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Abstract: Purpose: We aimed to assess the role of lung ultrasound (LUS) in the diagnosis and
prognosis of SARS-CoV-2 pneumonia, by comparing it with High Resolution Computed Tomography
(HRCT). Patients and methods: All consecutive patients with laboratory-confirmed SARS-CoV-2
infection and hospitalized in COVID Centers were enrolled. LUS and HRCT were carried out on all
patients by expert operators within 48–72 h of admission. A four-level scoring system computed
in 12 regions of the chest was used to categorize the ultrasound imaging, from 0 (absence of visible
alterations with ultrasound) to 3 (large consolidation and cobbled pleural line). Likewise, a semi-
quantitative scoring system was used for HRCT to estimate pulmonary involvement, from 0 (no
involvement) to 5 (>75% involvement for each lobe). The total CT score was the sum of the individual
lobar scores and ranged from 0 to 25. LUS scans were evaluated according to a dedicated scoring
system. CT scans were assessed for typical findings of COVID-19 pneumonia (bilateral, multi-lobar
lung infiltration, posterior peripheral ground glass opacities). Oxygen requirement and mortality
were also recorded. Results: Ninety-nine patients were included in the study (male 68.7%, median
age 71). 40.4% of patients required a Venturi mask and 25.3% required non-invasive ventilation
(C-PAP/Bi-level). The overall mortality rate was 21.2% (median hospitalization 30 days). The median
ultrasound thoracic score was 28 (IQR 20–36). For the CT evaluation, the mean score was 12.63 (SD
5.72), with most of the patients having LUS scores of 2 (59.6%). The bivariate correlation analysis
displayed statistically significant and high positive correlations between both the CT and composite
LUS scores and ventilation, lactates, COVID-19 phenotype, tachycardia, dyspnea, and mortality.
Moreover, the most relevant and clinically important inverse proportionality in terms of P/F, i.e., a
decrease in P/F levels, was indicative of higher LUS/CT scores. Inverse proportionality P/F levels
and LUS and TC scores were evaluated by univariate analysis, with a P/F–TC score correlation
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coefficient of −0.762, p < 0.001, and a P/F–LUS score correlation coefficient of −0.689, p < 0.001.
Conclusions: LUS and HRCT show a synergistic role in the diagnosis and disease severity evaluation
of COVID-19.

Keywords: lung ultrasound; high resolution computed tomography; SARS-CoV-19; interstitial
pneumonia; ARDS

1. Introduction

COVID-19 is an infectious disease with a wide range of clinical symptoms, rang-
ing from asymptomatic to mildly symptomatic and severe forms, pointing to a major
role of the host response to SARS-CoV-2 (severe acute respiratory syndrome coronavirus
2) [1]. The clinical spectrum of SARS-CoV-2 infection is broad, ranging from asymptomatic
infection to flu-like illness, to severe and diffuse viral pneumonia with a life-threating
course, related to cytopathic and immune-mediated injury in the pulmonary parenchy-
mal. Patients may show symptoms that include fever, high temperature, cough, myalgia,
sputum production, headache, hemoptysis, diarrhea, dyspnea, and, in some cases, acute
respiratory distress syndrome (ARDS), acute cardiac injury, or secondary infection. Most
of infections are not severe, 81% are mild, 14% of the cases are severe (with dyspnea,
hypoxia, or >50% lung involvement on diagnostic imaging), and 5% develop a critical
disease with respiratory failure, shock, or multiorgan dysfunction [2]. The risk of death
from COVID-19 strongly depends on the patient’s age and previous health status. Older
patients are much more prone to critical and fatal disease outcomes, especially with comor-
bidities, including cardiovascular diseases, hypertension, chronic kidney disease, diabetes,
and pulmonary disease [3]. Thrombotic microangiopathy and complement activation,
pulmonary embolism, and elevated D-dimer levels have also been reported with high
frequency in patients with COVID-19 [4–7]. Numerous previous studies, including the
paper by Giannini and al. [8,9], have already discussed the significance of the D-dimer
level as an independent predictor of mortality in severe cases of ARDS during SARS-CoV-2.
COVID-19 laboratory diagnosis is based on real-time polymerase chain reaction (RT-PCR)
assay obtained by oro-nasopharyngeal swab sample, bronchoalveolar lavage, or tracheal
aspirate, while imaging plays a major role in the early diagnosis of the pleuropulmonary
complications [8–10]. The pathophysiology of severe COVID-19 infection is marked by
elevated numbers of neutrophils in the nasopharyngeal epithelium, in the distal parts
of the lungs, and in blood. The experience gained during the Italian epidemic pointed
to patients’ age as one of the most important risk factors for COVID-19 mortality [11].
However, a recent study demonstrated that patients who died of COVID-19 appear to have
lost considerable lifetime, independent of their age. Imaging findings significantly support
clinical judgement to ensure effective and timely management and prognosis; indeed,
the identification of disease severity allows appropriate selection for early involvement
of intensive care [10–12]. Contrary to X-ray, chest computed tomography (CT) plays a
pivotal role in the diagnosis and monitoring of interstitial pneumonia [13,14]. Typical
CT patterns of COVID-related pneumonia include multifocal bilateral peripheral ground
glass opacities associated with subsegmental patchy consolidations, commonly subpleural
and predominantly involving lower lung lobes and posterior segments [15,16]. Likewise,
lung ultrasound (LUS) shows certain advantages for detecting and monitoring COVID-19
“pneumonia” [17]. This diagnostic technique is safe, repeatable, and can be used with
low cost at the bedside in absence of radiation exposure [16–18]. Moreover, it is useful
for rapid assessment of the severity of SARS-CoV-2 pneumonia/ARDS (acute respiratory
distress syndrome) in diagnosis and follow-up settings, and for monitoring lungs during
recruitment maneuvers and in prone positions [19,20]. The use of LUS for patients with
suspected COVID-19 may reduce the risk associated with transporting unstable patients to
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CT rooms, which is especially important for preventing nosocomial outbreaks due to high
contagiousness of virus [21,22].

Thoracic ultrasound has been employed for the diagnosis of many thoracic diseases
and is an accepted detection tool for pleural effusions, atelectasis, pneumothorax, and
pneumonia. However, the use of ultrasound for the evaluation of parenchymal lung
disease, when the organ is still aerated, is a relatively new application. The diagnosis of
a normal lung and the differentiation between a normally aerated lung and a lung with
interstitial pathology are based on the interpretation of ultrasound artifacts universally
known as A- and B-Lines. Even though the practical role of lung ultrasound artifacts
is accepted by many clinicians, their physical basis and the correlations between these
signs and the causal pathology is not understood in detail [23]. The utility of a lung
ultrasound (LUS) in the diagnosis of interstitial lung disease (ILD in very early SSc has
also been described including, more recently, its potential for the detection of SSc-ILD in
asymptomatic preclinical stages. Recent research has focused on the predictive value of
LUS [24,25], which is promising for the application of LUS as a screening method for SSc-
ILD in clinical practice. Although these are strong arguments in favor of the application of
LUS in SSc, to date there is no unanimous consensus on the role LUS plays in the diagnosis
and/or prognosis of SSc-ILD [26].

The use of LUS for patients with suspected COVID-19 may reduce the risk associ-
ated with transporting unstable patients to CT rooms, which is especially important for
preventing nosocomial outbreaks, due to the high contagiousness of the virus. The pur-
pose of our study was to determine the role of LUS in the diagnosis and prognosis of
SARS-CoV-2 pneumonia, considering high-resolution computed tomography (HRTC) as
the gold standard.

2. Materials and Method
2.1. Patients

From March 2020 to October 2020, all patients who had been diagnosed with COVID-19
infection by RT-PCR on nasopharyngeal swab samples and throat swabs, and subsequently
hospitalized at our COVID Centre, were enrolled in the study. Patients underwent LUS and
CT within 48–72 h of admission to our emergency department. Anamnestic, epidemiologi-
cal, and demographic data were collected either from the patients themselves or from their
families, and were recorded. All the results, clinical and laboratory data, and pulmonary
CT and LUS were analyzed retrospectively and aggregated anonymously. Comorbidities
and related therapies, including obesity, chronic kidney disease, hypertension, type 2 di-
abetes mellitus, atrial fibrillation, coronary artery disease, dementia, chronic obstructive
pulmonary disease (COPD), chronic hepatitis, history of cancer in the last 5 years, and
smoking were also recorded.

Clinical phenotypes were classified into four groups as follows:
1. pauci-symptomatic subjects (fever, no hypoxemia);
2. mildly symptomatic patients (fever, mild hypoxemia with pO2 40–60 mmhg, need

of oxygen therapy with nasal cannula and vent-mask);
3. moderately symptomatic patients (fever, moderate to severe respiratory failure with

pO2 < 40 mmhg, need of CPAP/NIV);
4. patients with severe disease (severe respiratory failure with pO2 < 40 mmhg, ARDS,

with or without invasive ventilation).

2.2. Statement of Ethics

The study protocol was approved by the Institutional Ethics Committee of Ancona
(ID 0179104/I, 28 July 2021). The study was conducted in accordance with the principles of
the Declaration of Helsinki. Due to the retrospective design of the study and anonymous
collection of data, informed consent signature was waived, in compliance with Italian law.
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2.3. Laboratory Data

Venous blood samples were collected from all patients to assess complete blood counts,
with differentiation, fibrinogen, D-dimer, NT pro-bnp, troponin, and biochemistry tests
(creatinine, LDH, C-reactive protein, ferritin, procalcitonin, glycemia, lymphocytes, PT,
PTT, INR).

All patients underwent blood gas analysis on admission, by radial artery cannulation
or puncture. The oxygenation status was assessed by O2 partial pressure value (pO2),
CO2 partial pressure value (pCO2) and hemoglobin oxygen saturation (SO2). We used the
P/F ratio to compare different values of arterial pO2 in patients receiving different fractions
of inspired oxygen (FiO2) by non-invasive ventilation. PaO2/FiO2 (P/F) ratio was used to
classify the severity of ARDS, according to the Berlin definition, even though most of the
evidence derived from intensive care settings.

According to the 2012 Berlin definition by the ARDS Definition Taskforce, a ratio of
the partial pressure of arterial oxygen (PaO2) to the fraction of inspired oxygen (FiO2)
(P/F ratio) of ≤100, 101–200 or 201–300 mmHg is deemed as severe, moderate, or mild,
respectively.

Lactate levels were also recorded to evaluate any possible degree of tissue perfusion.

2.4. Oxygen Requirement

Ventilatory support was categorized into three groups: nasal cannula, Venturi mask
and, non-invasive ventilation (CPAP and b-pap). Patients admitted to intensive care
required tracheal intubation.

2.5. LUS Protocol

Lung ultrasound examinations were performed at the bedside by trained sonographers
(three internists and two radiologists) using portable ultrasound machines (Alpinion E
cube i7 and Mindray DP10), equipped with a convex probe (3.5 MHz) and a linear probe
(7.5–10 MHz). No harmonic filter was used. The linear and convex probes were each used
in every patient. A reduced mechanical index was used as often as possible to obtain
interpretable images. The depth was set to provide a clear view of the pleural line and
3–4 cm of the field below it. The gain was set in the intermediate position. The focus was
placed at the level of the pleural line.

All the devices, the US scanner, probes, and cables, were wrapped in single-use plastic
covers to reduce the risk of contamination and to facilitate the sterilization procedures.

Lung Ultrasound Scoring System

The thorax was explored in twelve areas, six on each hemithorax, by intercostal scans
(Figure 1). In critically ill patients who could not maintain the sitting position, paravertebral
scans were acquired and moved as posteriorly as possible and towards the lowest and
apical points, by placing the patient in an oblique position. Each area was assessed with
the probe perpendicular to the chest wall, searching for the following signs: pleural line (a
horizontal hyperechoic line between the ribs), A-lines (horizontal replica artifacts repeated
at a constant distance equal to the distance between the pleural line and probe surface),
vertical artifacts (vertical hyperechoic artefacts spreading from the pleural line towards
the bottom of the screen), white lung (focal or multifocal artifacts characterized by an
undifferentiated echogenic background, with the absence of A-lines and without evidence
of vertical artifacts), and consolidation (presence of a tissue-like pattern) [23–25].

A standardized and COVID-19-dedicated four-level scoring system was used to cate-
gorize the ultrasound examination, according to published papers [26,27]:

Score 0: The pleural line is regular. Horizontal reverberant artifacts (A-Lines) and
mirror effects are present. Absence of visible alterations with ultrasound.

Score 1: The pleural line has slight alterations with sporadic vertical bright artifacts.
These are often grouped and separated by the absence of visible alterations of the lung.
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Score 2: The pleural line is broken at many points. Vertical artifacts are more numerous.
Small subpleural consolidations may be present, often showing a cuneiform shape.

Score 3: The pleural line is irregular and cobbled. The subpleural lung is denser and
more disordered. White lung with or without larger consolidations may be present. Small
and large consolidations are evident in the scanned parts of the lung.

For each patient, the total score was computed by adding the scores for each area
explored. The total scores ranged from 0 (best) to 36 (worst).

Severity of US pulmonary involvement was classified as mild (1–5), moderate (>5–15),
or severe (>15).

The presence of pleural effusion and lung sliding was recorded. Ultrasound images
and videos were stored and numbered from the right posterior basal regions.
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2.6. High Resolution CT (HRCT)

All patients had an initial chest HRCT scan within 48 h of hospitalization, using a
multidetector 64-channel CT machine (Toshiba Aquilion PRIME). The detailed parameters
for CT acquisition were as follows: tube voltage, 120 kVp; tube current, standard (reference
mAs, 60–120); slice thickness, 1.0 mm; reconstructed interval, 1.0 mm. Patients were
placed in a supine position. To minimize motion artifacts, patients were instructed on
breath-holding and images were acquired during a single breath-hold. The scanning range
was from the apex to the lung base. All the images were stored in a picture archive and
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communication system. Image analysis was performed using the institutional digital
database system.

Two radiologists with more than 10 years’ experience evaluated the images in consen-
sus, to determine the disease pattern, distribution, stage, and severity score for each patient.
When discordant, the final decision was reached collegially. No negative control cases were
examined.

The scans were first assessed, whether negative or positive, for typical findings of
COVID-19 pneumonia (bilateral, multi-lobar lung infiltration, posterior peripheral ground
glass opacities) as defined by the RSNA consensus statement and peer-reviewed literature
on viral pneumonia. Recorded findings included ground glass opacity (GGO), crazy-paving
pattern, and consolidation [16]. Atypical COVID-19 CT patterns were recorded.

CT findings were described as follows: (1) ground-glass opacities; (2) Consolidation;
(3) ground-glass opacity with consolidation (assessing their respective predominance);
(4) crazy-paving patterns; (5) no abnormalities.

Ground-glass opacification was defined as hazy increased lung attenuation with
preservation of bronchial and vascular margins, and consolidation was defined as opacifica-
tion with obscuration of vessel margins and airway walls. Crazy paving represented GGO
opacity with superimposed inter- and intralobular septal thickening [10,11]. Consolidation
consisted of parenchyma deprived of air.

For each pulmonary lobe (five lobes), the volumetric parenchymal involvement was
estimated with a score system as follows: 0 = no involvement; 1 = <5% involvement;
2 = 5–25% involvement; 3 = 26–49% involvement; 4 = 50–74% involvement; 5 = >75%.

The total CT score was the sum of the individual lobar scores, and ranged from 0 (no
involvement) to 25 (maximum involvement) [11,15–28]. A correlation between the total
LUS score and a Pan score of 0 to 24 was shown to be significant in a previous work [29–31].

In addition, CT scans were evaluated according to their distribution, side, and lobe
involvement predominance. Finally, the presence of underlying non-related lung disease
such as emphysema or fibrosis was recorded.

2.7. End Points of the Study

The primary endpoint was to compare the lung ultrasound severity score and chest
CT severity in COVID-19 clinical management. Furthermore, we wanted to explore the
correlation between the imaging severity score and COVID-19 phenotypes, clinical and
laboratory parameters, and oxygen requirements, thus establishing a prognostic role for
lung ultrasound in COVID-19 patients.

2.8. Statistical Analysis

Categorical data were expressed as numbers and percentages, and continuous vari-
ables either as mean and standard deviation (SD) or median and interquartile range (IQR),
according to their distribution, and were tested by the Shapiro–Wilk test.

The sample size was 79 patients for a confidence level of 95%.
The ultrasound thoracic score and the CT score were tested for correlation by a

linear regression analysis, and a dispersion graph was reported to describe the degree
of correlation. The respective correlations of the CT and ultrasound thoracic (US) scores
with several outcomes were assessed, as well as the respiratory and laboratory parameters,
by calculating the Spearman correlation coefficient. The ROC curve analysis was used to
evaluate mortality as a function of the LUS score, and to identify an optimal cut-off value.
A p-value < 0.05 was considered as statistically significant. All the analyses were performed
by STATA software (StataCorp. College Station, TX: StataCorp LLC), version 15.5.

3. Results

Ninety-nine patients were included in the study, with a median age of 71 years (IQR
58–78 years); within the study group the incidence of SARS-CoV-2 was higher in males
68.7% than in females 31.3% (Table 1). All patients underwent a CT scan and a US scan.
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Table 1. Anthropometric, demographic, clinical, and biochemical characteristics of the study cohort
(n = 99).

Parameters Values

Age (years), median [IQR] 71 [58–78]

Sex, n (%)
M
F

68 (68.7)
31 (31.3)

Signs and Symptoms

Presence of fever, n (%) 90 (90.9)

Presence of cough, n (%) 90 (90.9)

Pharyngeal hyperemia, n (%) 63 (63.6)

Asthenia, n (%) 76 (76.8)

Vomiting, n (%) 5 (5.1)

Diarrhea, n (%) 11 (11.1)

Dyspnea, n (%) 89 (89.9)

Tachycardia, n (%) 67 (67.7)

Phenotype, n (%)
type 1
type 2
type 3
type 4

7 (7.1)
21 (21.2)
60 (60.6)
11 (11.1)

Pre-existing Comorbidities Values

Hypertension, n (%) 85 (85.9)

Diabetes, n (%) 34 (34.3)

Atrial fibrillation, n (%) 13 (13.1)

Ischemic heart disease, n (%) 33 (33.3)

Ictus, n (%) 14 (14.1)

Dementia, n (%) 31 (31.3)

Chronic obstructive pulmonary disease
(COPD), n (%) 56 (56.6)

Active cancer in the last five years, n (%) 14 (14.1)

Hyperinflammatory syndrome % 84 (84.8)

Smoke, n (%) 66 (66.7)

Obesity, n (%)
No

Grade I
Grade II
Grade III

58 (59.6)
30 (30.3)

8 (8.1)
2 (2)

Chronic liver disease, n (%) 7 (7.1)

Chronic kidney disease, n (%) 31 (31.3)

Mortality, n (%) 21 (21.2)

Days of hospitalization, median [IQR] 30 [20–40]

Ventilation, median [IQR] 0.50 [0.28–0.60]
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Table 1. Cont.

Parameters Values

Oxygen interface, n (%)

None
Nasal cannula
Venturi Mask

CPAP/Bi-level
Orotracheal Intubation

14 (14.1)
18 (18.2)
40 (40.4)
25 (25.3)

2 (2)

Therapy

Anticoagulants, n (%) 72 (72.7)

Antiplatelets, n (%) 35 (35.4)

ACE Inhibitors, n (%) 32 (32.3)

Ultrasound thoracic, median [IQR] 28 [20–36]

Ultrasound score, n (%)

Score 0 2 (2)
Score 1 18 (18.2)
Score 2 47 (47.6)
Score 3 32 (32.2)

CT score, mean (SD) 12.63 (5.72)

CT score, n (%)
Score 1
Score 2
Score 3

20 (20.2)
59 (59.6)
20 (20.2)

Abbreviations: IQR: interquartile range; SD: standard deviation; M: male; F: female; BMI: body mass index.
The biochemical parameters and the blood-gas analysis results are shown in Table 2. In general, patients were
characterized by hyper-inflammation syndrome, lymphopenia, high levels of C-reactive protein, neutrophils, and
ferritin, and abnormal coagulation parameters (fibrinogen, d-dimer).

Table 2. Laboratory characteristics of the study population (n = 99).

Laboratory Values

Hb (mg/dL), mean (SD) 12.2 (2.2)
White blood cells (×103), mean (SD) 9.73 (4.38)

Lymphocytes (a.v.), median [IQR] 0.8 [0.6–1.3]
Neutrophils (a.v.), mean (SD) 7.56 (3.15)

Platelets, mean (SD) 282,098 (141,397)
Azotemia (mg/dL), mean (SD) 54.7 (34.85)

Creatinine (mg/dL), median [IQR] 0.9 [0.8–1.2]
Sodium (mmol/L), mean (SD) 138.8 (4.2)

Potassium (mmol/L), mean (SD) 4.8 (3.9)
AST (U/L), mean (SD) 42.6 (124.6)
ALT (U/L), mean (SD) 48.8 (136.8)

Glycemia (mg/dL), median [IQR] 110 [88.3–175]
CRP (mg/dL), median [IQR] 5 [2.6–12]

INR, median [IQR] 1.12 [1.10–1.20]
aPTT (s), mean (SD) 31 (6.8)

Fibrinogen (mg/dL), mean (SD) 483.3 (141.4)
Nt-pro-bnp (pg/mL), median [IQR] 1578 [600–3500]

D-Dimer (pg/mL), median [IQR] 2300 [782.5–4210]
LDH (mU/mL), mean (SD) 361.5 (138.4)

Troponin (ng/mL), median [IQR] 0.032 [0.014–0.090]
Procalcitonin (ng/mL), median [IQR] 0.2 [0.03–0.90]

Ferritin (ng/mL), median [IQR] 450 [280–700]
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Table 2. Cont.

Laboratory Values

Blood Gas Analysis

pH, median [IQR] 7.45 [7.40–7.47]
pO2 (mmHg), median [IQR] 68 [58.3–84.8]

pCO2 (mmHg), median [IQR] 35 [33–42]
HCO3- (mmol/L), median [IQR] 25 [23–26]

spO2 (%), median [IQR] 93.1 [90–96]
Lactates (mmol/L), median [IQR] 2.25 (1.02)

P/F, median [IQR] 231 [136.3–295.3]
FiO2 admission, median [IQR] 0.30 [0.21–0.50]

Abbreviations: IQR: interquartile range; SD: standard deviation; Hb: hemoglobin; PLT: platelets; AST: aspar-
tate aminotransferase; ALT: alanine aminotransferase; CRP: C-reactive protein; LDH: lactate dehydrogenase;
CPK: creatine phosphokinase. Reference ranges: [Hb] F = 12–16/M = 12–18 g/dL; WBCs: 4500–11,000, Neu-
trophils: 1500–7000; Lymphocytes: 1500–7000; PLT: 150,000–450,000; Azotemia: 15–50 mg/dL; Serum Creatinine:
0.51–0.95 mg/dL; Sodium: 135–145 mmol/L; Potassium: 3.5–5 mEq/L; AST (F = 8–43 U/L; M = 8–48 U/L); ALT
(F = 7–45 U/L, M = 7–55 U/L); Glycemia: 60–110 mg/dL; CRP: 5–10 mg/dL; INR: 0.9–1.3; aPTT: 28–40 s; Fibrino-
gen: 200–400 mg/dL; NT-proBNP: ≤900 pg/mL; D-Dimer: <500 pg/mL; LDH: 80–300 mU/mL; Troponin: <0.1;
procalcitonin: 0–1; ferritin: M: 20–200 ng/mL, F: 20–120 ng/mL; Iron: M: 31–144 µg/dL, F: 25–156 µg/dL; CPK:
60–190 U/L. Blood gas ranges: pH: 7.35–7.45; pO2: 80–100 mmHg; pCO2: 35–45 mmHg; HCO3−: 22–26 mmol/L;
spO2: 95–100%; Lactates: <2 mmol/L.

Table 1 synthetizes the anthropometric, demographic, clinical, and biochemical char-
acteristics of the study cohort.

The main symptoms on admission were fever and cough, detected in 90.9% of patients,
and dyspnea in 89.9%, whilst asthenia was present in 76.8% of patients and pharyngeal
hyperemia in 63.6%.

Table 2 illustrates the pre-existing diseases of the patients and their therapies, while
Table 3 shows the patients’ phenotypes and their clinical evolution during their hospital
stay. Among pre-existing diseases, the most prevalent was hypertension (85.9%), while
chronic obstructive pulmonary disease (COPD) was present in more than half of the
patients (56.6%). Hyper-inflammation syndrome, due to the excessive production of
proinflammatory cytokines and the dysfunction of the immune response, was found in
84.8% of patients.

Table 3. Univariate analysis of relationships between ultrasound thoracic score and other parameters
in patients infected by COVID-19.

Parameters Correlation Coefficient p

Age (years) 0.289 0.034
Dyspnoea 0.319 0.051

Tachycardia 0.457 0.002
COVID-19 phenotype 0.589 <0.001

Dementia 0.197 0.256
Platelets −0.118 0.286

Prothrombin time 0.057 0.917
NT-proBNP 0.174 0.419

D-dimer 0.218 0.047
pH −0.469 0.008
pO2 −0.486 0.003
spO2 −0.226 0.467
P/F −0.689 <0.001

Death of patients 0.492 0.008
Ventilation 0.562 <0.001

Lactates 0.479 0.001
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The clinical phenotype 3 was the most prevalent, which was characterized by fever,
and moderate to severe respiratory failure, with pO2 < 40 mmhg and need of Nnon -invasive
ventilation (CPAP/NIV).

Oxygen support was needed for 66% (65%) of patients, specifically nasal cannulas (CN)
7%, venturi mask (VM) 24%, high flows (HFNC) 10%, and non-invasive ventilation—biPap
15% and CPAP 10%.

The LUS and CT scores were analyzed for correlation with the mortality outcomes,
coagulation, and respiratory parameters using the Spearman correlation coefficient. As
reported in Tables 3 and 4, the results were for both scores similar. Table 3 shows negative
correlation of P/F and LUS score (r = −0.689), and pO2–LUS score (r = −0.486), and positive
correlation of ventilation–LUS score (r = 0.562), and lactates–LUS score (r = 0.479). Table 4
shows negative correlation of P/F with TC score (r = −0.689) and pO2 (r = −0.470) and
positive correlation with type of ventilation (0.530).

Table 4. Univariate analysis of the relationships between CT score and other parameters in patients
infected by COVID-19.

Parameters Correlation Coefficient p

Age (years) 0.369 0.029
Dyspnoea 0.488 <0.001

Tachycardia 0.321 0.007
COVID-19 phenotype 0.639 <0.001

Dementia 0.124 0.298
Platelets −0.189 0.321

Prothrombin time 0.025 0.874
NT-proBNP 0.098 0.513

D-dimer 0.289 0.041
pH −0.396 0.019
pO2 −0.470 <0.001
spO2 −0.199 0.148
P/F −0.762 <0.001

Death of patients 0.466 0.001
Ventilation 0.503 <0.001

Lactates 0.442 0.001

The LUS signs of COVID-19 in every patient were B-lines. The frequencies of irregular
or blurred pleural lines were 45% and 15%, respectively. Sub-centimetric lung consolidation
was seen in 18 patients (18%).

The median ultrasound thoracic score was 28 (IQR 20–36) and the most frequent scores
per single scan were 2 and 3 (47.6% and 32.2%, respectively) (Table 1).

The mean CT score was 12.63 (SD 5.72), with most of the patients showing a score 2
pattern (59.6%).

Patients with clinical phenotypes 3 or 4 (71% of the patients enrolled) presented higher
rates of bilateral involvement, with more involved zones, B-lines, pleural line abnormalities,
and consolidation.

The relationship between the LUS scores and the CT scores was assessed by a linear
regression analysis and dispersion graph (Figure 2), showing a positive linear relationship
between the two evaluation scoring systems, which despite not being high (rho = 0.352),
did however reach statistical significance (p = 0.008) (Figure 3).



Diagnostics 2022, 12, 1856 11 of 18

Diagnostics 2022, 12, x FOR PEER REVIEW 10 of 19 
 

 

The relationship between the LUS scores and the CT scores was assessed by a linear 
regression analysis and dispersion graph (Figure 2), showing a positive linear relationship 
between the two evaluation scoring systems, which despite not being high (rho = 0.352), 
did however reach statistical significance (p = 0.008) (Figure 3). 

 
Figure 2. Linear regression analysis and dispersion graph. 

  

Figure 2. Linear regression analysis and dispersion graph.

Using the Spearman correlation coefficient, use LUS and CT scores were analyzed
for correlation with the mortality outcome, coagulation, and respiratory parameters. As
reported in Tables 3 and 4, the results were almost similar for both scoring systems. Table 3
showed negative correlation for P/F and LUS score (r = −0.689), and pO2–LUS score
(r = −0.486), positive correlation for ventilation–LUS Score (r = 0.562), and lactates–LUS
Score (r = 0.479). Table 4 showed negative correlation for P/F and TC score (r = −0.689),
and pO2 (r = −0.470), and positive correlation by type of ventilation (0.530).

The bivariate correlation analysis displayed statistically significant and high positive
correlations for the CT scores as well as the LUS scores with the following parameters:
ventilation, lactates, COVID-19 phenotype, tachycardia, dyspnea, and mortality.

The LUS scores showed a significant association with in-hospital mortality (OR 0.7,
0.95% CI 0.59–0.82) Table 5; p < 0.001), with the risk of invasive respiratory support increas-
ing with a greater LUS score measured on patient arrival.

Table 5. ROC-AUC value of the LUS score compared to the different factor.

AUC of LUS Score AUC (95% CI)

Dyspnea 0.77 (0.61–0.92)
Tachycardia 0.79 (0.68–0.879

Dementia 0.57 (0.45–0.69)
Mortality 0.70 (0.59–0.82)
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with water, blood, or collapsed tissue. A typical case of a COVID-19 pneumonia patient. (a) B-lines 
at the right and left of the lower lateral lung reflecting pneumonia (score 2); (b) B-lines at the right 
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Figure 3. CT and LUS imaging scans of different scores. In these figures the pleural line (indicated by
red arrows) is indented, and vertical areas of white (blue arrows) are visible below the indent, which
reflect local alterations in the acoustical properties of the lung caused by replacement of air with
water, blood, or collapsed tissue. A typical case of a COVID-19 pneumonia patient. (a) B-lines at the
right and left of the lower lateral lung reflecting pneumonia (score 2); (b) B-lines at the right and left
of the lower lateral lung reflecting pneumonia (score 3); (c) chest CT showing multiple infiltrations.

These positive correlations demonstrate that a higher composite LUS or CT score
corresponded to a higher mortality rate and a more severe COVID-19 phenotype. Fur-
thermore, there was a direct proportionality between increased CT and LUS scores on one
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hand and elevated lactate levels and a need for ventilation on the other. Remarkably lower
correlations, though still statistically significant, were found for age and d-dimer.

4. Discussion

Lung CT is currently the standard for comparison of other imaging methods for
anatomical definition down to the level of the secondary lung lobule.

The most important radiology societies [11–16] recommend the use of CT in the
presence of moderate and severe features of COVID-19 when RT-PCR results are negative
or not available, when there is high pre-test probability, and in the management of patients
with worsening or severe respiratory symptoms.

The possibility of using ultrasound to evaluate pulmonary changes in COVID-19
has been proposed since the beginning of the pandemic [26]. Two factors indicated this
possibility; first, the prevailing sub-cortical distribution of the injuries, necessary for their
US visibility, shown by the Computed Tomography (CT); and second, the histopathology of
COVID-19 pulmonary involvement, which generates different degrees of physical density
(de-aeration) within the lung, ranging from diffuse patchy alveolar damage to consoli-
dations. Subpleural hyper densities are detectable by ultrasound [30,31], and COVID-19
histopathology (expressed by hyperdensities) represents a measure of the injury of the
respiratory tissue which, in the most severe cases, can lead to respiratory failure.

The most frequently observed anatomical feature of COVID-19 is diffuse alveolar dam-
age (DAD), characterized by high levels of proinflammatory cytokines. Later, a proliferative
phase develops, involving fibroblasts, myofibroblast, lymphocytes, and extracellular matrix,
with intra-alveolar fibrin accumulation. Finally, large vessel thrombosis and microthrombi
containing fibrin and platelets may be detected in arteries smaller than 1 mm. In short,
ultrasound consolidation corresponds to a lung region deprived of air, therefore without
gas exchange. Alternatively, consolidations can represent ischemic regions. This overlap
of viral, inflammatory, immune, and vascular events is clinically expressed by disease
phenotypes with different prognostic weight [32].

This non-homogeneity was highlighted by Gattinoni et al. [33]. They noted that
COVID-19 subjects with respiratory failure showed different clinical patterns of “pneumo-
nia” with different pathophysiology. The transition between different pulmonary COVID-
19 phenotypes probably depends on the interaction of many factors, also affecting the
ventilation modes and contributing to respiratory injury.

If ultrasound allows bedside assessment of the subpleural lung in terms of density,
i.e., absolute or relative reduction of the air spaces and interstitial ratio, or de-aeration, it
is reasonable to expect correlations between ultrasound signs and the clinical picture in
patients with COVID-19 lung involvement [34].

Although LUS is not currently included in the main international guidelines for
COVID-19 patient management, some authors have proposed semi-quantitative LUS scores,
which can be used to quantify lung aeration [35]. This approach has recently been used in
patients with COVID-19 pneumonia. [36,37].

In the light of recent evidence regarding the genesis of pulmonary signs in ultra-
sound [35], and their possible relationship with the superficial histopathology of the lung
in terms of density and de-structuring, it can be theorized that ultrasound can help define a
stratification of tissue damage in COVID-19 patients.

The four-level ultrasound score used in this paper is based on the concept of disease
severity, with consideration given to extension of findings on the lung and the nature of
tissue densities [38].

Despite the profound difference between CT (tomographic) and ultrasound (exploring
only superficial densities), LUS and CT scores showed a weak (but statistically significant)
positive linear relationship. This agrees with other observations [39–41]. A plausible
explanation can be found in the prevalent peripheral, subpleural expression of COVID-19
pulmonary injuries [11,15], which can minimize the differences between the two methods
(axial and superficial estimates).
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Results of this study and other observations agree with this hypothesis. In practical
terms, LUS can be considered an equally accurate alternative to CT in cases of COVID-19,
particularly in situations where CT is not easily accessible or when molecular tests are not
available [42,43].

In our study, a significant positive correlation was demonstrated between LUS score
and CT score, and certain strategic parameters (COVID-19 phenotype, need for non-
invasive ventilation, hematic lactate level, and mortality) (Tables 3 and 4). As expected,
P/F, pH, and pO2, displayed significant negative correlations. However, the most relevant
and clinically important inverse proportionality was found in relation to P/F, i.e., higher
LUS/CT scores were indicative of a decrease in P/F ratio.

This study reinforces the results presented by Perrone et al [37], which demonstrated
a significant correlation between an equivalent US scoring system (of 12 fields), and es-
tablished end points of clinical worsening, including high-flow oxygen support, ICU
admission, and death. This is important, because their methodology of ultrasound explo-
ration of the chest and the score used in their study (specifically proposed for COVID-19
patients) were the same as those we used.

Many other studies showed that the extent of lung abnormalities evaluated by the
LUS score is a predictor of a worse outcome, ETI, or death [44,45]. However, the scoring
systems used, and, above all, the number of regions explored are often not comparable to
each other. For example, it has been assumed that a very marked reduction in the number
of regions explored may decrease the accuracy of LUS, as demonstrated by Falster et al. [46]
using the Mongodi score with analysis of only eight thoracic areas.

From a practical point of view, our results justify the attribution of an LUS score to
every COVID-19 patient, from the early stages of management and during monitoring in
the various settings. LUS may have a potential role in Emergency department for triag-
ing symptomatic patients, managing ventilation, weaning ICU patients, and monitoring
COVID-19 pneumonia and its evolution toward ARDS in critically ill patients. Moreover, it
may be considered a first-line alternative to chest X-ray and CT scan in critically ill patients.

Even though asymptomatic carriers may comprise 17.9–33.3% of patients with COVID-
19 [47,48], and can contribute to the spread of the infection, the role of screening these
asymptomatic carriers is not known. Ultrasonography could help identify infected people
with signs and symptoms at the onset [49]. Compared to its sensitivity, the specificity of US
to pathological artifacts of the lung in COVID-19 and other diseases is generally considered
low.

US signs of COVID-19 are present in various degrees in other pathologies (diffuse
pneumonia, pulmonary edema, interstitial lung diseases). The diagnostic accuracy of
pulmonary ultrasound in COVID-19 is based on the diffuse and bilateral aspect of lung
involvement, on the prevalence of artefactual components, and on a typically patchy
distribution. Of course, the pretest probability of having contracted the infection assumes
significance [34]. At present, to our knowledge, very few lung diseases with a large
epidemic diffusion show these aspects.

In this study, we found that the most common CT findings were GGO, consolidation,
and crazy-paving patterns, including “spider web sign” (defined as a triangular or angular
GGO in the subpleural lung with the internal interlobular septa thickened like a net). A
differential diagnosis between COVID 19 and systemic sclerosis (SSc) with interstitial lung
is made possible by employing CT images; the presence of consolidations and fibrosis
inside GGO in the lower lobes are independent CT diagnostic features for COVID-19 [50].
As expected, the most common ultrasound signs were vertical artifacts and white lung.
A quantitative LUS score for lung aeration assessment has been proposed, based on the
identification of four patterns in number and type of visualized artifacts: normal aeration,
moderate, severe, and complete loss of aeration [51]. Baldi et al. [52] reported a relationship
between the number of B-lines and lung density in mechanically ventilated patients. In
patients with VAP, changes in LUS score before and after antibiotics predicted improvement
in lung aeration. These findings are consistent with the fact that CT scan computes lung
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density, which is also the main determinant of appearance, number, and coalescence of
LUS artifacts.

In agreement with recent evidence that connects the vertical artifacts to acoustic
traps that can capture acoustic energy and restore it over time, and white lung with a
relatively random scattered distribution, a relationship between CT and US features can be
speculated [53]; for example, between septal enlargement and vertical artifacts, or between
ground glass opacity in CT and white lung. Equally probable is a deteriorating progression,
in terms of ventilation, from less dense vertical artifacts to white lung and consolidations.

Consolidations were significantly more frequent in severe and critical patients. In
consolidations, the alveoli are filled by inflammatory exudation, and/or collapsed. If the
role of consolidations in causing a shunt effect is recognized, it can be speculated that
consolidations are aggravating factors and indicators of cytokine storm, vascular damage,
ARDS, or bacterial superinfection.

As regards the laboratory indicator, we found a difference between the ordinary and
severe and critical phenotypes. The decrease of lymphocytes in the severe and critical
patients indicated that many immune cells had been consumed, and the immune function
was inhibited. Damage to lymphocytes may be critical in-patient exacerbation, and the
decreased lymphocytes could be used as an important index in the evaluation of disease
severity. The increased values of neutrophil ratio, C-reactive protein, and procalcitonin
in severe and critical patients may have been related to cytokine storm induced by virus
invasion, and to comorbidity with other kinds of infections, which has been supported
by recent studies [29]. The timely prevention of infection may help reduce complications
and mortality.

The strength of this study concerns the robustness of the data obtained from a large,
real-life, general adult population, where COVID-19-positive individuals with pneumonia
were included. Moreover, all patients were evaluated by the same CT and US methodology,
including the score used.

However, the study has some limitations. Ultrasound scans were performed by
different operators and the inter-operator agreement was not assessed, due to the technical
difficulties imposed by the emergency clinical context.

Moreover, in our study there was no control group, as its purpose was not to validate
the test nor to provide a differential diagnosis with other diseases based on ultrasound imag-
ing, but to evaluate how useful ultrasound can be in the management of a COVID setting.

It is also important to consider that our results were linked to the prevalence of the
disease, which was particularly high during the first wave of the pandemic. With a lower
prevalence, the significance of our analysis should be revisited.

5. Conclusions

LUS score was independently able to predict a higher risk of adverse events in patients
with COVID-19. Indeed, patients with higher LUS scores were more likely to have higher
levels of cardiac injury, coagulopathy, and inflammatory biomarkers, more non-invasive
ventilation with c-pap or b-level, higher incidence of respiratory failure, ARDS, and sepsis,
and higher mortality. The US does not replace the CT examination gold standard for
interstitial pneumonia, and US has poor capacity for risk stratification compared to CT.
More interesting is the role of US for monitoring patients at the bedside every day during
hospitalization, for clinical and instrumental correlation, for follow-up, and for reducing the
risk of radiation. Likewise, chest CT has played a crucial role in characterizing pulmonary
lesions during the COVID-19 pandemic. It can accurately evaluate the type and extent of
lung lesions and could be used to evaluate the severity of the disease. LUS allows only a
superficial mapping of the lung, and the LUS score in theory is not perfectly comparable to
the CT score (a volumetric estimate of injury). It is conceivable that a certain congruence of
results is linked to the superficial expression of lesions, and that therefore in COVID-19
relative symmetry between volume and surface of the pulmonary lesions is maintained. In
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conclusion, LUS and chest CT have been shown to play a synergistic role in the diagnosis
and severity evaluation of COVID-19.
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