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The rapidly developing research field of epitranscriptomics has recently emerged

into the spotlight of researchers due to its vast regulatory effects on gene

expression and thereby cellular physiology and pathophysiology. N6-

methyladenosine (m6A) and N6,2’-O-dimethyladenosine (m6Am) are among

the most prevalent and well-characterized modified nucleosides in eukaryotic

RNA. Both of these modifications are dynamically regulated by a complex set of

epitranscriptomic regulators called writers, readers, and erasers. Altered levels of

m6A and also several regulatory proteins were already associated with diabetic

tissues. This review summarizes the current knowledge and gaps about m6A and

m6Am modifications and their respective regulators in the pathophysiology of

diabetes mellitus. It focuses mainly on the more prevalent type 2 diabetes

mellitus (T2DM) and its treatment by metformin, the first-line antidiabetic

agent. A better understanding of epitranscriptomic modifications in this highly

prevalent disease deserves further investigation and might reveal clinically

relevant discoveries in the future.

KEYWORDS
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1 Introduction

Diabetes mellitus is one of the most common chronic diseases with an increasing

prevalence (1). Type 2 diabetes mellitus (T2DM) is more frequent than type 1 diabetes

mellitus (T1DM) and accounts for approximately 90% of all cases of diabetes (2). This

heterogeneous systemic disorder is mainly characterized by two factors: deficient insulin

secretion by pancreatic b-cells and insulin resistance of insulin-sensitive tissues (3). The

subsequent chronic hyperglycemia, a hallmark of T2DM, damages glucose-sensitive organs

and results in downstream deficits in vital functions (4). Despite a considerable amount of
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data collected regarding T2DM, the molecular mechanism of its

development is still unclear. However, it is known that T2DM is

linked with the dysregulation of gene expression profiles in cells (5–

7). Epitranscriptomic modifications of RNA are one of the possible

mechanisms by which gene expression could be affected during the

pathogenesis of T2DM.

To date, over 170 chemical modifications have been described

in RNA (8). N6-methyladenosine (m6A) and N6,2 ’-O-

dimethyladenosine (m6Am) are among the most prevalent and

well-characterized RNA-modified nucleosides (9–12). The

biological effects of these modifications are regulated by proteins

called writers (methylation deposition), readers (binding of

modified RNA), and erasers (methylation removal). The presence

or absence of m6A and m6Am in mRNA affects key stages of its life

cycle, including splicing, export, decay, and translation (Figure 1)

(13, 14). These dynamic modifications with profound impact on

gene expression regulation might thereby play an important role in

the pathogenesis of T2DM and become the future targets in the

search for the next generation of anti-diabetic drugs.
2 N6-methyladenosine

The most prevalent modification in eukaryotic mRNA is m6A

(9, 10). Besides mRNA, m6A also occurs in other types of RNA,

including ribosomal RNA (rRNA), long non-coding RNA

(lncRNA), small nuclear RNA (snRNA), or microRNA (miRNA)

(15). The deposition of the methyl group to adenosine (A) is

performed by a multicomponent methyltransferase complex

(MTC) with a stable core component formed between

methyltransferase-like 3 (METTL3) and methyltransferase-like 14

(METTL14). METTL3 functions as a catalytic subunit and

METTL14 facilitates RNA binding (16, 17). The third major

component of the MTC is the Willms’ tumor 1-associating
Frontiers in Endocrinology 02
protein (WTAP) which interacts with the METTL3/METTL14

heterodimer and promotes the localization of the MTC to nuclear

speckles (18). The reverse process, demethylation of m6A back to A,

is mediated by enzymes called demethylases. In 2011, Fat mass and

obesity-associated protein (FTO) was the first described

demethylase of m6A (19). This discovery provided evidence of

reversible posttranscriptional modifications in mRNAs and

renewed the interest of researchers in mRNA modifications (20).

After 2 years, alkB homolog 5 (ALKBH5) was reported as another

m6A eraser (21). The biological functions of m6A can be mediated

by m6A readers which recognize and selectively bind to m6A-

decorated RNAs. The most prominent readers are YTH domain-

containing family proteins 1-3 (YTHDF1-3) which mediate the

degradation of methylated mRNAs, and YTH domain-containing

proteins 1-2 (YTHDC1-2) which regulate mRNA splicing and

facilitate translation initiation (22–28). In addition to YTH

proteins, other readers described include insulin-like growth

factor 2 mRNA-binding proteins 1-3 (IGF2BP1-3) which

promote the stability of their target mRNAs in an m6A-

dependent manner under normal and stress conditions and

therefore also affect gene expression output (29).
3 N6,2’-O-dimethyladenosine

m6Am is another prevalent form of modified adenosine, but it is

much less studied than m6A. This modification is formed by the

methylation of a 2’-O-methyladenosine (Am). It has been described

only in mRNA and snRNA. In mRNA, m6Am is found directly

downstream to the 7-methylguanosine (m7G), forming the

extended cap structure (11, 12). It has been found in at least 30-

40% of all transcripts in vertebrate mRNA (11). However, in specific

cell lines, m6Am is even more dominant. For instance, HEK293T

cells have 92% of 5’ capped mRNAs with m6Am and only 8% with
FIGURE 1

Basic overview of m6A and m6Am epitranscriptomics. ALKBH5, AlkB family member 5; FTO, fat mass and obesity-associated; IGF2BP1-3, insulin-like
growth factor 2 mRNA binding proteins 1-3; METTL3, methyltransferase-like 3; METTL14, methyltransferase-like 14; WTAP, Willms’ tumor 1-
associating protein; YTHDC1-2, YTH domain-containing protein 1-2; YTHDF1-3, YTH domain-containing family proteins 1-3.
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single methylated Am (30). The presence of m6Am in mRNA

markedly enhances its stability (31). In snRNA, m6Am is also

present at its internal sites and influences pre-mRNA splicing (11,

32). N6-methylation of Am to m6Am is catalyzed by two known

writers: phosphorylated CTD interacting factor 1 (PCIF1) and

methyltransferase-like 4 (METTL4). PCIF1 has been described as

a cap-specific adenosine-N6-methyltransferase (also called

CAPAM) which does not methylate adenosine residues in the

RNA body (30, 33). However, recently it was reported that PCIF1

also has ancillary methylation activities on internal adenosines

(both A and Am), although with lower affinities (34).

Importantly, before the recognition of methyltransferase activity

of PCIF1, this protein was known to inhibit pancreatic and

duodenal homeobox protein 1 (PDX1), a transcription factor

crucial for normal pancreas development and function (35, 36).

METTL4, the second methyltransferase, is responsible for internal

m6Am formation within U2 snRNA (37, 38). The only described

m6Am eraser so far is FTO, the well-known m6A demethylase. In

2017, it was reported that FTO preferentially demethylates m6Am

rather than m6A (31, 39), but recent studies suggested that the

substrate preference of FTO might depend on its cellular

localization which varies between cell types. In the nucleus, FTO

preferably targets m6A whereas cytosolic FTO demethylates

especially m6Am (40, 41). Thus, special attention is needed in

FTO research to distinguish the m6A- and m6Am-specific effects

of this demethylase (42). No readers of m6Am have been described

so far.
4 Pathogenesis of T2DM: the role of
m6A and m6Am modifications

4.1 Genetic predisposition to T2DM

The development of T2DM is the result of interaction between

environmental factors (e.g. unhealthy diet, sedentary lifestyle,

stress) and a strong hereditary component (43). Currently, several

hundreds of genetic variants were associated with T2DM, although

mostly with only minor effects on disease development (44).

Numerous studies suggested that m6A and m6Am demethylase

FTO is among the genes whose variants possess the highest genetic

risk of T2DM (44). However, this link is still controversial with

significant interethnic differences (45, 46). For instance, the

common FTO rs9939609 variant was associated with T2DM in

white American, Palestinian, Asian Indian, and obese Iraqi

populations, but not in Bengalee Hindu, North Indian, nor Saudi

populations (47–57). Also, other genetic polymorphisms in the FTO

gene were identified as T2DM risk factors. Carriers of the FTO

rs17817449 variant in the Czech-Slavonic and obese Iraqi

populations were more susceptible to T2DM and chronic diabetic

complications (44, 51, 58). In Iranian obese women, FTO variants

rs763967273, rs759031579, rs141115189, rs9926289, rs76804286,

and rs9939609 were all related to T2DM (59). On the contrary,

African-Americans carrying the rs1421085 C allele were found to be

protected against diabetes (54). The polymorphisms in FTO gene
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seem to regulate the expression level of FTO and its enzymatic

function. Detrimental effects of high or low expression of FTO were

already confirmed in experimental studies. For instance, it has been

shown that FTO depletion activates inflammatory response, one of

the main pathogenic features in T2DM patients (60).

Besides FTO, variants of IGF2BP2, an m6A reader, were also

associated with a significant risk of T2DM development, namely

variant rs4402960 in Asian Indian Sikhs, Czechs, or Italians, and

rs11705701 in the Chinese population (44, 55, 61, 62).

Although further studies are needed to unravel the complex

polygenic background of T2DM, it seems to be clear that genetic

polymorphisms in genes encoding epitranscriptomic regulators are

associated both with T2DM and its complications.
4.2 Pancreatic islets

Pancreatic b-cell failure mediated by metabolic stress is the

central event in the pathogenesis of T2DM (63). Although the

mechanisms underlying b-cell dysfunction are still not fully

understood, emerging data suggest an involvement of epigenetic

modifications in the adaptation of b-cells to metabolic stress (64).

m6A sequencing in dispersed islets from controls and T2DM

patients revealed 6,078 differently methylated sites in 4,155 mRNAs

and a higher number of sites with decreased levels of m6A

methylation in T2DM compared to controls. Gene ontology

analysis of the m6A methylome revealed that the genes affected in

T2DM patients are involved in cell-cycle regulation, receptor

signaling, insulin secretion, and pancreas development (65). The

decreased total m6A levels were observed in Langerhans islets of

T2DM patients and also in islets of mice fed with a high-fat diet (a

model mimicking T2DM phenotype). Similarly, high glucose

conditions (state typical for T2DM) also resulted in lower

methylation levels in non-diabetic human pancreatic islets as well

as in mouse b-cell line (Min6) (66). Gene expression analysis in

whole islets collected from healthy humans and patients with

T2DM revealed a down-regulation of several m6A regulators in

diabetic individuals – methyltransferase METTL14, demethylases

FTO and ALKBH5, and readers YTHDF1 and YTHDF3. In addition

to transcripts, protein levels of methyltransferases METTL3 and

METTL14 were also decreased (65). The reduction of FTO gene

expression and METTL3/14 protein levels in T2DM human islets

was observed also in other studies (67–69). RNA-seq datasets

(GSE153855; GSE153855) from T2DM and non-T2DM

individuals revealed increased gene expression of readers

IGF2BP2-3 and decreased gene expression of writer WTAP and

readers YTHDF2-3, YTHDC1, and HNRNPC (70–72). m6A reader

IGF2BP2 was also up-regulated in b-cells obtained from cadaver

pancreases of T2DM patients (73). The current knowledge of

diabetic epitranscriptomic changes in human Langerhans islets is

summarized in Figure 2. Overall, it seems that the whole

epitranscriptomic machinery is attenuated in human diabetic

islets. The only up-regulated genes IGF2BP2-3 have also functions

unrelated to epitranscriptomics, which might explain their

opposite trend.
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In contrast to these results, Bornaque et al. (66) showed that

high glucose concentrations in Min6 cells increased mRNA

expression of important m6A regulators – methyltransferase

Mettl3 and demethylases Fto and Alkbh5. Glucose treatment also

induced a shift in the subcellular protein localization of METTL3

and ALKBH5 (66). Overexpression of FTO in Min6 cells promoted

the production of reactive oxygen species (ROS) and led to NF-kB
activation, which resulted in the inhibition of insulin secretion (74).

These differences between a specific mouse cell line and

heterogeneous human islets might be explained by interspecies

variation or islet heterogeneity.

MTC specifically regulates the postnatal functional maturation

of b-cells. Mice with deletion of Mettl3/14 in Ngn3+ endocrine

progenitor cells developed hyperglycemia and hypoinsulinemia 2

weeks after birth. This study also showed that Mettl3/14 deletion

silenced the expression of important transcription factors, such as

Mafa, Nkx6-1, or Pdx1 (69). Other studies using mouse models with

b-cell-specific deletions of MTC subunits (Mettl3, Mettl14, Wtap)

also pointed out the importance of MTC in maintaining b-cell
function. Deletion of either subunit resulted in decreased m6A levels

(65, 70, 75). METTL3 deficiency led to b-cell failure and

hyperglycemia (75). METTL14-deficient mice exhibited decreased

b-cell mass, reduced insulin secretion, and glucose intolerance (65,

76, 77). Deficiency of WTAP was associated with a reduction of

METTL3 levels and resulted in severe hyperglycemia and b-cell
failure. Overexpression of Mettl3 in b-cells partially prevented the

negative effects of WTAP deficiency (70). Comparing Mettl3-bKO
and Wtap-bKO mice revealed down-regulation of b-cell-specific
transcription factors (such as Mafa, Nkx6-1, Pdx1, Neurod1, or

Foxa2) and insulin secretion-related genes (such as Ins1, Ins2,

Brsk2, Cacna1c, Doc2b, Ffar1, G6pc2, Gck, Gipr, Hadh, Ica1, Nnat,

Park7, Pclo, Selenot, Serp1, Slc30a8, Stxbp51, Sytl4, Trpm2, Ucn3,

and Uqcc2) (70). Besides methyltransferases, also b-cell-specific
deletion of reader Ythdc1 resulted in b-cell failure and diabetes
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(71, 78). This was likely due to the decreased gene expression of b-
cell-specific transcription factors (such as Mafa, Nkx6-1, Neurod1,

and Hmgn3) and insulin-related genes (such as Ins1, Ins2, Gck,

G6pc2, Sytl4, Doc2b, Pclo, Cacna1c, Slc30a8, Ffar1, Gipr, Nnat, and

Selenot). Transcription factor MAFA decreased dramatically also on

protein level in Ythdc1-bKO islets (71). Yang et al. suggested that

YTHDC1 may regulate mRNA splicing and export to modulate

glucose metabolism in b-cells by interacting with serine/arginine-

rich splicing factor 3 (SRSF3) and cleavage and polyadenylation

specific factor 6 (CPSF6) (78).

These data indicate that m6A/m6Am epitranscriptomic

machinery vastly affects the biology of pancreatic b-cells and

plays a role in the induction of diabetic phenotype. However, the

data are still fragmental, and more studies covering more m6A/

m6Am regulators are needed to elucidate the exact role of

epitranscriptomic regulations in the diabetic pancreas.
4.3 Heart

Cardiovascular disease (CVD) is a common comorbidity and a

major cause of mortality among people with T2DM. More than 30%

of all T2DM patients are affected by CVD (79). Cardiac dysfunction

observed in patients with diabetes that occurs in the absence of

other cardiovascular risk factors (such as hypertension, coronary

artery disease, or valvular disease) is referred to as diabetic

cardiomyopathy (DCM) (80). This condition is characterized by

cardiac diastolic dysfunction and later by heart failure (HF) and

cardiac death. It is estimated that the risk of HF is 2-3 times higher

in individuals with T2DM and that approximately 12% of diabetic

patients eventually develop severe HF often leading to death (81).

The epitranscriptomic modifications, including m6A, are known to

play various roles in the physiology and pathophysiology of the

cardiovascular system (20, 82–85). Recent studies have shown that
FIGURE 2

m6A and m6Am regulations in pancreatic islets of T2DM patients. ALKBH5, AlkB family member 5; FTO, fat mass and obesity-associated; HNRNPC,
heterogeneous nuclear ribonucleoprotein C; IGF2BP2-3, insulin-like growth factor 2 mRNA binding proteins 2-3; m6A, N6-methyladenosine;
METTL3, methyltransferase-like 3; METTL14, methyltransferase-like 14; T2DM, type 2 diabetes mellitus; WTAP, Willms’ tumor 1-associating protein;
YTHDC1, YTH domain-containing protein 1; YTHDF1-3, YTH domain-containing family proteins 1-3.
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changes in m6A methylation also contribute to HF progression (86–

90). However, the role of cardiac m6A and m6Am machinery is not

well-characterized in T2DM.

Altered cardiac m6A patterns were detected in db/db mice

(model of T2DM and DCM). The differentially methylated

transcripts were linked mainly to cardiac fibrosis, myocardial

hypertrophy, and myocardial energy metabolism (91). The higher

total m6A mass in DCMwas associated with the down-regulation of

demethylase FTO on both gene and protein levels, while levels of

METTL3, METTL14, and ALKBH5 were stable (91). Interestingly,

mice with T1DM-induced DCM (C57BL/6 mice injected

with streptozotocin) exhibited a different dysregulation of

epitranscriptomic machinery (Figure 3). Total m6A levels in the

hearts of these mice were decreased. This was linked with an

increase of ALKBH5 in the cardiomyocytes of DCM mice and

subsequent activation of the Hippo signaling pathway through a

YTHDF2-dependent action (92). These results suggest that the two

types of diabetes might affect the epitranscriptomic background of

DCM differently. It has been reported already that T1DM and

T2DM might affect the heart in a different way and result in

dissimilar DCM phenotype. This was explained mainly by the

different myocardial insulin action (insulin deficiency in T1DM

vs insulin resistance and hyperinsulinemia in T2DM) and thus

distinct signaling downstream of the insulin receptor (93).

Therefore, the contradictory epitranscriptomic results may be

explained by the different phenotype between the two types of

diabetes. However, further research is needed to resolve this issue.

Most of the studies dealing with m6A/m6Am regulations in

DCM have been executed on T1DM animal models. Pyroptosis, a

type of proinflammatory cell death, is tightly involved in DCM

progression. Methyltransferase METTL14 was down-regulated in

the hearts of rats with DCM (T1DM-induced) and enhancement of

its expression inhibited pyroptosis in myocardial tissues and

improved systolic function (increased fractional shortening and

ejection fraction) via down-regulation of lncRNA Tincr. The

expression of Tincr was regulated in a YTHDF2-dependent
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manner (94). Peng et al. (95) reported that lncRNA Airn

ameliorated diabetes-induced (T1DM) cardiac dysfunction caused

by cardiac fibrosis. Their data showed that Airn binds to m6A reader

IGF2BP2 and protects it from ubiquitin-proteasome-dependent

degradation, leading to an m6A-dependent stabilization of p53

mRNA by IGF2BP2 and subsequent reduction in cardiac

fibrosis (95).

Despite the limited amount of data available, it is becoming

evident that epitranscriptomic dysregulations in diabetic cardiac

tissue might have a significant effect on the function of the heart.

However, the exact role of m6A and m6Am in DCM induced by

each type of T2DM is yet to be deciphered.
4.4 Kidneys

Diabetic nephropathy (DN), also known as diabetic kidney

disease, is a prevalent microvascular complication of T2DM often

leading to end-stage renal disease, a life-threatening condition (96).

According to the International Diabetes Federation reports, up to

40% of diabetic patients might develop DN (97).

Xu et al. reported, that human kidney 2 (HK-2) cells stimulated

with high glucose decreased total m6A methylation level and also

methyltransferases METTL3 and METTL14 (98). Interestingly,

Jiang et al. observed increased m6A modification in diabetic mice

which was caused by elevated levels of METTL3. They also found

increased METTL3 levels in renal biopsies from DN patients.

Further experiments showed that METTL3 exerted pro-

inflammatory and pro-apoptotic effects in an IGF2BP2-dependent

manner and that targeting METTL3 alleviated the DN injury (99).

A negative effect of METTL3 in DN was reported also by Tang et al.

(100). METTL14 was also highly expressed in the kidneys of DN

patients and HRGEC (high glucose-induced human renal

glomerular endothelial cells). METTL14 worsened renal injury

and inflammation was reported in db/db mice (101). Lu et al. also

reported high levels of METTL14 in renal biopsy samples from
FIGURE 3

Different epitranscriptomic regulations in DCM on T1DM and T2DM mouse hearts. ALKBH5, AlkB family member 5; FTO, fat mass and obesity-
associated; m6A, N6-methyladenosine; T1DM, type 1 diabetes mellitus; T2DM, type 2 diabetes mellitus.
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patients with glomerulosclerosis and DN. Mice with podocyte-

specific METTL14 deletion were then associated with improved

glomerular function and alleviated podocyte injury compared to

wild-type nephropathic mice (102). Also the third component of the

MTC – WTAP – was reported to induce pyroptosis and

inflammation in high glucose-treated HK-2 cells (103). Besides

the methyltransferases, FTO was described to promote the

progression of DN (104). However, several SNPs in the FTO gene

were associated with a significantly lower risk of nephropathy in

T2DM patients (62). Urine levels of m6A were decreased in patients

with T2DM and even more with DN (105).

The existing data indicate that m6A machinery is affected in DN

and that its dysregulation has a negative outcome on the

progression of the pathology.
4.5 Liver

Liver disease ranks among notable causes of death in T2DM

patients (106). Non-alcoholic fatty liver disease (NAFLD) is the

most common chronic liver disease and is strongly associated with

T2DM (107–109). The prevalence of this comorbidity among

T2DM patients reaches up to 70% (110). It has been described

that NAFLD is promoted by m6A modification dysregulation (111–

116). Moreover, liver tissues from T2DM patients and mice on HFD

showed elevated levels of m6A and also METTL3. Hepatocyte-

specific knockout of Mettl3 in mice then led to improved insulin

sensitivity and decreased fatty acid synthesis (117). Jiang et al. also

reported that baicalin – a flavonoid glycoside used in traditional

Chinese medicine – suppressed T2DM-induced liver tumor

progression in a METT3/m6A-dependent manner (118).
4.6 Eyes

Chron i c e xpo sur e to hype rg l y c emia a ff e c t s the

microvasculature, eventually leading to diabetic retinopathy (DR),

the main cause of blindness in the developed world. It has been

described that m6A modification is regulated by various risk factors

associated with DR, such as inflammation, oxidative stress,

angiogenesis, or glucose and lipid metabolism (119). FTO

polymorphism (rs8050136) was associated with a higher risk of

DR (120). In retinal pigment epithelium (RPE) cells, high-glucose

conditions down-regulated the expression of METTL3 on both

transcript and protein levels. Further experiments showed that

METTL3 overexpression alleviated the cytotoxic effects of high-

glucose on RPE cells, while METTL3 depletion had the opposite

effect (121). Conversely, diabetic stress-induced up-regulation of

METTL3 and subsequent increase of m6A levels in human retinal

pericytes and also mouse retinas. Specific depletion of METTL3 in

pericytes suppressed diabetes-induced pericyte dysfunction and

vascular complication in vivo (122). A recent study showed

down-regulation of METTL3 in vitreous humor samples from

patients with DR, a mouse model of DR, and also high glucose-

induced human retinal microvascular endothelial cells (123).
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Despite these conflicting data on METTL3 expression, it seems

to be clear that epitranscriptomic regulations are affected in DR, but

the exact role of m6A in the pathogenesis remains to be elucidated

in the future.
4.7 Skin

Dysregulation of autophagy is a contributing factor for delayed

wound healing in diabetic skin. YTHDC1, an m6A reader, has been

described as a modulator of autophagy in diabetic keratinocytes

which regulates the mRNA stability of an autophagy receptor (124).

Interestingly, YTHDC1 interacted and cooperated with ELAVL1

(ELAV-like RNA binding protein 1), a well-established RNA

stabilizer also linked to m6A methylation. It has been described

previously that loss of m6A methylation enhances ELAVL1 RNA

binding to increase RNA stability (125).
4.8 Blood

Decreased m6A methylation levels were detected in RNA

isolated from the peripheral blood of T2DM patients and also

diabetic rats (126, 127). In accordance with these results,

significantly higher gene expression of FTO (and not ALKBH5) in

peripheral blood from T2DM patients was detected (126). However,

Onalan et al. (127) observed an up-regulated expression of both

demethylases in venous blood samples from T2DM patients. The

increased expression of FTO on both gene and protein levels was

later confirmed by another study which pointed out the correlation

between high FTO levels and T2DM severity (128). The gene

expression of FTO was also up-regulated in white blood cells

from T2DM patients compared to healthy individuals and the

expression level of FTO was positively correlated with fasting

glucose concentration (129). Besides erasers, METTL3 mRNA was

down-regulated in serum samples from T2DM patients (121).

Progressively higher T2DM risk was associated with low serum

IGF2BP3 levels (72).

Taken together, the content of m6A or its regulators in the

peripheral blood may serve as novel potential biomarkers of T2DM

in the future (126).
4.9 Treatment of T2DM: the role of m6A
and m6Am modifications

Metformin is the first-line therapy for the treatment of T2DM,

yet its molecular mechanisms of action are not fully understood

(130, 131). The main effect of metformin treatment is inhibition of

hepatic gluconeogenesis. At the molecular level, several

mechanisms have been proposed to explain this phenomenon,

such as inhibition of mitochondrial complex I activity, activation

of AMPK, or increase in hepatocellular redox state due to inhibition

of GPD2 (glycerol-3-phosphate dehydrogenase 2). The secondary

effects of metformin treatment include an increase in muscle
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glucose uptake, a decrease in intestinal glucose absorption, and a

change in the composition of the gut microbiome (130).

According to recent studies, metformin also affects

epitranscriptomic regulations, including m6A machinery.

Metformin was shown to reduce m6A methylation via the down-

regulation of methyltransferase METTL3 in breast cancer cells

(132). In hepatocellular carcinoma, metformin treatment was

associated with METTL3 inhibition (133). Metformin also

attenuated multiple myeloma cell proliferation and encouraged

apoptosis by suppressing METTL3-mediated m6A methylation of

its targets (134). Surprisingly, METTL3 expression was up-

regulated after metformin treatment in adenocarcinoma cells

(135). YTHDC2, a key m6A reader, is an important target of

metformin in preventing the progression of vascular smooth

muscle cell (VSMC) dysfunction under high glucose, a simulation

of VSMC dysfunction caused by T2DM (136). Recently, Liao et al.

(137) showed that metformin combats obesity by targeting FTO in
Frontiers in Endocrinology 07
an m6A-YTHDF2-dependent manner. This study suggests that

metformin inhibited the protein expression of FTO, resulting in

higher m6A methylation in mRNAs of crucial cell cycle regulators.

The binding of YTHDF2 to modified transcripts then triggered

mRNA decay and subsequent decrease of protein expression. In

consequence, the mitotic clonal expansion process was blocked and

adipogenesis was inhibited.

This fragmentary information suggests that metformin may

both decrease and increase m6A methylation and that the target

tissue or cell type may be the determining factor. However, in vivo

studies focusing on the epitranscriptomic effect of metformin are

needed to decipher this phenomenon, as the in vivo and in vitro

response may also differ, especially if the primary target of

metformin treatment is the liver. Despite these ambiguities, the

association between epitranscriptomics and metformin is revealing

itself, however, the role of m6A modification in the treatment of

diabetes remains unclear.
FIGURE 4

Summary of epitranscriptomic regulations in diabetic tissues. ALKBH5, AlkB family member 5; DCM, diabetic cardiomyopathy; DN, diabetic
nephrophathy; DR, diabetic retinopathy; FTO, fat mass and obesity-associated; HFD, high-fat diet; HNRNPC, heterogeneous nuclear
ribonucleoprotein C; IGF2BP2-3, insulin-like growth factor 2 mRNA binding proteins 2-3; m6A, N6-methyladenosine; METTL14, methyltransferase-
like 14; METTL3, methyltransferase-like 3; MTC, multicomponent methyltransferase complex; NAFLD, non-alcoholic fatty liver disease; SNPs, single-
nucleotide polymorphisms; T1DM, type 1 diabetes mellitus; T2DM, type 2 diabetes mellitus; WTAP, Willms’ tumor 1-associating protein; YTHDC1,
YTH domain-containing protein 1; YTHDF1-3, YTH domain-containing family proteins 1-3.
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5 Conclusion and perspectives

The significant role of epitranscriptomics in cellular physiology and

pathophysiology has been widely accepted by the scientific community

in the past few years. However, despite the increased interest of

researchers in RNA modifications, the complex epitranscriptomic

regulations are still not fully understood. Our review focused on two

of the most prevalent modifications – m6A and m6Am – in the

pathogenesis of T2DM. The fragmental current knowledge indicates

that diabetic tissues are associated with the dysregulation of

epitranscriptomic machinery (summarized in Figure 4). However, it

is essential to correctly distinguish whether these dysregulations

contribute to the development of the disease or are merely a

consequence of it. Several studies already showed that a deficiency of

epitranscriptomic regulators can promote the pathological conditions

typical for T2DM. Thus, targeting the epitranscriptomic regulations

might have future applications in the clinic and consequently reduce

the morbidity and mortality of T2DM patients.
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