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Abstract. – The phase behavior of colloid-polymer mixtures, and of solutions of globular
proteins, is often interpreted in terms of a simple model of hard spheres with short-ranged
attraction. While such a model yields a qualitative understanding of the generic phase diagrams
of both colloids and proteins, it fails to capture one important difference: the model predicts
fluid-fluid phase separation in the metastable regime below the freezing curve. Such demixing
has been observed for globular proteins, but for colloids it appears to be pre-empted by the
appearance of a gel. In this paper, we study the effect of additional long-range attractions on
the phase behavior of spheres with short-ranged attraction. We find that such attractions can
shift the (metastable) fluid-fluid critical point out of the gel region. As this metastable critical
point may be important for crystal nucleation, our results suggest that long-ranged attractive
forces may play an important role in the crystallization of globular proteins. However, in colloids,
where refractive index matching is often used to switch off long-ranged dispersion forces, gelation
is likely to inhibit phase separation.

Introduction. – X-ray crystallography is still the standard technique to resolve the three-
dimensional structure of globular proteins. But crystallography requires crystals, and protein
solutions are notoriously difficult to crystallize. In order to understand the factors that favor
crystallization, it is useful to gain insight into the phase behavior of the protein solution.
As a first approximation, it is often sufficient to consider proteins as hard spherical bodies,
interacting through a short-ranged attractive potential. In fact, Rosenbaum et al. [1] have
shown that the crystallization curves for a number of globular protein solutions appear to
coincide with those of a system of hard spheres with a rather short-ranged attractive Yukawa
interaction, as studied in the simulations of Hagen and Frenkel [2]. These simulations were
primarily aimed at modeling the phase behavior of polymer-colloid mixtures.

As the attractive Yukawa model is used to model both colloids and globular proteins, one
should expect that the conclusions that hold for one system should be transferable to the
other. This does indeed appear to be correct, as far as the equilibrium phase behavior is
concerned: experimental studies of colloid-polymer mixtures [3] show that, as the range of
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the attractive interaction between the colloids is shortened, the phase diagram changes in the
way predicted originally by Gast et al. [4] and subsequently these predictions were analysed
in considerable detail, both by computer simulation [5] and theoretically [6]. In particular,
this analysis shows that fluid-fluid coexistence occurs only if the range of the attraction is
sufficiently large compared to the “hard-core” radius of the particle (typically, more than
30%). For shorter-ranged attractions, the stable fluid-fluid transition is pre-empted by freezing.
There are several experimental studies that indicate that solutions of globular proteins may
exhibit the phase behavior expected for spherical particles with short-ranged attraction [7].
In the context of protein crystallization, the presence of a metastable fluid-fluid coexistence
curve and, in particular, of a metastable critical point may be important, as ten Wolde and
Frenkel [8] have argued that the presence of such a metastable critical point will lower the
barrier for crystal nucleation.

However, experimental studies of suspensions of colloids with a short-ranged attractive
interaction suggest that there is an important difference in the phase behavior of proteins
and colloids: whereas a metastable fluid-fluid coexistence curve has actually been observed
for several globular proteins, colloids with short-ranged attractive interactions tend to form
a gel-like phase instead. Although the latter phase is metastable, it can delay [9], or even
suppress, crystallization [3]. Clearly, the model of (mono-disperse) hard spheres with short-
ranged attractive interactions is an oversimplification. Real proteins are non-spherical and
have non-isotropic (“patchy”) interactions. In contrast, while colloids may be quite spherical,
they are hardly ever monodisperse. All these factors will affect the tendency to crystallize, to
phase-separate and to form a gel. In the present paper, we focus on a very simple phenomenon,
namely the effect of long-range forces. The reason why we focus specifically on long-range forces
(rather than on poly-dispersity or particle anisometry) is that we are looking for a mechanism
that can move the gelation regime well below the fluid-fluid critical point. We shall argue that
long-range attractive interactions do precisely that.

Model and equations of state. – We wish to consider a system that can exhibit freezing,
fluid-fluid phase separation and gelation. In our model two spherical hard particles of diameter
σ experience a short-ranged attraction through a potential of the form

u(r) =
{∞ ,
−ε · (r/σ)−n ,

r ≤ σ ,
σ < r .

(1)

The specific form of the interaction potential has been chosen for convenience. In the case
of proteins, we do not really know the detailed form of the attractive interaction (other
than that it has a short-ranged component). In mixtures of “hard-core” colloids and non-
adsorbing polymer, the short-ranged attraction is induced by depletion forces (see [6] and
references therein). Other functional representations could have been chosen for the short-
ranged potential (and have indeed been considered in studies of fluid-fluid coexistence and
percolation [10]). However, the choice should become unimportant for very short-ranged
attractions [11]. The fluid is then well described by Baxter’s adhesive hard-sphere model
of infinitely short-ranged attraction [12]. An approximate equation of state for this model is
known (see the first two terms in eq. (4) below, given in [12,13]). The only parameter is the
value of the second virial coefficient, usually expressed in terms of a “stickiness” parameter
1/τSS:

BSS
2 ≡ BHS

2

(
1− 1

4 τSS

)
, (2)

where BHS
2 = 2πσ3/3 is the virial coefficient of hard spheres. τSS can be thought of as a
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measure of the temperature. In particular, the limit τSS → ∞ corresponds to the situation
where the effect of short-ranged attraction becomes negligible.

In the present case, the second virial coefficient is given by

BHS
2 (1− 1

4 τSS(t)
) = BHS

2 − 2π

∫ ∞

σ

[
e1/t·(r/σ)−n − 1

]
r2dr . (3)

t ≡ kBT/ε is the dimensionless temperature. In the present approach we account for the
additional long-range attraction, by adding a van-der-Waals–like contribution to the equation
of state:

pfl v0

kBT
= η · 1 + η + η2

(1− η)3
− η2 · λ18(2 + η)− λ2η

36(1− η)3
− α0

t
· η2 . (4)

p is the pressure, v0 the hard-sphere volume, η the volume fraction. α0 is related to the usual
van der Waals parameter a by α0 = a/(εv0), and thus measures the long-range attraction
in units of ε. The stickiness enters through the parameter λ = λ(τSS, η), given in ref. [12].
The first term on the right-hand side of eq. (4) describes the hard-sphere contribution to the
pressure, the second term accounts for the stickiness, and the third term describes the effect
of long-ranged attraction.

To describe the solid phase, we follow Daanoun et al. [14], estimating its entropy by a
cell-theory and its energy by the mean field interaction energy between nearest neighbors at
their average positions. The equation of state of the solid is most readily expressed in terms of
a re-scaled distance, s ≡ (ηcp/η)1/3, where ηcp is the volume fraction at regular close packing:

psol · v0

kBT
= ηcp ·

[
1

s2(s− 1)
+

1
t

z u′(s)
6s2

]
− α0

t
· η2 . (5)

z denotes the number of nearest neighbors (here z = 12 as for the FCC lattice).

Gelation. – In the gel state the colloids form a space-spanning network. The tendency
to form gels depends strongly on the range and strength of the forces acting between the
particles. There appears to be no general recipe to predict whether a given system should
be in the gel state. However, in the case of adhesive spheres, there is a simple analytical
expression [15], that allows us to estimate the percolation curve. In a system of adhesive
spheres, percolation is a necessary, but not a sufficient condition to form a gel. Hence, we can
use the percolation criterion of ref. [15] to delimit the region where gelation is possible. For
purely adhesive spheres, the analysis of ref. [15] indicates that cluster percolation occurs if

τSS ≤ 1− 2η + 19η2

12 (1− η)2
. (6)

One might expect that a different percolation criterion should apply if the particles have
a longer-ranged attraction, in addition to the “sticky” interactions. However, long-ranged
attractions should have little effect on the percolation. In fact, in the true van der Waals limit
(infinitely weak, infinitely long-ranged attractions) the long-ranged attractions do not affect
the structure of the fluid at all, and have therefore no effect on the percolation transition.
It seems plausible that attractions with a long, but finite, range will have a small effect on
percolation. Indeed, Kaneko [16] has shown that this is even true for electrostatic long-range
interactions. In what follows, we shall therefore continue to use eq. (6) to delimit the regions
where no percolation occurs, and where gelation can thus safely be ruled out.
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Fig. 1. – Phase diagrams in the (τ eff , η) representation, shown for increasing van der Waals attraction.
Every plot shows the fluid-fluid coexistence (broken line), the fluid-solid coexistence (solid line) as
well as the percolation line (dotted line). As the long-range attraction becomes more important, the
fluid-fluid critical point shifts out of the region where percolation can occur. For the solid, n = 50 has
been used.

Results. – Using the equations of state given above, we study the effect of additional
long-range attraction on the phase diagram of particles with a short-ranged attraction. We
locate the phase-coexistence boundaries numerically, by imposing that the pressures and the
chemical potentials of the coexisting phases be equal. In order to evaluate the effect due to the
long-range attraction, we have to compare to the case of pure sticky spheres. In analogy with
the stickiness parameter τSS, we define a second parameter τvdW, such that τSS and τvdW

characterize long- and short-range interactions separately:

B2 = BHS
2

(
1− 1

4 τSS
− 1

4 τvdW

)
. (7)

Both parameters depend on temperature. Whereas we have simply τvdW = t/α0 from eq. (4),
τSS is obtained (numerically) from eq. (3) for n = 50. To compare the phase diagrams of
different model systems, it is convenient to introduce the effective stickiness, defined as

1
τ eff

≡ 1
τSS

+
1

τvdW
. (8)

In what follows, we shall compare phase diagrams as a function of τ eff .
The main results of our analysis are presented in fig. 1. Without the van der Waals

contribution, fig. 1a, τ eff is identical to τSS, and we simply obtain the phase diagram of
spheres with purely short-ranged attraction. The fluid-fluid critical point is metastable and
lies below the percolation line. This implies that percolation, and presumably gelation, occurs
before the system can be quenched to the metastable critical point. Hence, in such systems
one should not expect to observe a fluid-fluid phase separation.

In fig. 1b, a moderate van der Waals attraction is present. Due to the long-range attraction,
the percolation line now occurs for lower values of τ eff , as it only depends on τSS. In contrast,
the fluid-fluid coexistence is not strongly affected by the different range. It consequently shifts
out of the percolation region, and it becomes possible to quench to this point without risk of
gelation.

As the long-range attraction is increased further, fig. 1c, the same trends are observed:
the fluid-solid line approaches the fluid-fluid critical point, which remains clearly outside
the percolation region. For even stronger long-range attraction, the fluid-fluid critical point
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Fig. 2. – The curve connecting the diamonds delimits the region (in the upper right-hand corner
of (1/τSS,1/τvdW)-plane) where fluid-fluid coexistence can occur. The curve thus represents the
collection of the critical points. The curve connecting the triangles delimits the region (shaded) where
percolation is expected to occur. The curve was constructed by plotting the value of the percolation
threshold evaluated at the fluid-fluid critical density, at fixed τvdW. In the absence of long-range
attraction, percolation precedes fluid-fluid demixing. However, even a moderate long-ranged attraction
moves the fluid-fluid coexistence curve out of the gelation region.

becomes stable. This reflects the fact that a sufficiently strong van der Waals attraction can,
of course, force the fluid to phase separate, whether short-range attractions are present or not.

This result is summarized in fig. 2. To read this figure, first consider the 1/τvdW-axes,
corresponding to long-ranged attraction only: when the attraction exceeds a certain value,
fluid-fluid demixing occurs. Similarly, for purely sticky spheres demixing occurs when 1/τSS >∼

10.9, when both types of interaction are present, the critical point deviates a little from a line
of constant 1/τ eff . Percolation, on the other hand, can only occur in the shaded area. The
figure shows that, as the strength of the long-range attraction increases (increasing 1/τvdW),
the fluid-fluid critical point moves to a region where no gel formation is possible.

Discussion. – It is tempting to speculate that the difference in phase behavior of globular
proteins and colloids may, at least partly, be due to the different role of long-ranged attractive
forces. In most studies of the phase behavior of colloid-polymer mixtures, the refractive index
of the solvent is matched to that of the colloidal particles to facilitate light scattering or
microscopy studies of the colloidal structure. But, by refractive-index matching, the attractive
dispersion forces between the colloids are effectively switched off. Hence, such suspensions
are expected to behave as the model system with purely short-ranged attraction, for which
the metastable fluid-fluid critical point lies well within the percolation region and fluid-fluid
demixing is pre-empted. This is the state of affairs observed in the experiments of ref. [3]. In
contrast, recent experiments by Hachisu [17] on colloids with strong van der Waals interactions
show that, in such systems, fluid-fluid demixing does occur. Protein-protein interactions have
been extensively studied both theoretically and experimentally [18,19]. However, even the most
careful theoretical calculations, accounting for steric, electrostatic, dispersional and short-range
interactions, yield estimates for the second virial coefficient that may differ appreciably from
the experimental values. In other words, much less is known about the long-ranged attractions
between globular proteins (not necessarily dispersion forces) than those acting between colloids.
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As we have shown above, the presence of moderately strong long-ranged attractions would
move the fluid-fluid critical point outside the regime where gelation is likely to occur. In
such systems, the metastable fluid-fluid phase separation may be observed, as indeed it is in
the experiments of ref. [7]. Of course, there are many other factors that play a role in phase
behavior of proteins and colloids. For instance, colloids are usually slightly poly-disperse, while
proteins are not. It seems likely that the main effect of poly-dispersity will be to bring down
the fluid-solid coexistence curve to lower values of τ . However, the effect on the fluid-fluid
phase transition and on the percolation curve is expected to be small. The same is expected
for the effect of increasing the range of the “short-ranged” attraction. In contrast, anisotropic
interactions (be they due to non-sphericity or surface “patchiness”) are likely to increase the
tendency to form gels. Clearly, the role of long-ranged attractions is only one out of many—but
at least it is an effect that provides a simple explanation why metastable fluid-fluid separation
is observed in globular proteins but not in colloid-polymer mixtures.

Let us finally consider the role of the metastable spinodal in crystal nucleation. In the
model studied in ref. [8], crystal nucleation was facilitated by the vicinity of the metastable
critical point. Moreover, in this model system, gelation did not interfere with either fluid-fluid
phase separation or crystal nucleation. However, as fig. 1 shows, we should expect that in
many cases gelation interferes with fluid-fluid phase separation—if not in the early stages,
than at least in the later stages. Poon [20] has argued that it is the metastable fluid-fluid
phase separation itself that leads to gelation, and thereby inhibition of crystallization. In the
case of colloid-polymer mixtures, phase separation and gelation tend to occur in the same
region of the phase diagram. However, we stress that it is important to identify gelation as the
primary phenomenon that suppresses crystallization—fluid-fluid phase separation may also be
suppressed by gelation, but it does not cause gelation. In fact, the simulations of ref. [8] provide
a nice example of fluid-fluid phase separation without gelation: in that case the metastable
fluid-fluid critical point actually enhances crystal nucleation.

The results of ref. [8] suggest that, above the metastable fluid-fluid coexistence curve, the
early stages of crystal nucleation involve the formation of a liquid-like nucleus. If this happens,
gelation can still interfere with the crystallization process at a later stage, namely through the
gelation of the liquid-like pre-critical (and, below the fluid-fluid binodal, even post-critical)
nuclei. This would slow down the subsequent formation of crystals. However, it is unlikely
that gelation would completely immobilize the particles in small clusters—in fact, recent
experiments on vitrification in thin films indicate that the effective glass-transition temperature
may be lowered appreciably as the linear dimensions of the system are reduced [21].

Finally, we note that Sear [22] has pointed out one more reason why systems with short-
ranged attractive interactions will not crystallize easily: in the relevant part of the phase
diagram, the interfacial free energy γsolid-fluid of such systems tends to be large compared to
the thermal energy. According to classical nucleation theory, the crystal-nucleation barrier
is proportional to the cube power of γsolid-fluid. Hence deeper quenches are needed to get
appreciable nucleation rates. But, of course, the deeper the quench, the more likely it is that
gelation will interfere. However, Sear’s argument does not distinguish between colloids and
proteins.
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