

highlight the range of converging research operations that have been used to examine the

relation between locomotor experience and psychological development, and we describe

recent attempts to uncover the processes that underlie this relation. Finally, we address

three important questions about the relation that have received scant attention in the

research literature. These questions include: (1) What changes in the brain occur when

infants acquire experience with locomotion? (2) What role does locomotion play in the

maintenance of psychological function? (3) What implications do motor disabilities have

for psychological development? Seeking the answers to these questions can provide rich

insights into the relation between action and psychological processes and the general

processes that underlie human development.
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INTRODUCTION

Locomotion is one of the most thoroughly studied behaviors in

the animal kingdom. It has captivated the interest of engineers,
ethologists, biologists, neurologists, clinicians, psychologists, and

even philosophers. Most of the scientific interest in locomo-

tion has centered on how it evolved, how it develops, how it
is controlled, and how it can be rehabilitated following injury

or disability. However, several theorists, from various epistemo-

logical traditions, have pondered whether locomotion makes a
broader contribution to human life beyond its obvious role in

moving from one place to another. For example, Mahler, a psy-

choanalyst, has stated that the onset of voluntary locomotion
represents the “psychological birth” of the human infant (Mahler

et al., 1975). Piaget (1952, 1954) argued that the origins of

intelligence were in the intercoordination of sensory informa-
tion with self-produced movements, including locomotion, and

Gibson (1966, 1979) similarly stressed the importance of actions

like locomotion for revealing meaningful information in the
world.

Given the centrality of locomotion in such a diverse range of

theoretical viewpoints, one might assume that the psychological
correlates and consequences of the development of self-produced

locomotion would be thoroughly understood. This is distinctly

not the case. Only recently have the psychological consequences
of self-produced locomotion been subjected to systematic empir-

ical study (see Anderson et al., 2013 and Campos et al., 2000 for
reviews). Researchers have shown that the onset of independent

locomotion is indeed a pivotal event in the life of the human

infant, heralding surprisingly broadscale changes in a variety of
psychological functions, including perceptual-motor coordina-

tion, spatial cognition, memory, and social and emotional pro-
cesses. Moreover, evidence reveals that locomotion is not merely

a maturational antecedent to these psychological changes, but

instead plays a causal role in their genesis (e.g., Uchiyama et al.,
2008). Researchers have also begun to unravel the processes by

which locomotion has its effects on psychological development,

providing important insights into the mechanisms that underlie
developmental change (e.g., Dahl et al., 2013).

The primary objective of the current paper is to describe

a sample of the research linking locomotion to psychologi-
cal development, highlighting the range of converging research

operations—including variations of the classic enrichment and

deprivation paradigms in animal studies—that have been used
to isolate locomotion as a central contributor to these changes.

A secondary objective is to highlight recent attempts to unravel

the processes by which locomotion has its effect on psycholog-
ical development. A final objective is to pose three questions to

guide future research in this still relatively nascent, and often

under appreciated, field of study. Before tackling these objectives,
we will briefly address why empirical study of the psychological

consequences of self-produced locomotion was neglected for so

long. Placing the issue in historical context helps to show how the
study of the psychological consequences of locomotor experience

has challenged some of the core assumptions in developmental
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psychology. Pursuing the research agenda we outline in this paper
can provide valuable insights not only into the processes that

underlie developmental change but also into the broader linkage

between action and psychological processes.

WHY HAVE THE PSYCHOLOGICAL CONSEQUENCES OF

SELF-PRODUCED LOCOMOTION BEEN NEGLECTED?

Although many theoretical traditions have highlighted the cen-

trality of locomotion in human life, strong biases have existed in
biology and psychology for much of the nineteenth and twen-

tieth centuries against the notion that motoric activity plays a
role in psychological processes or human development. Two fac-

tors have been particularly important in perpetuating this bias.

First, a series of experiments in the 1930s failed to confirm that
advanced motor development during infancy predicted advanced

intellectual functioning later in life (Kopp, 1979), leading many

psychologists to assume that motor activity was unimportant
for psychological functioning. In hindsight, this line of research

was ill conceived, posing questions that were too broad to be

tested meaningfully and assuming that motor and intellectual
development must be connected via a singular individual dif-

ference variable, like genetic integrity, that influenced both sim-

ilarly. In addition, researchers failed to assess the domains of
psychological function that were most likely to be affected by

motor activity (ignoring the specificity principle, which states

that each developmental change results from specific experi-
ences in a specific context), and they also failed to consider

that the role played by motor activity in psychological develop-

ment might be easier to ascertain during developmental tran-
sitions when large and rapid changes occur simultaneously in

motor and psychological functioning (Bertenthal and Campos,

1990).
The second factor perpetuating a bias against a role for motor

activity, and by extension locomotion, in psychological develop-

ment has been the domination of unidirectional models in psy-
chological science and biological development. The two models

that dominated psychological science for much of the twentieth

century were the stimulus-response model and the information
processing model. Both assumed that behavior was simply the

end product of a chain of events that started with the recep-

tion of stimulation from the environment and ended with some
type of action. Moreover, behaviorists were not concerned with

psychological processes. Though cognitive processing intervened

in the information processing model, adherents to that model
were far more interested in those cognitive processes than the

less interesting behavioral output and they didn’t consider that

action might reciprocally influence cognition and perception.
In short, action was not considered relevant to the ontology of

cognition—it was merely the output of processes that make use
of cognition (Allen and Bickhard, 2013)—and whether the infor-

mation for perception was self-generated or externally generated

was irrelevant.
Similarly, in biology, the dominant model during most of the

nineteenth and twentieth centuries was a nativist one that stressed

the linear unfolding of a genetic blueprint. Genetic activity led to
structural maturation, which in turn led to function, activity, and

experience (Gottlieb, 2007). Again, adherents to this model did

not consider that the relations between these different levels of
analysis might be bi-directional. Even the empiricists (psycholo-

gists in this case), who trumpeted the importance of experience

in human development, viewed development in linear terms,
assuming that the environment exerted its effect on an essentially

passive organism.

Nativism continues to hold sway amongst contemporary
developmentalists (e.g., Spelke and Newport, 1998; Spelke and

Kinzler, 2009), further perpetuating the bias against locomotion

playing much of a role in psychological development. The pre-
occupation with documenting the origins of psychological phe-

nomenon has led to confusion between what have been labeled

partial accomplishments (Haith and Benson, 1998; Campos et al.,
2000), the precursors to mature skills, and the mature skills them-

selves. The confusion in turn has minimized the importance

of experience, particularly self-generated experience, in orches-
trating qualitative reorganizations in behavior during postnatal

development and short-circuited the analysis of the processes by

which the substrates of skilled behavior, i.e., the partial accom-
plishments, are elaborated, differentiated, and inter-coordinated

into full-blown skills (Campos et al., 2008; Kagan, 2008; Spencer

et al., 2009).

WHY HAS THE BIAS AGAINST LOCOMOTION BEGUN TO CHANGE?

The emergence and spread of bidirectional models in biology and

psychology during the latter half of the twentieth century have
led to greater acceptance of the idea that actions like locomo-

tion might have consequences for psychological development. For

example, dynamical systems theory and its close cousin ecological
psychology stress the reciprocity between perception, action, and

cognition, and view development as the result of a complex, con-

tingent, and multi-determined web of interactions that emerge
over time (Gibson, 1988; Thelen and Smith, 1994; Witherington,

2007, 2011). Similarly, Gottlieb’s (e.g., 1970, 1991, 2007) notion

of probabilistic epigenesis has provided a strong challenge to the
unidirectional model of human development by highlighting the

diversity of co-actions (reciprocal interactions that can literally

change the interacting elements) that occur across the genetic,
structural, and functional (environmental) levels of analysis dur-

ing pre- and post-natal development. Probabilistic epigenesis

states that development is a function of time-based, probabilistic
relations between these different levels of analysis. Bidirectional

models highlight the activity-dependent nature of structural and

functional development and give experience an essential role in
the developmental process.

Two aspects of probabilistic epigenesis are especially impor-

tant to the empirical work linking self-produced locomotion to
psychological development. The first is the idea that one develop-

mental acquisition, like crawling, can generate experiences that
bring about a host of new developmental changes in the same

and different domains. These changes in turn create still other

developments in a cascading cycle throughout the lifespan. From
this perspective, individuals contribute to their own development

by creating the experiences that drive developmental change. The

second important aspect is the notion that experience does not
have a singular effect on development; it can induce changes

that are completely dependent on those experiences for their
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emergence, it can facilitate changes that would take place with-
out such experiences, only more slowly, and it can maintain

changes that have already taken place. Development is prob-

abilistic because there is typically more than one ontogenetic
pathway—although one of the many pathways (e.g., locomotor

experience) may be the ordinary and expectable one. This line

of thinking is clearly antithetical to the traditional unidirectional
account of development in which developmental change is seen

simply as the maturational unfolding of a genetic blueprint.

WHAT IS SPECIAL ABOUT LOCOMOTOR EXPERIENCE?

Throughout the first year of life, infants gain control over

an increasingly broader range of motor skills in a predictable
sequence. Each new skill presents new opportunities to engage

the world and exert a degree of control over it. What makes the

acquisition of crawling—typically the first locomotor skill—so
impactful is that it so dramatically changes the relation between

the infant and her environment. No longer at the mercy of oth-

ers for movement from one place to another, the infant now
has an explosion of new goals to choose from and problems to

solve. She can explore the environment and operate on it at will
(Gibson, 1988). Exploration, in turn, provides new perspectives

and it reveals new information and creates many novel experi-

ences that can drive changes in a family of different psychological
phenomena.

The breadth of these phenomena stems from the breadth of

experiences that accompany locomotion. Moreover, these experi-
ences do not simply represent “more of the same” because the

experiences of the crawling infant are fundamentally different

from those of the pre-crawling infant. Locomotion orchestrates
this diversity of changes by making it almost inevitable that

infants will encounter the experiences that contribute to specific

psychological changes. The acquisition of independent locomo-
tion is not only significant because of the breadth of psychological

phenomena to which it is connected. Its enduring significance

stems from the fact that once locomotion has been acquired it is
available across the lifespan and so it may well be vital to the main-

tenance of the very psychological skills it had a role in bringing

about. We will return to this point after first considering the role
that locomotor experience plays in the ontogeny of two impor-

tant phenomena: wariness of heights and the search for hidden

objects.

LOCOMOTOR EXPERIENCE AND THE EMERGENCE OF

WARINESS OF HEIGHTS

Wariness of heights is extraordinarily biologically adaptive, func-

tioning to avoid falls that can maim, kill, and prevent repro-

duction of a person’s genes. Indeed, Bowlby (1973) classified
the fear of heights as one of the most salient “natural clues to

danger.” Similarly, Gibson and Walk (1960) concluded that avoid-

ance of dropoffs is evident in non-human animals and human
infants at the first testing opportunity. Scarr and Salapatek (1970)

described it as one of the two strongest fears observed in infants.

It remains powerful even into adulthood, as is evident in the
reactions of visitors to the transparent platform extending over

the edge of the Grand Canyon (“The Grand Canyon’s skywalk,”

2007), the Sears Tower, or a Shanghai skyscraper. It is no wonder

that wariness of heights is considered under strong maturational
control (Gleitman et al., 2007).

However, wariness of heights presents an enigma; it is not

under maturational control, nor is it present at the earliest test-
ing opportunity or when the threat of falling first materializes.

Experience with locomotion seems to be a powerful factor in the

onset of wariness of heights. Mothers notice two interesting phe-
nomena related to dropoffs. First, there is a period after the onset

of crawling when their infants would plunge over the edge of a

bed, off the top of a changing table, or even off the top of a stair-
case if she were not extremely vigilant. Second, within 2–4 weeks

of crawling onset, infants will avoid dropoffs. These maternal

reports are highly consistent (Campos et al., 1978).
Laboratory experiments using a visual cliff confirm maternal

reports. The visual cliff is a large table with a Plexiglas surface.

Illuminated tiles immediately beneath the Plexiglas surface on
the shallow side of the cliff give the impression of a solid sur-

face, whereas the tiles four feet below the surface on the deep side

give the compelling impression of a drop-off. Negative reactions
to heights can be assessed by a number of indices of wariness,

and each of these has been shown to undergo a developmental

shift following the onset of locomotion. These indices include (1)
changes from cardiac deceleration to acceleration when the infant

is lowered to the deep side of the cliff (Campos et al., 1992); (2)

initial crossing to the mother on a beeline when she calls the child
over the deep side, followed by eventual avoidance (Campos et al.,

1978); (3) initial absence of facial patterns indicative of distress

when infants are lowered to the deep side of the cliff, to significant
negative facial responses starting at 11 months of age and possibly

before (Hiatt et al., 1979); and finally, a change from nonchalance

to stiffening of the body and resistance with the arms when an
infant is pushed from behind onto the deep side of the cliff. There

is thus no doubt that a developmental shift takes place in wari-

ness of heights. The shift is seen in many emotional ways and it is
observed in real-world and laboratory contexts.

This developmental shift is where the enigma rests: by what
process does the infant become wary of heights and how does that

process produce a lifelong, biologically adaptive, wariness?

We can rule out the development of depth perception as the
crucial factor. Infant depth perception is very well-developed

some 2 or 3 months before wariness of heights is expectable

(Timney, 1988). Depth perception is sufficiently well-developed
at 6 months to allow clear differentiation of distances on the

visual cliff. For instance, in a study by Walters (1980), prelocomo-

tor 6-month-olds, when lowered toward the shallow or the deep
side of the cliff, and who otherwise show no wariness of heights,

extend their arms and hands in preparation for contact with the

visually solid shallow side of the cliff, but show no such exten-
sion of arms and hands when lowered to the deep side. They quite

happily land on their bellies on the deep side.

Falling experiences can also be ruled out as the crucial factor
in the shift. The relation between falls and avoidance of heights or

risky slopes is weak or non-existent (Walk, 1966; Campos et al.,

1978; Adolph, 1997). Social referencing (Sorce et al., 1985) is not
likely to play a role in the developmental shift either because it

comes online well after the development of wariness of heights.

So, the mother’s facial, vocal, and gestural expressions cannot
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serve as unconditioned stimuli that become the basis for the
infant learning to fear heights when paired with depth-at-an-edge

(Mumme et al., 1996).

Finally, the developmental shift cannot be an artifact of the
visual cliff apparatus. The solid glass surface cannot be said

to provide a “safe” medium onto which the newly-locomoting

infant can descend simply because touching the surface reveals
its solidity. Though solid to touch, the transparent surface even-

tually becomes a source of avoidance with age and experience in

longitudinally-tested infants (Campos et al., 1992). Furthermore,
the maternal reports on infant near-falls cited above concur with

the findings on the cliff, demonstrating ecological validity of find-

ings using the cliff table. Lastly, there are the observations by
Adolph (1997) using “risky slopes,” without a glass surface, that

showed the same functional relation between locomotor expe-

rience and avoidance of dropoffs as does work with the visual
cliff. The developmental shift found in visual cliff studies is thus

robust, replicable, and ecologically valid.

A PROPOSED EXPLANATION OF THE ONTOGENY OF WARINESS OF

HEIGHTS

The explanation of the developmental shift toward wariness of

heights must involve experience but not classical conditioning
(such as to falls); it must involve the discovery of a factor or

factors that provide an “affective sting” (i.e., concern relevance,

Frijda, 1986) that the experience of depth alone does not pro-
vide; it must explain why the fear of heights is often accompanied

by the reports of heights being “dizzying;” it must account for

the role of locomotor experience in the shift; and it must explain
the presence of wariness of heights in the occasional, though rare,

prelocomotor infant. What can that factor or set of factors be?

Bertenthal and Campos (1990) proposed an explanation that
meets the above criteria. They maintained that visual propri-

oception plays a crucial role in the onset and maintenance of

wariness of heights. Although not widely known, visual propri-
oception is as fundamental a perceptual process as form, motion,

depth, and orientation. Visual proprioception is the optically

induced sense of self-movement produced by patterns of optic
flow in the environment (Gibson, 1966, 1979). It is best known

to most people by the experience, when one is seated stationary

on a train or bus, of one’s self moving when it is the train or
bus on an adjacent track in the visual periphery that is moving.

However, visual proprioception is much more than the source

of a trivial illusion. It is crucial for establishing and maintain-
ing postural stability and for navigation in the world. It is the

apparent loss of postural stability linked to visual proprioception

that leads to wariness of heights. According to Bertenthal and
Campos, visual proprioception is not fully present in the infant

with no locomotor experience, but becomes functional, and even-
tually well-established, as experience with locomotion increases.

In brief, because of developmental changes in visual propriocep-

tion with locomotion, heights are initially not “dizzying,” but then
become so.

Visual proprioception depends on patterns of optic flow that

covary with self-movement. When one is looking and moving
straight ahead there is a radial (star-like) pattern with optical

flow originating from a static point in the center of one’s visual

field. Simultaneously, there is a lamellar (layered and parallel)
pattern of flow in the visual periphery. Although perception of

self-movement has traditionally been relegated to information

from the vestibular and the somatosensory systems, visual pro-
prioception is so powerful that a standing 13-month-old infant

will fall down when exposed to optic flow in a moving room

(Lee and Aronson, 1974). The moving room is a small, textured
enclosure with one end open (Figure 1). Pushing or pulling the

room gives the child the perception of moving forward or back-

ward (depending on the direction of optic flow) even when he
or she is stationary. Peripheral lamellar optic flow, generated by

moving only the side walls in the moving room, creates a par-

ticularly compelling sense of self motion and leads to greater
visual-postural coupling than radial optic flow (Stoffregen, 1985).

Visual proprioception is without doubt a powerful source of

information for postural stability and instability.
Bertenthal and Campos (1990) linked visual proprioception

to wariness of heights via the following set of propositions. First,

they predicted that infants with locomotor experience would
show visual proprioception in response to peripheral optic flow,

whereas infants without locomotor experience would not, or

would do so minimally. Secondly, once this type of visual pro-
prioception comes online, it works in concert with vestibular,

and somatosensory information to specify stasis or changes in

posture or self-movement. Third, when a child approaches a
dropoff, there is a sudden loss of visual proprioceptive infor-

mation in the periphery, but not of vestibular or somatosensory

information. At a dropoff, there is little or no optic flow in the
periphery of the visual field and head/body movements produce

little change in radial or lamellar flow because of the distance

from the child to the closest visible surface (the floor). This loss of
visual information is the basis for wariness of heights because of

the disparity between visual and somatosensory/vestibular infor-

mation for self-movement and/or a reduction in postural stability
(see Brandt et al., 1980).

FIGURE 1 | The moving room. Responsiveness to peripheral optic flow is

determined by cross-correlating the infant’s postural sway in the fore-aft

direction, measured by four force transducers under the legs of the infant

seat, with the movement of the side walls.
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Locomotor experience is important in the functionalization of
peripheral lamellar optic flow into visual proprioception for at

least two reasons. One, the infant who is able to move voluntar-

ily can notice and detect patterns of optic flow that coincide with
forward and backward movements of the body. Prior to volun-

tary locomotion, there is little or no regularity between direction

of optic flow and self-movement because when infants are car-
ried passively, forward movement can be linked to any number

of directions of optic flow depending on how the infants are held

and where they are looking. In addition, most infants when car-
ried early in life are in a state of “visual idle,” looking at nothing

in particular. Only when the infant moves voluntarily do the head

and eyes consistently point straight ahead (Higgins et al., 1996),
allowing consistent exposure to radial optic flow in the central

field of view and lamellar optic flow in the periphery. The second

reason locomotor experience is important is that when the infant
must navigate the world, it is important to segregate informa-

tion about environmental features (specified in the central field

of view) from information about self-movement (specified by
peripheral optic flow) so as to steer an appropriate course and

maintain postural stability (Gibson, 1979). Because these tasks

must be accomplished simultaneously, locomotion leads to a per-
ceptual differentiation wherein central and peripheral optic flow

are relegated different perception-action functions. Attending to

features of the environment can be accomplished more effectively
and efficiently in the central field of view if postural stability is

relegated to the periphery.

There is now no doubt that locomotor experience affects visual
proprioception. Using two converging research operations—(1)

an age-held-constant study of locomotor, prelocomotor, and pre-

locomotor infants with artificial “walker” experience, and (2)
the random assignment of precrawling infants to a condition

in which they could control their own movement in a powered

mobility device (PMD) (Figure 2) or a no-movement condi-
tion, Uchiyama et al. (2008) documented that infants with any

kind of locomotor experience showed not only postural com-
pensation to peripheral optic flow in a moving room, but also

negative emotional reactions to peripheral optic flow, consis-

tent with a sense of loss of postural stability. These findings
confirmed previous reports of greater responsiveness to periph-

eral optic flow in infants with locomotor experience compared

to same-aged infants without locomotor experience (Higgins
et al., 1996). In sum, the proposition of the Bertenthal and

Campos hypothesis that locomotor experience brings on or

greatly improves visual proprioception has been empirically
supported.

TESTING THE LINK BETWEEN VISUAL PROPRIOCEPTION AND

WARINESS OF HEIGHTS

Two studies were recently conducted by Dahl et al. (2013) to

test the relation between visual proprioception and wariness of

heights proposed by Bertenthal and Campos (1990). The first
study examined whether newly crawling infants who were highly

responsive to peripheral optic flow would be more likely to avoid

heights. Wariness of heights was assessed on a visual cliff and
postural compensation to peripheral optic flow was assessed by

moving the side walls in a moving room. Under the infant’s seat in

FIGURE 2 | The powered-mobility-device (PMD) used to test the

relation between self-produced locomotion and psychological

development. Infants can move forward in the PMD by pulling on the

brightly colored joystick.

the moving room were force sensors that recorded postural sway

in the fore and aft directions. Cross correlating the postural sway

data with the displacement of the side walls provided an index of
the strength of the coupling between vision and posture.

As predicted, postural compensation to peripheral optic flow

was positively and significantly associated with infant avoidance
of the deep side of the visual cliff. That is, the greater the cou-

pling between an infant’s postural sway and the wall movement,

the more likely the infant was to avoid the drop-off. In con-
trast, there was no relation between visual-postural coupling

in the moving room and avoidance of the shallow (non-drop-

off) side of the visual cliff (see Figure 3). These findings were
replicated in another unpublished study with somewhat younger

infants who had similar amounts of locomotor experience, fur-

ther evidencing the robustness of the relation between infant
visual proprioception and wariness of heights.

The second study used the PMD to experimentally manipulate

infant experience with self-produced locomotion and responsive-
ness to peripheral optic flow. The study had three purposes: (1)

to investigate whether PMD experience would lead to increased

wariness of heights, (2) to corroborate Uchiyama et al.’s (2008)
finding that PMD experience leads to increased responsiveness to

peripheral optic flow, and (3) to test whether the relation between
PMD experience and wariness of heights is mediated by respon-

siveness to peripheral optic flow, as predicted by the Bertenthal

and Campos (1990) hypothesis. Since all infants were precrawlers,
they were tested on the visual cliff by measuring their heart rate

(HR) while they were lowered onto the deep and shallow sides

of the visual cliff. HR differentiation between the deep and shal-
low sides was used as an index of wariness (Ueno et al., 2012,

showed that the crossing paradigm and the lowering paradigm
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FIGURE 3 | The probability of crossing the deep or shallow sides of the

visual cliff based on the infants’ responsiveness to peripheral optic

flow in the moving room.

on the visual cliff yield the same conclusions). As in the previous

study, visual proprioception was assessed in the moving room.

All three predictions were supported. PMD infants showed
greater HR differentiation between the deep and shallow sides of

the visual cliff than control infants (see Figure 4), they showed

greater responsiveness to peripheral optic flow in the moving
room than controls (see Figure 5), and, finally, the relation

between PMD experience and HR differentiation on the visual

cliff was mediated by infant responsiveness to peripheral optic
flow. In other words, only insofar as PMD infants had higher

postural responsiveness to the moving room did they also show

higher cardiac signs of wariness of heights.
The above studies thus show strong support for the hypoth-

esis that wariness of heights typically comes about through

locomotor-induced changes in visual proprioception. However,
none of the studies actually manipulated infant use of visual

proprioceptive information in the presence of a drop-off. The

Bertenthal and Campos (1990) hypothesis implies that if crawling
infants, ordinarily wary of drop-offs, are provided with additional

visual proprioceptive information at the edge of a drop-off they

should show less wariness of heights. The provision of visual ref-
erents has been shown to improve postural control at the edge of

a drop-off in adults (Simenov and Hsiao, 2001).

In an ongoing study, a corridor was built on top of the visual
cliff. The walls of the corridor are either covered by highly pat-

terned fabric (increased texture condition) or are plain white
(minimal texture condition). Importantly, the presence of the cor-

ridor gives no additional clues that the surface of the visual cliff is

solid. Infants are encouraged by their mothers to cross the deep
side of the visual cliff through the corridor. If infants rely on

peripheral optic flow for postural stability as they locomote, and

loss of that information leads to wariness when depth at an edge
is encountered, then they should be more likely to cross the deep

side of the visual cliff in the increased texture condition than in

FIGURE 4 | Heart rate acceleration on the deep side of the visual cliff

minus heart rate acceleration on the shallow side as a function of

responsiveness to peripheral optic flow in infants who received

powered-mobility-device (PMD) training and those who did not.

the minimal texture condition. Preliminary data conform to pre-

diction. Infants with more than 6 weeks of crawling experience are

significantly more likely to cross the deep side of the visual cliff in
the increased texture condition than in the minimal texture con-

dition. The added texture thus appears to provide optic flow that,

at least in part, compensates for the loss of visual information at
the edge of the drop-off.

In sum, convincing evidence has been provided for Bertenthal

and Campos’s novel explanation for the emergence of wariness of
heights. Locomotor experience appears to functionalize periph-

eral optic flow such that infants come to rely on this source of

visual proprioceptive information for postural stability during
locomotion. Upon encountering a drop-off, infants show signs

of wariness either because they lose information they have come

to rely upon, they experience a discrepancy between information
provided by the visual, vestibular, and somatosensory systems,

and/or their postural stability decreases.

The above studies also show that locomotor experience is not
the only way by which infants can become wary of drop-offs.

Indeed, Dahl et al. (2013) reported a positive relation between
responsiveness to peripheral optic flow and cardiac signs of wari-

ness in the pre-locomotor control group. The development of

wariness of heights, like so many other (if not all) developmental
processes is not deterministic, but probabilistic (Campos et al.,

2000; Gottlieb, 2007). Transitions typically engendered by loco-

motor experience, like reliance on peripheral optic flow for visual
proprioception, can sometimes be brought about through alter-

native developmental pathways. One question for future research
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FIGURE 5 | Responsiveness to peripheral optic flow and global optic flow in the moving room in infants who received powered-mobility-device

(PMD) training and those who did not. ∗p < 0.05.

is what these additional developmental pathways are in the cases

of visual proprioception and wariness of heights.

SUMMARY

Converging research operations—including the experimen-

tal manipulation of infant experience with self-produced

locomotion—have systematically documented that locomotor
experience can induce a reorganization in visual proprioception

and the onset of wariness of heights. These same converging

operations have begun to address issues of process by establish-
ing functionalization of peripheral optic flow as an experiential

mediator in the relation between self-produced locomotion and
wariness of heights. As such, this line of research serves as a model

for beginning to tackle the question of how locomotor experience

might bring about its functional consequences for other psycho-
logical skills. In the next section, we examine the relation between

locomotor experience and improved search for hidden objects.

Though the link between the two is strong and the processes that
underlie the link are extremely important to understand, it has

not yet received the same rigorous experimental treatment as the

link between locomotion and visual proprioception and wariness
of heights.

LOCOMOTOR EXPERIENCE AND MANUAL SEARCH FOR

HIDDEN OBJECTS

Correctly searching for an object hidden in one of two loca-

tions proves to be a surprisingly difficult skill for the infant
who has already developed proficiency in reaching and grasping.

Infants between 8 and 9 months-of-age can successfully retrieve

an object hidden within reach at one location, but they often
fail when the object is hidden under one of two adjacent loca-

tions, even when the locations are perceptually distinct (Piaget,

1954; Bremner, 1978). More curiously, infants at this age will

often continue to search for an object in its original hiding loca-

tion even after they have seen it moved to a new hiding location.
This perseverative search is referred to as the A-not-B error and

the infant’s performance becomes progressively poorer as the

delay between hiding in the new location and search increases
(Diamond, 1990).

The ability to search for and retrieve hidden objects has been

the subject of intense scientific scrutiny because it represents a
major transition in the infant’s understanding of spatial relations.

The capacities that underlie successful spatial search are thought

to contribute to many important cognitive changes, including
concept formation, aspects of language acquisition, represen-

tation of absent entities, the development of attachment, and

other emotional changes (Haith and Campos, 1977). Importantly,
changes in spatial search behavior have been explained entirely

in maturational terms; specifically, maturation of the dorsolateral

prefrontal cortex has been postulated as the necessary precursor
to successful search (Kagan et al., 1978; Diamond, 1990). In con-

trast, Piaget (1954), among others (e.g., Hebb, 1949), has argued

that changes in search behavior stem from motoric experience
and active exploration of the world.

EVIDENCE LINKING LOCOMOTION TO SKILL IN SPATIAL SEARCH

A number of researchers, including Piaget (1954), have speculated

about a link between skill in spatial search and locomotor experi-

ence (Bremner and Bryant, 1977; Campos et al., 1978; Acredolo,
1978, 1985; Bremner, 1985). The first confirmation of the link

was provided by Horobin and Acredolo (1986) who showed that

infants with more locomotor experience were more likely to
search successfully at the B location on a series of progressively

challenging hiding tasks. The finding was replicated and extended
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by Kermoian and Campos (1988), using a similarly challenging
series of spatial search tasks that ranged from retrieving an object

partially hidden under a single location to the A-not-B task with

a seven-second delay between hiding and search. Infants in the
study were all 8.5 months-of-age but differed in experience with

independent locomotion. The results showed clearly that infants

with hands-and-knees crawling experience or experience moving
in a wheeled-walker significantly outperformed the prelocomotor

infants on the spatial search tasks. Moreover, search performance

improved as experience with locomotion increased. For example,
76% of crawling and walker infants with nine or more weeks of

locomotor experience successfully searched in the B location on

the A-not-B test with a 3 s delay compared to only 13% of infants
without locomotor experience.

The obvious conclusion from the Kermoian and Campos

(1988) study is that locomotion, regardless of how it is accom-
plished, makes an important contribution to spatial search.

However, a third experiment in the series raised an important

caveat to that conclusion. Belly crawling infants, who were the
same age as those tested in experiments 1 and 2, with between

1 and 9 weeks of crawling experience performed like preloco-

motor infants on the spatial search tasks. Moreover, no relation
was found between the amount of belly crawling experience and

spatial search performance.

Why would belly crawling experience fail to make the same
contribution to skill in spatial search as hands-and-knees crawling

and walker experience? Kermoian and Campos (1988) argued that

belly crawlers failed to profit from their locomotor experiences
because belly crawling is so effortful and inefficient. Belly crawlers

were thought to devote so much effort and attention to organizing

forward progression that they were unable to deploy attention to
the environment in the same way as the hands-and-knees crawlers

and infants in walkers. Consequently, the belly crawlers may not

have noticed some of the important spatial transformations dur-
ing crawling, such as occlusion and reappearance of objects that

contribute to improved search performance.
The Kermoian and Campos (1988) findings have been repli-

cated and extended using a variety of converging research opera-

tions, including cross-sectional and longitudinal research designs
as well as a variation of the deprivation design that took advan-

tage of ecologically and culturally mediated delays in the onset of

independent mobility in urban Chinese infants (Tao and Dong,
1997, unpublished data). Specifically, infants in Beijing who

were delayed in locomotion by 2 to 4 months relative to North

American norms initially performed poorly on the A-not-B test,
then improved dramatically as a function of locomotor experi-

ence regardless of the age at which they acquired independent

locomotion.
The relation between locomotor experience and spatial search

performance is not confined to typically-developing infants. The

relation has also been confirmed in a longitudinal study of seven
infants with spina bifida (Campos et al., 2009). Spina bifida is

a neural tube defect that is associated with delays in locomotor

and psychological development. The test was a two-position hid-
ing task in which a toy was hidden only in one location, with a

second hiding location serving as a distractor. Infants were tested

monthly after recruitment until 2 months after the delayed onset

of independent locomotion, which occurred at 8.5, 11.5, and 13.5
months-of-age in three of the infants and 10.5 months-of-age in

the other four. Dramatic improvements on the task were noted

following the onset of locomotion. Infants searched successfully
for the hidden object on only 14% of trials before they were able to

crawl, but improved to 64% correct search following the delayed

onset of locomotion.
Bai and Bertenthal (1992) studied the link between locomo-

tor experience and spatial search in the context of a paradigm

designed to assess position constancy. Position constancy is an
ability to find an object or location following a shift in one’s spa-

tial relation to that object or location. Position constancy would

be impossible without a basic level of skill in spatial search.
Three groups of 33-week-old infants were tested. One group

was prelocomotor, one group had 2.7 weeks of belly crawling

experience, and one group had 7.2 weeks of hands-and-knees
crawling experience. An object was hidden under one of two dif-

ferent colored cups that were placed side by side in front of the

infant. Prior to searching for the object, the infant was rotated
180 deg around the other side of the table on which the cups were

placed or the table was rotated 180 deg. The data from the first

trial showed a particularly strong effect of locomotor experience.
Infants with hands-and-knees crawling experience successfully

retrieved the object on 72% of trials following rotation to the

other side of the table compared to a 25% success rate for the pre-
locomotors. As in Kermoian and Campos’s (1988) spatial search

experiment, the belly crawlers in Bai and Bertenthal’s study per-

formed liked prelocomotors, searching successfully on only 30%
of trials. Notably, the groups did not differ on their search per-

formance when the table was rotated, likely because this type of

displacement is rarely experienced by any infant, regardless of
locomotor experience. (Figure 6 shows a hypothetical series of

spatial search tasks to highlight the difference between the typical

search procedure and the one in which the table or the infant is
rotated).

HOW IS SPATIAL SEARCH FACILITATED BY LOCOMOTOR EXPERIENCE?

The process by which locomotion contributes to spatial search

remains poorly understood despite the range of converging
research operations that have been used to document the link

between locomotor experience and skill at spatial search. The

need to explain the spatial component of manual search for hid-
den objects (where is the object located) as well as the temporal

component (improved tolerance of increasing delays between

hiding and search) has added to the challenge of developing
viable explanations. Nevertheless, we have speculated previously

(Campos et al., 2000) that at least four different factors contribute

to improvements in search performance: (1) shifts from egocen-
tric to allocentric coding strategies, (2) new attentional strategies

and improved discrimination of task-relevant information, (3)

improvements in means-ends behaviors and greater tolerance
of delays in goal attainment, and (4) refined understanding of

others’ intentions.

A shift in coding strategies

Piaget first proposed that changes in spatial search performance

reflect shifts from egocentric (body referenced) to allocentric
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FIGURE 6 | Four phases of a hypothetical spatial search task. In phase 1,

the object is partially hidden by an occluder. In phase 2, the object is

completely hidden by the occluder. In phase 3, the object is completely

hidden on the left side but the table is rotated 180 deg before the infant is

allowed to search. In phase 4, the object is hidden and the infant is rotated

180 before search is permitted.

(environment referenced) coding strategies (Piaget, 1954). He
reasoned that prelocomotor infants could rely on egocentric cod-

ing strategies because they interacted with their environment

from a stationary position. Thus, an object on the left would
always be found on the left and an object on the right would

always be found on the right. However, egocentric coding strate-

gies are unreliable once the infant starts to move from place
to place because the mobile infant’s relation to the environ-

ment changes constantly. In Piaget’s scheme, objects are first

tied to the sensory impressions they give rise to and then to
the actions that are performed on them. Even when infants can

first represent objects independently of their own actions, the
objects are still bound to specific locations in space. Only after

infants develop a truly objective view of the world do they real-

ize that objects can potentially inhabit many different positions
in space.

New visual attentional strategies

Locomotor infants are commonly observed to be more attentive

and less distractible during spatial search tasks (Campos et al.,
2000). The idea that locomotion might facilitate changes in atten-

tional strategies is quite reasonable if one assumes that attention

is largely in the service of actions (e.g., Franz, 2012). Richard Walk
has been one of the most vocal proponents of this idea, arguing

that, “Although motor activity is important, its function seems to

be mainly that of properly directing attention; the motor activity
itself seems to contribute little” (Walk, 1981, p. 191).

Acredolo and colleagues first proposed visual attention as a

mediator between locomotor experience and success on spatial
search tasks (Acredolo et al., 1984; Acredolo, 1985; Horobin and

Acredolo, 1986). They noticed that infants who kept an eye on the
hiding location were more likely to retrieve the object successfully.

In addition, visual distractions that encourage the infant to take

their eye off the hiding location decrease the likelihood of success-
ful search (Diamond et al., 1994). Keeping an eye on objects may

be a particularly helpful way for a locomotor infant to retrieve

objects following self-displacement. Keeping an eye on objects
may also help infants to discriminate perceptually relevant infor-

mation about the self and the environment through the process

of education of attention to meaningful invariants (Gibson, 1979).
Improved spatial discrimination of relevant task features has been

proposed as one means by which locomotor experience might

facilitate performance on the A-not-B task (Smith et al., 1999;
Thelen et al., 2001).

Improvements in means-ends behaviors and working memory

Improvements in means-ends behaviors (e.g., Diamond, 1991)
and greater tolerance for delays between initiating a behavior and

completing it have been proposed to account for the observa-

tion that errors on the A-not-B task increase as the delay between
hiding and search increases. How is experience with locomotion

implicated in this process? The logic is that prone locomotion is a

continuous task that is accomplished by concatenating a series of
discrete movements of the arms and legs. The infant often strug-

gles with several different means of coordinating all four limbs

before discovering the diagonal pattern of couplings between the
arms and legs that characterizes proficient (and efficient) four-

limbed gait (Freedland and Bertenthal, 1994; Adolph et al., 1998).

Learning to locomote proficiently may then transfer to learning
other means-ends behaviors, perhaps through a process akin to

learning how to learn (Harlow, 1949; Adolph, 2005; Seidler, 2010).

In addition, locomotor goals require more time to complete than
discrete actions like reaching and so the infant must keep the loco-

motor goal in mind for a longer period of time, taxing working

memory.
A recent study linking locomotor experience to greater flexibil-

ity in memory retrieval provides indirect evidence that locomo-

tion might facilitate the infant’s ability to tolerate longer delays
in the A-not-B task. Herbert et al. (2007) tested 9-month-old

crawlers and non-crawlers on a deferred imitation task. An exper-
imenter demonstrated an action on a toy and the infants were

tested 24 h later to see if they would perform the same action.

Crawlers and pre-crawlers imitated the action when they were
given the same toy in the same context in which they were tested

(laboratory or home), however, crawlers were significantly more

likely than pre-crawlers to imitate the action when the toy and the
testing context were different. The authors argued that locomo-

tor experience promotes flexibility in memory retrieval because
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locomotor infants have abundant opportunities to deploy their
memories in novel situations. It is not unreasonable to think that

locomotion might also contribute to changes in working mem-

ory given that it has been linked to long-term memory. Such
changes would be the basis for the greater tolerance of delays in

hide-and-seek tasks.

Improved understanding of others’ intentions

We have already noted that locomotor infants are more atten-

tive and less distractible during search tasks. However, they also
appear to search for communicative signals from the experi-

menter. This search is likely related to their ability to follow

the referential gestural communication of an experimenter (e.g.,
Campos et al., 2009) and increased distal communication with

the parent after the onset of locomotion (Campos et al., 2000).

The importance of social communication in the A not B error
has recently been highlighted by an experiment showing that

perseverative search errors are considerably reduced when com-

munication between the experimenter and infant is minimized
(Topál et al., 2008). The authors argue that infants make the

error because they misinterpret the game they are playing with

the experimenter during the trials when objects are hidden at the
A location. The growing literature on the link between action

production and action understanding (e.g., Sommerville and

Woodward, 2010) is also relevant to the potential mediating role
of understanding others’ intentions in successful spatial search.

This literature suggests that infants’ understanding of other peo-

ple’s actions as being goal-directed is a function of their own
action experience.

SUMMARY

The evidence supporting a link between locomotor experience
and spatial search performance is compelling. A range of con-

verging research operations have shown that infants who can

locomote perform better on spatial search tasks than infants who
cannot. However, it is important to note here that we have not

yet demonstrated a causal association between locomotion and

spatial search performance as has been done for locomotion and
visual proprioception and wariness of heights. The PMD is cur-

rently being used to conduct the pivotal studies. In addition,

more attention must be devoted to understanding how locomotor
experience contributes to spatial search performance. While the

proposed mechanisms described above seem intuitive and viable,

none have been confirmed experimentally.
The need for better understanding of the developmental pro-

cess prompts us to raise additional questions about the rela-

tion between locomotion and psychological development that
have received scant attention in the research literature. These

include, how does the brain change when infants acquire loco-

motor experience, what role does locomotion play in the main-
tenance of psychological function, and what implications do

limitations in motor ability have for psychological develop-

ment? We now turn our attention to these important questions
in the hope of showing how they can contribute to a deeper

understanding of the processes that link action and psycho-

logical function and the processes that underlie developmental
change.

WHAT CHANGES IN THE BRAIN OCCUR WHEN INFANTS

ACQUIRE EXPERIENCE WITH LOCOMOTION?

The emergence in infancy of each new motor skill brings new

means of engaging the world. Given the activity-dependent char-

acter of neurological development highlighted by contemporary,
bidirectional developmental models, we should expect reorga-

nizations in cortical structure to accompany and be dependent

on the acquisition of these skills. Surprisingly little empirical
work, however, exists to confirm this speculation. Thus, the ques-

tion of what changes in the brain are consequences of acquiring

independent locomotion remains largely unexplored.
The critical role that activity plays in the development of psy-

chological function extends to the development of neurological

structure and function. Empirically, the activity-dependent char-
acter of neurological development is now well-established (Katz

and Shatz, 1996; Pallas, 2005; Gottlieb et al., 2006; Westermann

et al., 2007). Consider the oft-cited example of ocular domi-
nance column formation, in which binocularly innervated tissue

in layer 4 of the visual cortex developmentally segregates into

alternating, eye-specific columns of cortical neurons. Even brief
monocular deprivation in early postnatal development—limiting

sensory activity to one eye—produces major anatomical changes

to the structure of these columns (Hubel and Wiesel, 1963; Katz
and Crowley, 2002). Such functional restructuring of the cortex

illustrates how its eye-specific layering is plastically responsive to

activity-derived competition for cortical neuronal resources (Katz
and Shatz, 1996; Mareschal et al., 2007), even in premature infants

(Jandó et al., 2012).
At the more macro-level of organismic activity, numerous

examples of activity-modified brain structure exist, from demon-

strations of cortical reorganization when novel motor skills are
learned (e.g., Karni et al., 1998; Kleim et al., 1998; Zatorre

et al., 2012) to the classic environmental complexity studies of

Rosenzweig and colleagues, which show structural changes in
the brains of rats reared in complex environments and given

opportunities to actively explore and play with various objects

compared to rats that were visually exposed to the complex envi-
ronment but unable to engage with it. Among the structural

changes are increases in synaptic size and density, expanded den-

dritic arborization, and increases in glial cells, vascular density,
and neurogenesis (e.g., Ferchmin et al., 1975; Greenough et al.,

1987; Markham and Greenough, 2004; Vazquez-Sanroman et al.,

2013).
The importance of micro and macro levels of activity for the

development of neurological structure is not just limited to mod-

ifications or extensions of existing neural architectures. Even in

utero, before sensory systems are functionally active and sam-

pling external stimulation, sensory neurons engage in spontaneous

waves of activity that influence cortical differentiation (O’Leary,
1989; Pallas, 2005; Mareschal et al., 2007). Alongside this sponta-

neous neural activity is internally generated spontaneous activity

issuing from cortical and subcortical structures of the brain. Such
activity is considered by many to serve a critical role in the forma-

tion and early differentiation of neural networks (O’Leary, 1989;

Katz and Shatz, 1996; Westermann et al., 2007). For example, the
emergence of initial column structure in layer 4 of the visual cor-

tex depends on spontaneously generated retinal activity (Feller
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and Scanziani, 2005; Mareschal et al., 2007) and experimental
blockage of such activity has adverse consequences for neural

development (Pallas, 2005). This also holds true at the macro level

for the spontaneous motor activity of embryos and fetuses dur-
ing prenatal development; experimental restraint of such activity

yields morphological abnormalities in skeletal, muscular, and

neural development (Einspieler et al., 2012).
In short, functional activity plays a central role in the for-

mation, construction and development of structure in the ner-

vous system. In stark contrast to the unidirectional framing
of structure-function relations featured within traditional, mat-

urational treatments of brain development, more and more

neurologically-focused empirical work argues that function and
structure reciprocally influence on one another throughout devel-

opment. The bidirectionality of the relationship situates func-

tional activity at the very heart of structural development,
not as a mere epiphenomenal outgrowth of it. Such bidi-

rectionality in structure-function relations is the hallmark of

Gottlieb’s (1970, 1991, 2007; Gottlieb et al., 2006) probabilistic

epigenesis and is a mainstay of more recent efforts to estab-

lish relational approaches to neurological development, such as

the theoretical framework of neuroconstructivism (Johnson and
Karmiloff-Smith, 2004; Mareschal et al., 2007; Westermann et al.,

2007).

What, then, do we know about the influence that locomo-
tion has on the brain? The limited insights we have into the

brain changes that accompany the onset of crawling come from

work that was done by Bell and Fox (1996, 1997). They used
an age-held-constant design with 8-month-olds who varied in

their experience with hands-and-knees crawling activity to inves-

tigate the relation between cortical development and crawling
experience. In their first study, four groups of infants—a preloco-

motor group, a novice crawling group (1–4 weeks of experience),

a middle-level crawling experience group (5–8 weeks of experi-
ence), and a long-term crawling experience group (9 or more

weeks of experience)—were compared using a measure of EEG
coherence across frontal, parietal, and occipital brain regions to

index synaptic connectivity. EEG coherence measures the degree

of association or coupling between different brain regions.
Bell and Fox (1996) discovered a curvilinear relationship

between crawling experience and EEG coherence. Specifically,

infants with 1–4 weeks of crawling experience demonstrated
much greater EEG coherence than their long-term crawling coun-

terparts (9 or more weeks of experience) and their prelocomotor

counterparts. In their second study, Bell and Fox (1997) repro-
duced the same basic curvilinear relationship across the four

groups of crawlers, however, this time with an estimate of within-

region EEG power. The relationship held for EEG power in the
frontal and parietal regions of the brain, but not the occipital

region. Again, it was the infants with 1 to 4 weeks of crawling

experience who demonstrated greater EEG power values than all
other groups.

Given the greater coherence and power seen in the group

with minimal crawling experience, Bell and Fox (1996, 1997)
concluded that the brain changes represented an experience-

expectant rather than an experience-dependent process (Greenough

et al., 1987; Greenough and Black, 1992). As their labels suggest,

experience-expectant processes are thought to emerge in antic-
ipation of experiences that are ubiquitous and common to all

members of a species, whereas experience-dependent processes

are idiosyncratic or unique to an individual. Bell and Fox argued
that the brain overproduced synaptic connections in anticipa-

tion of the new sets of experiences likely to derive from the

acquisition of crawling, a species-typical motor skill. Synaptic
pruning was assumed to follow the initial overproduction of

synapses as the infant consolidated crawling and its experiential

consequences.
Do the changes in EEG coherence and power seen at the onset

of crawling really represent an experience-expectant rather than

an experience-dependent process? Unfortunately, we don’t have
an answer to this question as no attempts have been made to

replicate the Bell and Fox experiments. Two factors lead us to

believe that the observed changes were dependent on experience,
however. First, though the infants in the two studies had lim-

ited crawling experience, it must be remembered that they were

hands-and-knees crawlers. This is important because infants typ-
ically explore many different forms of prone locomotion before

converging on the more efficient hands-and-knees pattern, as

noted earlier in the paper (Adolph et al., 1998). Consequently, Bell
and Fox may have underestimated the amount of experience the

infants had with self-generated locomotion. Second, an explosion

of research in the neurosciences over the last decade has docu-
mented countless examples of experience-dependent plasticity in

human development across the lifespan.

When the results from the environmental enrichment stud-
ies alluded to earlier are combined with the role that functional

activity is known to play in the development of the nervous sys-

tem, the idea that locomotion induces changes in the brain seems
eminently reasonable. Nevertheless, the idea awaits experimen-

tal confirmation. Here is another research question that could

be addressed using the powered-mobility-device. We hypothe-
size that prelocomotor infants given training in the PMD would

show similar EEG coherence and power values to those seen in the
infants with 1–4 weeks of crawling experience in the Bell and Fox

(1996, 1997) studies and higher values than seen prior to training.

In contrast, we would not expect to see changes in coherence and
power in infants who did not receive training.

WHAT ROLE DOES LOCOMOTION PLAY IN THE

MAINTENANCE OF PSYCHOLOGICAL FUNCTION?

We noted earlier in the introduction that Gottlieb (1970, 1991,

2007) outlined three roles for experience in development—
induction, facilitation, and maintenance. The discussion so far

has focused on the first two roles; it is now time to focus on main-

tenance, the role that has received little, if any, empirical attention
in the developmental literature. The concept of maintenance by

experience has enormous implications for our understanding of

the declines in psychological function associated with the aging
process, and it provides a theoretical bridge between the processes

that generate psychological structure and function in the early

years of life and those that contribute to its deterioration later in
life.

Experientially-induced cognitive and neural plasticity during

adulthood is a topic of major interest in the neurosciences at
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the moment because of the dramatic shift in the proportion of
the global population that will be over 65 years-of-age within

the next 25 years and the concomitant personal, social, and eco-

nomic costs that stem from age-related declines in cognitive
function (Anderson-Hanley et al., 2012; Karbach and Schubert,

2013). It is particularly relevant to the central thesis of this paper

that changes in an older person’s gait are now recognized as
early predictors of dementia, including Alzheimer’s disease (Hall

et al., 2000; Verghese et al., 2002, 2007). Those individuals at

risk for dementia have slower walking speeds, disrupted rhythms,
and show greater variability from stride to stride. Equally rele-

vant is the prevailing tendency to view gait dysfunction as the

first symptom of the disease rather than a contributor to the
disease. In other words, most researchers assume that gait dys-

function (and motor dysfunction more broadly) is simply the

earliest manifestations of the neural and vascular changes that will
ultimately lead to detectable cognitive impairment, even though

many acknowledge that the relation between physical activity and

cognitive function is complex and likely reciprocal (Cedervall
et al., 2012).

The tendency to downplay or ignore a potential role for

mobility impairment in the progression of cognitive impairment
is surprising given what is now known about the protective

effects of physical activity on cognitive functioning in the elderly.

(However, it is reminiscent of the skepticism that has met the
idea that locomotion contributes to early psychological develop-

ment.) Numerous studies have shown a positive effect of exercise

and physical fitness on mental health and cognitive performance,
using correlational research designs and randomized controlled

trials (for reviews see Kramer and Erickson, 2007; Hillman et al.,

2008; Baker et al., 2010; Chaddock et al., 2010; Erickson et al.,
2012). Moreover, the areas of the brain where the most dramatic

exercise-related structural changes occur, the neural, vascular,

and molecular substrates that underlie these changes, and the
effects that can be attributed to exercise per se, vs. learning, have

been well-documented (Nithianantharajah and Hannan, 2009;
Thomas et al., 2012).

The differential effects of learning vs. exercise on brain devel-

opment, demonstrated some years ago by Greenough and col-
leagues (Black et al., 1990), and the brain regions known to be

affected by physical activity, are important to consider relative to

the potential effects of locomotion on the maintenance of psycho-
logical function. Rats who were given a prolonged period of wheel

running showed an increase in blood vessel density in the cerebel-

lum whereas those given acrobatic training showed an increase in
synaptogenesis. More recent work has shown that while exercise

can increase neurogenesis in the mouse hippocampus, environ-

mental enrichment enhances the survival of new neurons and
increases the likelihood they will be incorporated into existing

neural networks (Kronenberg et al., 2003).

Exercise-related changes in the brain are typically localized to
the motor cortex, the cerebellum, and the hippocampus (Thomas

et al., 2012). Although the cerebellum has traditionally been

assumed to participate exclusively in the control of movement,
Diamond (2000) has argued that the connections between the

cerebellum and the dorsolateral prefrontal cortex suggest that

the cerebellum might also play an important role in cognitive

functions. Deterioration in the hippocampus, which plays a cen-
tral role in learning, memory, and spatial skills like navigation,

precedes and leads to memory impairment, Alzheimer’s disease,

and depression in older adults (Thomas et al., 2012). A recent
randomized controlled trial showed that a 12 month exercise

program (walking) led to increases in the size of the ante-

rior hippocampus and improved spatial memory in older adults
(Erickson et al., 2011).

Having noted the different effects of exercise vs. environmen-

tal enrichment on the brain, one wonders whether the changes
in hippocampal size noted by Erickson et al. (2011) were a func-

tion of the physiological demands of walking or the engagement

with the environment that walking permits. A recent study on
exergaming (a combination of exercise and video game play)

sheds some light on this issue. Anderson-Hanley et al. (2012)

randomly assigned older adults to a cybercycling intervention,
which involved virtual reality tours through simulated environ-

ments and competition with other cyclists, or to a traditional

cycling intervention on a stationary bike. Despite equivalent levels
of effort and fitness, the cybercyclists showed significantly greater

improvements in cognitive function following the intervention

than traditional cyclists. Importantly, cybercyclists showed sig-
nificantly larger increases in brain derived neurotrophic fac-

tor (BDNF), an important neurotrophin thought to mediate

exercise-induced neurogenesis and synaptogenesis, than tradi-
tional cyclists. Thus, exercise with simultaneous cognitive engage-

ment was a much more effective facilitator of cognitive function

than exercise alone.
Finally, it is highly relevant to again note the role played by

the hippocampus in spatial navigation to fully appreciate the

potential impact that locomotion has on the maintenance of
psychological function. Interactions with complex environments

place highly specific demands on navigation and lead to mea-

surable changes in the hippocampus. For example, London taxi
drivers, who are held to some of the most rigorous standards in

the world relative to knowing their city, have greater gray matter
volume in the mid-posterior hippocampi. Moreover, greater driv-

ing experience is associated with greater posterior hippocampal

gray matter volume (Maguire et al., 2000, 2006). Many com-
plex navigational processes decline with hippocampal atrophy

(Nedelska et al., 2012).

In an interesting parallel with the developmental work link-
ing the onset of crawling to the increased use of allocentric spatial

coding strategies (note, much of that work was not covered in the

current paper, but see Anderson et al., 2013 for a recent review),
researchers have shown that allocentric spatial coding strategies

in healthy older adults correlate with gray matter volume in the

hippocampus whereas egocentric strategies correlate with vol-
ume in the caudate nucleus (Konishi and Bohbot, 2013). A study

by Harris et al. (2012) has recently shown that aging specifically

impairs the ability to switch from an egocentric to an allocentric
navigational strategy during a virtual maze task. This finding is

important to the concept of maintenance by experience because

the onset of locomotion in infancy is associated with more flexible
use of the two strategies during spatial search and coding tasks.

It would be interesting to see whether older adults with mobil-

ity impairments, or who were more sedentary, would have more
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difficulty switching to an allocentric strategy than those without
an impairment or those who were more physically active.

In summary, the concept of maintenance by experience not

only highlights the enduring effects of locomotor experience, but
offers an alternative way to conceptualize the relation between gait

dysfunction and cognitive decline in the elderly. Rather than view

the relation as unidirectional, i.e., neural and vascular changes
lead to a deterioration in gait and cognitive function, with the

deterioration in gait continuing as executive function becomes

increasingly compromised, it may be more appropriate to view
the relation as bidirectional. Impaired mobility is very likely to

exacerbate cognitive impairment because it limits the interaction

with the environment that is known to drive structural and func-
tional changes in the brain. We will elaborate on this idea in the

next section.

WHAT IMPLICATIONS DO MOTOR DISABILITIES HAVE FOR

PSYCHOLOGICAL DEVELOPMENT?

We have already noted that infants who are delayed in the onset
of locomotion for neurological or orthopaedic reasons have also

been shown to be delayed in the development of spatial-cognitive

skills. These findings have been confirmed in a recent longitudi-
nal study of seven infants with spina bifida who were tested on

three spatial-cognitive paradigms prior to and after the onset of

independent crawling (Rivera, 2012). The first paradigm assessed
visual proprioception in the moving room. The second paradigm

assessed the ability to follow the point and gaze gesture of an

experimenter and the third paradigm assessed the ability to
extract the invariant form of an object that was presented in mul-

tiple sizes, orientations, and colors. Consistent with the Campos

et al. (2009) findings, the infants showed marked improvements
on each of the spatial-cognitive paradigms following the acquisi-

tion of crawling, which occurred at an average age of 19.6 months,

well after typically-developing infants begin to crawl. In addition,
we have also noted already that infants who engage in effortful

forms of locomotion, like belly crawling, don’t appear to profit, in
terms of psychological consequences, from their locomotor expe-

rience. We suspect that at least some of the cognitive deficits that

have been noted in older children and adults with motor disabil-
ities might be attributable to a lack of locomotor experience or

delays in locomotor experience, particularly if those delays strad-

dle sensitive periods in the development of the psychological skills
in question.

The idea that motoric limitations might contribute to limita-

tions in perceptual and spatial-cognitive functioning in children
with motoric disabilities is not new (e.g., Abercrombie, 1964,

1968; Kershner, 1974). Limited evidence currently exists, how-

ever, to support the idea and the current model in developmental
pediatrics has a strong bias against motoric factors playing a role

in the psychological development of children with disabilities

(Anderson et al., 2013). A major problem with accepting a role
for motoric factors in the psychological development of children

with physical disabilities has been the difficulty associated with

separating the role of brain damage from that of mobility impair-
ment in any psychological deficits that are discovered. Brain

damage is often the cause of the primary motor impairments

seen in children with physical disabilities and that same damage

is obviously implicated in any co-occurring spatial-cognitive
deficits.

Despite the above-mentioned difficulties, there is clear evi-

dence that limited opportunities to explore the environment can
impede the development of spatial-cognitive skills. Notably, in

reference to the previous section, navigation is one of the skills

that is most severely affected. One of the first studies to examine
the effects of limited exploration on the development of navi-

gation skills was conducted by Simms (1987). We have already

discussed the more flexible use of egocentric and allocentric spa-
tial coding strategies that accompanies the shift to independent

locomotion in typically developing children as well as the difficul-

ties that older adults often have using allocentric strategies. The
development of spatial coding does not end, however, once the

child has acquired the ability to use allocentric strategies. Rather,

it continues to develop as children learn routes to target locations
and ultimately learn to integrate routes and landmarks into an

overall representation of the environment (Piaget and Inhelder,

1948; Siegel and White, 1975). In Simms’s (1987) study, nine
young adults with spina bifida and nine able-bodied controls had

to learn routes while being driven through a traffic-free road sys-

tem and a busy village. Compared to able-bodied controls, the
young people with spina bifida took significantly longer to learn

a route, noticed fewer landmarks, were less able to mark routes

on a map, and produced poorer hand drawn maps. Importantly,
the participants’ level of mobility was linked to spatial skill, with

walkers performing better than wheelchair users.

More recent studies have confirmed that children with physical
disabilities have difficulties acquiring spatial knowledge related to

navigation (e.g., Foreman et al., 1989, 1990; Stanton et al., 2002;

Wiedenbauer and Jansen-Osmann, 2006) and have demonstrated
that the severity of motor disability and the severity of brain dam-

age make independent contributions to spatial-cognitive impair-

ments (Pavlova et al., 2007). The study by Foreman et al. (1990) is
particularly revealing because it shows that active decision making

may be one of the key mediators in the link between locomotion
and the acquisition of spatial knowledge. In two experiments, 4–6

year-old children were tested for their ability to retrieve objects

that were strategically positioned within a large room. The chil-
dren were first familiarized with the object positions in one of

four locomotor conditions: (1) independently walking between

positions, (2) walking but being led by an experimenter, (3) pas-
sively transported in a wheelchair, or (4) passively transported

in a wheelchair while directing the experimenter where to go.

The results showed that children who walked independently or
directed the experimenter while being pushed in the wheelchair

performed most successfully on the task. Thus, control over deci-

sion making was the crucial determinant of spatial search perfor-
mance following navigation through the room and not the means

by which locomotion was achieved. This finding is important

because it further highlights the distinction between the experi-
ences that are associated with locomotion and the means by which

locomotion is achieved. A considerable body of research with

typically developing children now shows that active locomotion
facilitates spatial search performance (Yan et al., 1998).

When the studies linking crawling experience with spatial-

cognitive development in infants with spina bifida are combined
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with the studies showing spatial-navigational deficits in older
children with physical disabilities, the evidence in favor of the

hypothesis that impaired mobility contributes to impaired psy-

chological development is already quite strong and growing
stronger. Nevertheless, considerably more work needs to be done

in this area before clinicians will accept the hypothesis with-

out reservation. In the meantime, it is encouraging that some
researchers and clinicians are already exploring the psychosocial

benefits that might stem from early powered-mobility training

in children with mobility impairments (e.g., Lynch et al., 2009;
Ragonesi et al., 2010). Continued work in this broad area is

imperative given the millions of children with physical disabil-

ities world-wide who could potentially profit from our deeper
understanding of the relation between locomotor impairments

and psychological deficits.

CONCLUDING COMMENTS

The onset of independent locomotion is a momentous event

in human development. It marks a major transition toward

independence from caregivers, it creates an explosion of new
choices for the infant, and it heralds a remarkably broad set

of changes in psychological functioning. Overwhelming evi-

dence suggests that locomotion is not merely a maturational
antecedent to these changes. Rather, the changes are a func-

tion of the specific experiences that accompany moving oneself

through the world. Consistent with the idea that development is
probabilistic, infants could potentially be exposed to these experi-

ences in non-locomotor ways and thus acquire the psychological

skills through alternative developmental pathways. However, the
acquisition of these skills through alternative pathways in the

typically-developing infant is likely rare. What makes locomo-

tion significant is that it virtually guarantees that infants will
encounter the requisite experiences that drive a host of impor-

tant psychological changes; many of which were not documented

in this paper and many of which remain to be discovered. Even
though self-produced locomotion may not be necessary for these

changes to take place, locomotion is significant because in the

ecology of the typically-developing infant it is the most common
means by which these changes happen.

The enduring significance of locomotion stems from the fact

that, once acquired, it is typically maintained; though it also

becomes more effectively controlled, more efficient, and more
adaptable to a range of different morphological and contextual

constraints. Locomotion can thus serve as a permanent frame-

work for the maintenance of the psychological skills it helped to
engender in the first place. Moreover, the onset of new locomo-

tor skills, like walking or running, will likely have consequences

for the development of more sophisticated psychological skills.
This hypothesis is already being tested. The maintenance idea has

important implications for our understanding of the declines in

psychological functioning that occur when locomotion is com-
promised by aging, injury, disease, or disability, and it deserves

to be scrutinized much more carefully. Equally worthy of fur-

ther scrutiny are the psychological consequences associated with
motor disabilities that delay the acquisition of independent loco-

motion or impair its quality once acquired. Many questions

remain unanswered about the specific processes by which loco-
motion brings about psychological changes as well as the spe-

cific changes in neural structure and function that can be tied

to locomotion. Questions also remain about the acquisition of
other motor skills that may have implications for psychological

development. Addressing all of these questions could markedly

enhance not only our understanding of the specific role that
locomotion plays in psychological processes across the lifespan,

but also the broader role that action plays in those same pro-

cesses. Ultimately, we argue that the acquisition of any skill that
dramatically changes the relation between the person and the

environment must have consequences for psychological function-

ing. This idea has significant implications for the way we view and
understand human development.
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