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Abstract: Optimisation of tissue engineering (TE) processes requires models that can identify rela-
tionships between the parameters to be optimised and predict structural and performance outcomes
from both physical and chemical processes. Currently, Design of Experiments (DoE) methods are
commonly used for optimisation purposes in addition to playing an important role in statistical
quality control and systematic randomisation for experiment planning. DoE is only used for the
analysis and optimisation of quantitative data (i.e., number-based, countable or measurable), while it
lacks the suitability for imaging and high dimensional data analysis. Machine learning (ML) offers
considerable potential for data analysis, providing a greater flexibility in terms of data that can be
used for optimisation and predictions. Its application within the fields of biomaterials and TE has
recently been explored. This review presents the different types of DoE methodologies and the appro-
priate methods that have been used in TE applications. Next, ML algorithms that are widely used for
optimisation and predictions are introduced and their advantages and disadvantages are presented.
The use of different ML algorithms for TE applications is reviewed, with a particular focus on their
use in optimising 3D bioprinting processes for tissue-engineered construct fabrication. Finally, the
review discusses the future perspectives and presents the possibility of integrating DoE and ML in
one system that would provide opportunities for researchers to achieve greater improvements in the
TE field.

Keywords: machine learning; biomaterials; Design of Experiment; tissue engineering; 3d printing

1. Introduction

Tissue engineering (TE) involves the creation of sophisticated three-dimensional (3D)
constructs (i.e., cells incorporated within a scaffold) that aim to mediate the repair of
injured or diseased tissue. TE can be defined as the combination of the principles of
biomaterials and stem cell transplantation to develop and support endogenous tissue
regeneration [1]. Cell transplantation plays a key role in TE and is used for therapeutic
strategies to treat various injuries, such as bone fractures and cartilage defects. New
methods have been developed that include the direct injection of cells to the affected area,
reducing surgical invasiveness and its associated risks [2]. Despite its relatively short
history (i.e., 40 years) [3], TE has become a fertile ground for scientific discoveries in both
applied and fundamental sciences. There has been a tremendous expansion in the field since
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its initial goal—to address the shortage of tissue and organ donors by creating replacement
tissues, such as cartilage, blood vessels, bone, and skin. More recently, tissue-engineered
constructs have been applied as drug delivery systems, disease modelling platforms, and
high-throughput screening devices [4–6]. Traditionally, one-at-a-time type experiments
have been widely applied in the development and optimisation of biomaterials and tissue-
engineered constructs. However, this approach is slow, expensive and cannot demonstrate
the complex interactions between input variables and associated outputs. This results in
the slow and arduous development of new biomaterials and tissue-engineered constructs,
which delays their potential clinical translation.

Over the past decade, a one-at-a-time type experimental approach has been super-
seded by statistical experiments, e.g., Design of Experiments (DoE), where input variables
can be altered simultaneously to obtain the maximum amount of information from a mini-
mum number of experiments. This experimental approach involves a series of systematic
tests that aim to find the factors that have the greatest effect on response variables [7].
The application of these statistical approaches enables the development of models that
can predict the properties of biomaterials and tissue-engineered constructs, identify the
relationships between properties and optimise their structural and performance outcomes
with a reduction in experimental iterations, saving time, and reducing the consumption of
laboratory resources and the overall cost of product development [8].

TE generates data from several characterisation techniques, including physicochem-
ical analysis, microstructural analysis, rheological assessment, mechanical testing, and
degradation measurements (Figure 1). Although DoE approaches are used in many studies
for optimisation problems, these statistical methods may not be compatible for processing
and predicting certain types of data, such as images, video, audio and high dimensional
data, where the number of features is larger than the number of observations (Figure 1) [9].
Machine learning (ML) has shown the potential to overcome many of these existing ex-
perimental challenges, providing new methodologies for optimisation within the field
of TE. ML plays a significant role in the world today and its impact is transformational,
disrupting society and industry alike. The application of ML has shown the potential
to bring about rapid process optimisation [10,11]. Recently, the application of ML in
biomaterials and TE research has been demonstrated with the successful use of predic-
tion methods, artificial neural networks (ANN), convolutional neural networks (CNN),
Bayesian optimisation (BO) and robot-based rapid prototyping systems, which can be
used for prediction and optimisation in TE applications [3,12–16]. Furthermore, ML has
been combined with DoE to provide further enhancement of the optimisation process in
biomaterials and TE research [17]. Despite evidence highlighting the application of ML
reported in the literature, significant challenges remain, in particular relating to effectively
handling the preparation and representation of data generated from biomaterials and TE
applications. The majority of studies focus on scaffold fabrication processes, such as 3D
bioprinting and freeze-drying [9,12,18,19], and scaffold properties [20], with only a few
focussing in detail on how ML can be applied and the main outcomes and benefits that can
be obtained from using ML methods [12,21,22]. Challenges relating to the implementation
of ML in TE applications, largely relate to the limitations in obtaining suitable datasets
and the conversion of large datasets into easily accessible and utilisable formats as data is
frequently gathered from manual processes [3,10]. Thus, it is crucial to collect and explore
a considerable amount of data to extract the right features and make it manageable. As a
starting point, this review presents the most widely used DoE methodologies that have
evolved into the analytical foundation for more complicated approaches in TE. Following
this, ML applications that have been recently used in the biomaterials and TE fields are
introduced, illustrating the advantages and drawbacks of their use in these specific fields.
Finally, the main differences between DoE and ML methodologies in biomaterials and TE
applications are highlighted, and the possibility of combining the two methods to improve
the optimisation and prediction process is explored.
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Figure 1. DoE and ML workflow to optimise the material that will be used for the TE applications.

2. Design of Experiments (DoE)

DoE can be defined as a mathematical approach that is used for planning and per-
forming experiments, data analysis, and interpretation of the conducted experiments. A
DoE approach uses a controlled set of tests to model the relationships between factors and
observed responses to plan experiments and analyse data. Using this method, researchers
can make evidence-based decisions with the minimum number of experiments. Once
the effective factors have been identified, DoE methods can be employed to optimise the
experimental response variables. To determine the relationship between the factors and
the response variables, the DoE variables must be selected carefully, including their ranges
and the number of experiments run. DoE can be applied in several types of systems and
processes, such as during product design and development, for statistical quality control,
to assess the systematic randomisation used for experiment planning, for results of model
fitting and optimisation to conduct systematic research of a system [23]. DoE studies should
be designed using as few experimental runs as possible when constructing predictive mod-
els and making a design or technology decision because each experimental run requires
costly and time-consuming experimental analysis [24].

The typical approach of a DoE workflow for process optimisation, is illustrated in
Figure 2. In general, the process involves nine steps that can be described as follows:
(1) identifying the main project problem, by asking what are the main outcomes of the
project; (2) structuring a DoE, which involves planning the experiment and outlining the
main objectives of the project; (3) determining the factors, levels, and responses to be
investigated in the study, identifying the response assumptions, and defining the methods
to be used; (4) the experiment is then completed according to the experimental plan and
outputs measured; (5) using output data, mathematical models of the studied process
are produced, to meet the study objectives; (6) the built model is evaluated by using the
response data and demonstrated visually using plots; (7) the measured responses are then
used to identify the significant factors; (8) the final stages of the optimization involve
conducting additional experiments to verify the model’s optimal responses; and finally,
(9) additional testing is conducted where there is missing data or where further data
analysis is required with altered ranges of factors and responses [25].
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Generally, a DoE approach is applied in a phased way where a screening study is
firstly completed. This allows the number of factors to be reduced and the appropriate
levels for each factor to be determined before the optimisation. A range of DoE methods
has been used for materials sciences and engineering applications, including factorial
experiments, Latin squares, Taguchi and response surface methodologies (RSM) [26–28].
The following section elaborates on the differences between these methods and how they
have been applied to biomaterials and TE applications.

2.1. Factorial Experiments

Factorial experiments consist of two or more factors, each with discrete possible levels.
For two-level factorial designs, the input factors are set at two levels, a ‘low’ level and a
‘high’ level, defined as ‘−1’ and ‘+1’, respectively. Full factorial designs contain all possible
combinations of low and high levels for all input factors. Therefore, if there are k factors, a
full factorial design will consist of 2k experimental runs. This type of design is useful when
the number of factors to be explored is low. When there are larger numbers of factors, the
design becomes inefficient as a large number of experimental runs are necessary e.g., for
a two-level design with four factors (24), 16 runs are required, whereas for seven factors
(27), 128 runs are required. In these cases, a fractional factorial design can be employed,
whereby a fraction i.e., 1

2 or 1
4 , etc., of the runs specified in the full factorial design are

carried out. For example, a full factorial design with three factors at two levels, will result
in 23 = eight experimental runs, whereas a 1

2 fraction design, written as 23−1, requires
four experimental runs. Fractional factorial designs are only appropriate if the expected
interactions between the factors are negligible in comparison to the main effects. The
factorial designs are best suited for screening experiments completed to select the main
effects within an experiment. Three-level factorial designs examine the factors at three
levels, ‘low’, ‘intermediate’ and ‘high’ or ’−1’, ‘0’ and ‘1’ [29].Three-level designs enable
quadratic responses to be investigated, however, these quickly become prohibitive in terms
of the number of runs required.
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2.2. Latin Square

A Latin square design consists of an n × n array filled with n different symbols,
resulting in a square table of n2. As shown in Figure 3, a Latin square is a table filled
with different Latin letters (A, B, C etc.), that correspond to the treatments. The main rule
for the Latin squares is that these symbols can only occur once in each row and column.
The number of experimental runs required will equal the number of treatment conditions
investigated. Latin square design cells are mainly used to remove two unwanted sources
of variability within an experiment. The process involves blocking in two directions.
Hence, the rows and columns represent two limitations on randomization. Latin squares
are equivalent to specific fractional factorial designs, e.g., a 4 × 4 Latin square design
is equivalent to a 43−1 fractional factorial design. A full explanation of the statistical
representation of Latin square designs is given by Montgomery et al. [7].
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2.3. Taguchi Designs

Taguchi designs are types of fractional factorial designs that involve a subset of
combinations of multiple factors at multiple levels. The factors are divided into two sets:
(1) control factors, which are under our control, and (2) noise factors, which vary due to
the experimental environment and are not controlled. The noise factors can vary during
the experimental environment even though they have no direct control [30]. Taguchi
designs involve the optimisation of a process that has several control factors which directly
affect the output target or desired value. These variables can be classified into inputs (M),
noise factors (Z), design parameters (X) and outputs (Y), as illustrated in the P-diagram in
Figure 4 [31]. The Taguchi design employed will depend on the objectives of the experiment,
e.g., two-level Taguchi designs can be used for screening, and other methods can be used
for a more detailed investigation of a process [32].
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2.4. Response Surface Methodology (RSM)

RSM is a collection of statistical and mathematical methods that can be applied in
modelling and analysing problems where several input variables affect the response of
interest, and the main objective is to optimise this response [7]. The usual representation
of the response surface is illustrated in Figure 5. The following example represents two
factors—the composition of tannic acid and collagen concentration that influence the
printing pressure (response). The relationship between the pressure and these two factors
represents the response surface.
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The two main groups of RSM designs are (1) central composite designs (CCDs) and
(2) Box–Behnken designs (BBDs). Both designs provide an understanding of the behaviour
of a system (i.e., reveal the connection between factors and responses) and enable its
optimisation. CCDs are usually applied after a process of screening has narrowed down
the important factors. It contains central and axial points in addition to cube points, which
allow the estimation of higher-order effects, based on a curvature of the response [33]. BBDs
have fewer experimental runs than CCDs and do not have points at the vertices of the cube
(i.e., low and high points). As a result the prediction quality of BBDs, the quality is lower
than the standard CCDs, however, they offer advantages for physical experimentation
because extreme points are time-consuming and costly to investigate [33]. RSM is primarily
aimed at optimising a system and can also be used to assess interactions and higher-order
terms (e.g., quadratic or cubic), which is not feasible with other experimental design
methods. The choice of the DoE methodological approach depends on the problem that
needs to be investigated and the main experimental objectives [34]. The data points
required for each DoE method, are summarised in Figure 6. Table 1 summarises different
DoE techniques in terms of their methodology and the benefits for each method.
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2.5. Statistical Tools

In addition to selecting representative runs that successfully sample the domain of
research, dedicated procedures for post-processing the experimental results need to be
used. These methods yield both qualitative and quantitative data relating to the impact
of the many independent variables on the dependent variables. The analysis of variance
(ANOVA) method is a mathematical and statistical process for determining whether there
are differences between the means of groups within a sample and whether these differences
are random or can be related to a particular cause. In DoE, the sample represents a set of
experiments completed in accordance with a predetermined plan while groups within a
sample are a collection of data connected to a specific factor, level or response. ANOVA
breaks down the total variance and allocates it to all the distinct causes by comparing the
group means of a sample. As a result, it may be used to quantify the effect of factors and
responses on the independent variables [35].
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Table 1. Overview of the Design of Experiments (DoE) techniques.

Techniques Overview Methodology Benefits Ref

Factorial designs

All factors are assessed as all
possible combinations of
‘high’ and ‘low’ levels.
Fractional factorial designs
can be used to reduce the
number of experimental runs.

Usually involve two or
more factors assessed
at two levels.

Useful for determining the main
effects in screening experiments;
Straight-forward to design;
Robust.

[29]

Latin square

Ideally used for experiments
in which it is possible to test
subjects individually under
every treatment.

Number of
experimental
conditions is required
to equal the number of
different labels

High control of the variation from
the different experimental runs
and labels
Better efficiency compared to
other techniques.

[34,36]

Taguchi designs

Determination of the best
combination of inputs to
produce a design or a
product.

Determines parameter
levels.

Identifies the right input;
High-quality product;
Robust design perspective.

[30,37]

Response Surface
Methodology (RSM)

An offline optimisation
method, which usually
involves studying two factors.
However, this technique can
be used to study three or
more factors. The method is
usually employed in
optimisation experiments.

RSM merges
mathematical and
statistical methods with
experimental designs,
to develop models that
relate to the response
and control factors.

Represents relationship between
the responses and control factors;
Allows response values to be
predicted using a range of
control factors;
Provides optimum values for
control variables;
Uses statistical testing to determine
a significant control variable.

[37,38]

2.6. Comparison of the DoE Techniques

The DoE techniques described have various advantages and disadvantages and the
choice of design will depend on the objectives of the experiment and the number of
factors that need to be investigated. Two-level factorial experiments are best suited for the
investigation of main effects or as screening designs. Latin square and Taguchi designs
are also best suited for screening experiments. Taguchi designs are often utilised for very
large screening experiments. Three-level factorial designs and RSM techniques are more
suited for studying interactions between factors, for process optimisation, troubleshooting
process problems and the assessment of the overall robustness of a process. Generally,
it is recommended to complete a screening design to determine the main effects before
optimisation to reduce the numbers of factors required and to ensure the suitability of the
levels selected for each factor. In the selection of the most suitable RSM technique, it is
useful to consider the number of experimental runs required for each design. Considering
an experimental design, consisting of three factors at three levels, a full factorial design
will require 27 experimental runs, a BBD will require 13 experimental runs and a CCD will
require 15 experimental runs. Although the CCD approach requires a greater number of
experimental runs, it has advantages in that it can include up to five levels per factor and
they allow for the inclusion of runs where all factors are at their extreme settings, e.g., all at
the high settings.

2.7. Application of DoE Methods in Biomaterials and TE Research

There have been many studies applying DoE methods in biomaterials and TE research
which include the optimisation scaffold fabrication methods [34,39–43], hydrogels [44],
bioactive extraction methods [45], electrospun materials [46], 3D bioprinting. In particular,
3D bioprinting [47], an emerging tissue-engineered construct fabrication technique in TE,
has been the focus of a number of studies [48–50]. This fabrication technique involves the
layer-by-layer deposition of bioinks to produce complex structures designed to generate



Bioengineering 2022, 9, 561 9 of 26

functional tissue or organs [51–54]. The process can be divided into three steps: (1) pre-
printing, which includes the bioink formulation and pre-processing, (2) printing, where
the in-situ printing parameters need to be optimised and corrected, and (3) post-printing,
involving the optimisation of the culture conditions to achieve a functional tissue/organ.

DoE has been employed to explore the influence of the bioink properties, printing
parameters and scaffold design on the properties of the resultant construct [48–50]. For
instance, Trachtenberg et al. applied a full-factorial design to investigate the influence of
poly (propylene fumarate) (PPF) concentration, printing pressure, printing speed and fibre
spacing on the bioink viscosity, fibre diameter and pore size of 3D printed scaffolds [50].
The study generated linear models relating the PPF concentration to the shear-thinning
behaviour of the bioink, and fibre-spacing and the pressure to the pore size and fibre
diameter. Overall, the work provided statistical models with the potential for evaluating
the 3D printing compatibility of novel biomaterials and for optimizing the extrusion of
these materials for fabricating 3D scaffolds with predictable architectures.

Bhargav et al. optimised the surface morphology and structure of 3D printed scaffolds
using a Taguchi design [48]. This study optimised the scaffold surface morphology by
altering the following morphological parameters: (1) pore size, (2) fibre diameter, (3) fibre
orientation and (4) the number of layers [48]. A Taguchi design was used to understand
the relationship between these input parameters and their effect on the mechanical and
morphological properties of the resultant construct. These structural parameters play a
key role in cell attachment to the construct. In this study, the construct was designed as
a square mesh. The adoption of a Taguchi design reduced the number of experiments
required by evaluating each parameter, using an orthogonal array, where four factors
(i.e., pore size, fibre diameter, fibre orientation and number of layers) were evaluated at
three levels. The results showed the effect of the four factors on the mechanical properties
of the construct [48].

RSM has also been applied for the optimisation of tissue-engineered constructs.
Shizard et al. investigated the relationship between the architecture and mechanical perfor-
mance of the constructs fabricated using 3D printing, using the RSM technique [49]. The
study showed the influence of the pore size, architecture and porosity, on the mechanical
properties of both uniform and gradient constructs designed for the TE applications relating
to hard tissue repair. Specifically, the study aimed to simultaneously optimise the physical,
mechanical and biological properties of the construct using the CCD method. The study
investigated two factors, based on the geometric parameters of the scaffold, i.e., (1) strut
length and (2) strut radius. The porosity and Young’s modulus of the construct was deter-
mined using the experimental methods and finite element analysis (FEA) modelling. FEA is
a widely used computational approach for the analysis of stress distribution within complex
geometries and the optimisation of the mechanical properties of a designed element [55].
The use of simulation models, such as the FEA, can be expensive and time-consuming,
and requires expensive software and significant processing power, therefore, their utility
is limited. Applying DoE methods to simulations allows for the creation of surrogate
models that have a sufficient predictive performance and can be utilised to explore the
broad domains in a quick and straightforward manner [56,57].

BBD has also been applied for the investigation of other TE fabrication techniques.
A recent study by Dehghan et al. demonstrated the use of a BBD to determine the math-
ematical relationship between the input factors and the responses to optimise the con-
structs fabricated using the electrospinning technique [58]. The study demonstrated the
effect of varying the concentration of the three different constituents within a polycapro-
lactone/gelatine/polydimethylsiloxane (PCL/GEL/PDMS) composite biomaterial with
respect to the strength, elongation, biodegradability and toxicity of the resultant electro-
spun constructs. The study assessed PCL and GEL within the range of 0–100 wt.% and
PDMS in the range of 1–30 wt.%. The results from the RSM described the optimal polymer
ratio to achieve the optimal mechanical properties, biodegradability and biocompatibility.
The study also determined the relationship between the responses, e.g., it showed that
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the elongation under the mechanical loading and the biocompatibility demonstrated a
quadratic relationship [58].

Overall, these studies demonstrate the successful use of Taguchi designs and CCD
for tissue-engineered construct design and BBD for biomaterial optimisation. While a
direct comparison of the DoE methodologies has not been completed in the context of
biomaterials and TE development, Jankovic et al. compared different DoE methods applied
to the thermal behaviour of a double skin facade to determine the approach that enabled
the best characterisation of the process with the fewest experimental runs [57]. This study
demonstrated that the RSM CCD showed the best performance, however, the most efficient
design that best balanced the number of experimental runs and accuracy was a Taguchi L18
array 2L + 3L × 2F. They report that the extent of the nonlinearity in the process influences
the optimal design. If the higher-order terms are significant, some of the RSM designs
are advisable. Whereas, if only the main effects and interactions influence the response
quantity, then a Taguchi design of a lower resolution is sufficient. Jankovic et al. also
highlighted that during the selection of the optimal design, the physical limitations of the
experiment, such as time and material resources and the ability to perform experiments
under extreme conditions must be carefully considered and the selected design should
secure a comprehensive picture of interactions, using as few resources as possible during the
physical experiment. Large data sets and certain types of data cause significant challenges
for the DoE methodologies. Correlational or ML methods are better suited for the analysis
of big data sets [24]. The next section of this review discusses the potential benefits of
introducing ML into biomaterials and TE research.

3. Machine Learning (ML)

ML has the potential for application in a range of biomaterials and TE applications,
such as materials development, the optimisation of scaffolds, cells, and drug delivery [59].
While the DoE is a powerful tool for the identification of the relationships between input
parameters and the reduction of the requirement for costly and time-consuming experi-
ments, the limitations relating to the application of these techniques in biomaterials and TE
research remain. The application of ML techniques to these research fields presents new
opportunities to utilise data to better customise TE processes. Harnessing the power of
ML has the potential to bring about rapid advances within the fields of biomaterials and
TE. ML can utilise larger quantities and a wider variety of data, including experimental
parameters, sensor observations and images or scans, to extend the potential for identifying
key relationships between the properties of tissue-engineered constructs.

There are different ways to define ML, e.g., according to Alpaydin [60], ML is con-
sidered part of artificial intelligence (AI) where the system can learn from given data to
produce predictions and to optimise the model parameters using training data. Similarly,
Park et al. state that ML can be defined as a field in computer science that can create
algorithms that can learn from a big set of data and produces predictions on the data [61].
ML models have shown great improvements in learning complex patterns that enable a
model to predict unobserved results and allow computers to train on imported data and
use statistical approaches to output results within a certain range [62]. In general, ML
techniques can be grouped into three types: (1) supervised [63], (2) unsupervised [64] and
(3) reinforcement learning [65], according to how they use labelled data. An overview of
these techniques is provided in Figure 7.

3.1. Supervised Learning

Supervised learning is an ML approach that aims to predict unknown outputs using
labelled training data, based on prior observations. Supervised learning works by receiving
datasets and then training a regression/classification model [66–68]. Subsequently, the
model can generate predictions to respond to new, unseen input data. There are several
types of classification techniques that focus on providing categorisation, data analysis and
pattern recognition [68,69]. The benefits and limitations relating to supervised ML tech-
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niques that have been previously applied and have potential for greater use in biomaterials
and TE applications are summarised in Table 2.
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Table 2. ML approaches that can be used in Biomaterials and TE applications.

Algorithms Category Assumptions Benefits Limitations Ref

Linear regression Regression

Linearity, fixed
features,
independence,
normality;
Error variance is
assumed to be
constant.

Simple application;
Guaranteed to find the
optimal solution.

Only works for linear
relationship data. [69,70]

Random forest Classification

Assume model
errors are
uncorrelated and
uniform.

Provides fast learning and
highly accurate
predictions;
Can intake large set of
data without variable
deletion;
Can work with
unbalanced data sets.

Time-consuming to form
predictions. [71,72]

Decision tree Classification,
Regression

The classes must be
mutually exclusive.

Easy to use and to
understand, efficient
algorithm (especially for
predictions).

Depending on the
selection order, missing
factors from the
characteristic
overfitting.

[71]

Neural networks Classification,
Regression

Variable
independence,
linearity.

Can be used for
classification and
regression, able to use the
Boolean functions;
Allows inputs with noise.

Overfitting due to too
many attributes;
Hard to understand the
algorithm structure.

[71]

Support vector
machines (SVM)

Classification,
Regression

Model assumptions
depend on the
probability of default
(PD).

Complexity of the model
can be easily controlled;
The models use non-linear
boundaries.

Hard to understand the
algorithm structure;
Data training is slow.

[69,71]

Kernel ridge
regression (KRR) Regression Linear or nonlinear

function.
Computational simplicity;
Prevents overfitting.

Computationally
expensive. [73,74]

Bayesian
optimisation (OP) Optimisation

A non-convex
problem; No access
to derivative.

Hyperparameter tuning;
Cost-efficient.

The objective function
can’t be modelled;
High dimension problem.

[75,76]
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3.1.1. Linear Regression

Regression analysis can be described as the function used to make predictions on real
value outputs, where this function can signify the dependent variable by identifying the
independent variables [70]. Linear regression analysis is an approach whereby a linear
relationship is modelled to predict or explain the relationship between variables [77]. This
linear relationship between two variables can be illustrated as a straight line. A linear regres-
sion model, therefore, aims to optimise the fitting of a straight line to a given dataset [69].
However, the use of a straight-line approach can provide an imperfect summary of the
complex relationships and can be influenced by randomness in the experimental data.

3.1.2. Decision Tree and Random Forest

A decision tree is a supervised learning algorithm that can be used for classification
and regression problems. The approach involves a series of sequential decisions that enable
a specific result to be reached. For classification problems, decision trees can be used to
segregate a data set into classes that correspond to the response variable. The most basic
decision trees involve splitting the response variable into two categories: (1) yes/no or
(2) 0/1. Alternative decision tree algorithms can be used if the response variable contains
more than two categories. A regression tree is a type of decision tree in which the target vari-
able can take continuous values. They are frequently used to predict numerical problems.
The type of decision tree that needs to be applied depends on the desired variable [78].

Decision trees are extremely quick and can handle high-dimensional datasets and
larger input datasets compared to other approaches [79]. One challenge in applying decision
trees is that they can be prone to overfitting issues, where the system tightly fits the training
data to the extent that it is inaccurate in predicting the outcomes of new data [80]. While
such systems have a very low training error, the test error may be bigger. This problem
can be addressed by using random forests, which combine several decision trees, and
uses bootstrapping and aggregation to train numerous decision trees, simultaneously [81].
Data and characteristics are randomly selected for each decision tree and an average of
the individual decision tree predictions yields the result. Each tree receives data from
the original dataset and at each node, a subset of the optional attributes is chosen at
random. This approach combines many weak or poorly connected classifiers into one
strong classifier [82]. As a result, random forests maintain their speed while also being
extremely resistant to overfitting [83].

3.1.3. Neural Networks

Neural networks, also known as artificial neural networks (ANNs), are defined as
computational models that attempt to imitate the human brain through the use of neuron
nodes interconnected in a web. In the human brain, billions of cells called neurons can
be found where they are responsible for processing information (i.e., input data) and
generating responses (i.e., output data). Similarly, ANNs have hundreds of thousands of
artificial neurons, called processing units, as interconnected nodes. More recent models,
called deep neural networks or deep learning, have been used extensively for natural
language processing and computer vision and can contain billions of neurons. ANNs work
by arranging processing units into layers of inputs and outputs. The input layer collects
data, then the neural network model uses hidden layers and nodes to learn through many
iterative phases and optimise the predicted results as an output [70].

Knowledge-based ANNs utilise a hybrid learning approach, combining theoretical
knowledge with the knowledge learnt from a set of classified examples, thus enabling them
to learn more effectively than the classical ANN approach. In the knowledge-based ANNs,
the output of one sub-ANN is used as an input to another sub-ANN in the chain. This
allows the hidden layers of the knowledge-based ANNs to work in a more dimensionally
uniform environment than the classical ANNs, resulting in a reduction of 12 neurons. This
approach has improved the accuracy in training ANNs, while also minimising the predic-
tion error [84]. Nagerejan et al. applied knowledge-based ANNs to develop a metamodel
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capable of dynamically predicting control factors of a fused deposition modelling additive
manufacturing process training time [84]. The study demonstrated the potential of this
approach to reduce the dimensionality of the complex additive manufacturing problems.

A further class of ANNs is the convolutional neural networks (CNNs) that apply a
convolution function to further refine the outputs. CNNs have been widely used in the ma-
terial manufacturing sector, mainly using computer vision for detecting defects [32,85–87].
CNNs learn using images as input to the model and internal layers that can detect certain
features, such as edges and lines in an object. The classifier is trained by using labelled
images and can output a class label or labels, localisation of objects or a full segmentation
of the image.

3.1.4. Support Vector Machines (SVMs)

A classical and widely used machine learning technique, support vector machines
(SVMs) are linear classifiers that predict the class of each input’s members from a set of
two possible classes. To classify all inputs in a high-dimensional or even infinite space,
SVMs generate hyperplanes or groups of hyperplanes. The closest points of categorization
are known as support vectors. SVMs are most concerned with the hyperplane-to-support-
vector margin [88]. The success of SVMs in producing accurate findings is due to their ability
to train well with only a few features, robustness against model error and computational
efficiency when compared to other ML methods, such as ANNs [80].

3.1.5. Kernel Ridge Regression (KRR)

A refinement of SVMs, the Kernel ridge regression (KRR), also known as least-square
support-vector machines (LS-SVMs), is a non-parametric technique that calculates the
target by computing the inputs directly [73]. It is a nonlinear regression method that
incorporates regularisation to avoid overfitting. Hyperparameters, i.e., parameters used
to control the learning process, and training data size have a significant impact on the
performance of the KRR learning model [74]. The approach can be used for classification
and regression analysis [89].

3.1.6. Bayesian Optimisation (BO)

Hyperparameters and their optimisation are a key part of machine learning engi-
neering and can have a significant impact on the performance of the model. Bayesian
optimisation (BO) is commonly used in ML for hyperparameter optimisation [90] and is
very useful in situations where evaluations of a function are costly [91]. Bayesian optimisa-
tion is a sequential model-based approach designed to deal with the problem of finding a
global minimiser (or maximiser) of an unknown objective function f :

x∗ = argmin
x∈X

f (x)

Where x is some design space of interest. Furthermore, the Bayesian optimisation
is about maintaining a probabilistic surrogate model over likely functions given in the
observed data, and sequentially selecting the future query points according to a selection
policy, which leverages the uncertainty in the surrogate to negotiate the exploration of
the search space and the exploitation of currently suspected modes [87,88]. This has a
particular use for complex scenarios, such as those found in biomaterials and TE, where
the model must incorporate the input from several complex systems.

3.1.7. Hierarchical Machine Learning (HML)

One of the major challenges in applying ML to the fields of biomaterials and TE
research, is the limited availability of labelled experimental datasets. This can result in
highly imbalanced data where there are higher volumes of data from typical or “normal”
scenarios and relatively low volumes of input data for the disease, treatment or syndrome
cases. Statistical machine learning methods then tend to default to see everything as the
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typical or majority case. Hierarchical Machine Learning (HML) is used to handle class
imbalance with smaller labelled datasets and can be considered a supervised method. HML
involves adapting the human learning strategy using multi-level learning [92] and works
by compartmentalising and separating the classifications, e.g., between individuals and the
diagnosis [93].

3.2. Unsupervised and Reinforcement Learning

Unsupervised learning is the opposite of supervised learning, using unlabelled data
to train the model. Unsupervised methods extract unlabelled features from the input
data and classify it using self-taught or derived rules. As a result, these models are
typically used to uncover hidden or unknown relationships in high volumes of data [64].
Some examples of methods that can be used for unsupervised learning are, the K-nearest-
neighbour (KNN) [94], the principal component analysis (PCA) [95] and the singular value
decomposition (SVD) [96].

A type of dynamic programming called reinforcement learning uses reward and
penalty systems to train algorithms. In this case, the learning system is referred to as
an agent, and it learns in an interactive setting. Rewards and penalties are given to the
agent, based on how well they complete their assigned tasks. Dynamic programming is
used in reinforcement learning to teach an agent how to maximise the reward in a given
environment without the assistance of a human. Reinforcement learning has a differ-
ent purpose than unsupervised learning, which is to identify an action model that max-
imises the agent’s reward [97] and minimises the risk [98]. There are two types of actions:
(1) exploitative and (2) exploratory. Exploitative actions are those that yield the most profit,
while exploratory actions are those that have never been attempted before. With the help
of these two strategies, the model may gradually learn more about the environment and
grasp the inputs that lead to favourable rewards, thus arriving at optimal answers [99].
Some examples of reinforcement algorithms that are frequently used, include the Markov
decision process [99], Brute force [100], and dynamic programming [101]. Where biomate-
rials and TE scenarios produce high volumes of unlabelled case data, these methods can
be useful for classification, the clustering of observations, the identification of trends or
prediction of contributing inputs.

Inductive Logic Programming (ILP)

Inductive logic programming (ILP) is a subfield of ML that uses first-order logic to
represent hypotheses and data. Similar to HML, ILP supports the data efficiency regardless
of the size, unlike many ML algorithms that have difficulty in generalising from small
numbers of training data [102]. ILP provides a number of advantages over other ML
methods. ILP systems can acquire knowledge using background knowledge (BK), for
example, by utilising a theory of light to comprehend images. It is possible for ILP systems
to acquire complicated relational theories, such as cellular automata, event calculus theories,
and Petri nets because of the expressivity of logic programming. It is possible for ILP
systems to generalise from a single sample, due to the strong inductive bias provided by the
BK. Finally, because ILP systems are symbolic, they naturally facilitate lifelong and transfer
learning, which is deemed necessary for developing human-like machines [103]. As in
other symbolic systems, the main challenge in using ILP is the capture and codification of
the knowledge and relationships using first-order logic. These methods reflect a theory of
machine learning that with sufficient, codified, expert knowledge, it is possible to build
intelligence. Linked data, ontologies and knowledge modelling methodologies have been
used in biological, medical and manufacturing domains to capture and apply descriptions
of data and relationships.

While many of the ML tools and approaches described here have been successfully
applied in TE to target biomaterial development and optimisation, their application still
poses many challenges. The following section details how these ML approaches have been
previously applied to biomaterials and TE applications.
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3.3. Applications of ML in Biomaterials and TE Research

In the years to come, ML will continue to be a crucial part of how science and under-
standing move forward. As increasingly massive datasets are generated and captured, these
technologies have the potential to enhance engineering design and act as more accurate
experimental outcome predictors. Numerous other engineering fields have acknowledged
the value of these technologies, and have already started to adopt them [101,102]. The
development of biomaterials and medical device technologies for TE applications has
lagged behind this trend. The use of ML in biomaterials and TE research has the potential
to provide researchers with the ability to discover patterns in data, enabling the accelerated
development and specialisation of outputs for individualised or personalised solutions.
The application of ML in biomaterials and TE is a nascent field and, to date, relatively
few studies have explored the use of ML techniques. At this stage, supervised learning
methods have been most commonly used in TE. A key requirement for the development of
most supervised ML models is the labelled data and even the unsupervised methods that
generally require some labelled data to evaluate the performance of the generated models.
In TE, these data typically take the form of biomaterial or tissue-engineered construct char-
acteristics, which can be analysed to produce predictions, based on extracted features [13].
Currently, there is a lack of suitable labelled publicly available datasets for the evaluation
of ML applications in these.

Recent advances have involved the application of ML for material optimisation, classi-
fication and image segmentation [12,18,21,66]. In particular, there has been recent interest
in bringing ML approaches to optimise and automate the fabrication processes and pro-
vide predictions relating to the material behaviour under certain parameters [9,22,59].
Entekhabi et al. applied the ML approaches to explore the rate of degradation of a freeze-
dried gelatin scaffold crosslinked with genipin [18]. In this study, the scaffolds were
fabricated using different concentrations of gelatin (2.5%, 5% and 10% (w/v)) and genipin
(0%, 0.125%, 0.25%, 0.5% and 1% (w/w)) using freeze-drying to create the porous 3D con-
structs. The rate of construct degradation was measured experimentally by determining
the weight change of the scaffold over a 28-day timeframe and collated for mathematical
modelling using the data-driven ML approaches. The collected data served as the input
for two different supervised learning algorithms, neural networks (i.e., ANN) and KRR.
For the purpose of developing an accurate and vigorous prediction, different experimental
measurements were selected, according to their correlation with the degradation rate,
generating the following variables: porosity, pore size, swelling behaviour, mechanical
properties, the extent of crosslinking, and degradation behaviour (Figure 8). The predictions
obtained from the different algorithms were compared to the experimental data, showing
that ANNs topped the ranking with a mean squared error of 2.68%. Although, in other
studies, the KRR has been found to provide a better accuracy than the ANNs, while also
having the advantage of not being computationally expensive in training big data [104].
Overall, this study demonstrated the role of ML in saving time and reducing the cost of
experimental studies. Further studies can be carried out to explore the different parameters
that could be optimised to improve the degradation rate prediction, as well as various other
types of data [18].

ML has also been recently applied to optimise the various steps of the 3D bioprinting
process for the fabrication of tissue-engineered constructs [12–16]. Lee et al. developed a
ML-based method for the design of 3D-printable bioinks composed of naturally derived
biomaterials. In this study, the relationships between the rheological properties and print-
ability were analysed using ML. The analysis process employed the relative least general
generalisation algorithm, an ILP methodology that is useful for classification problems. A
multiple regression was used to support the ML results and the prediction of the print-
ability by the ink composition. In this study, 19 samples were used for modelling and
six samples for the validation of the prediction algorithm. The study demonstrated a
universal relationship between the mechanical properties of the bioink and the printability,
showing that a high elastic modulus improves the shape fidelity and extrusion is possible
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below the critical yield stress. Based on this relationship, various formulations of naturally
derived bioinks that provide high shape fidelity were derived using the multiple regression
analysis [16].
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A recent study by Ng et al. highlighted the potential of applying computer vision and
ML to optimise three different bioprinting methods: (1) extrusion, (2) jetting-inject and
(3) vat polymerisation–stereolithography [12]. Within their study, they propose mathe-
matical equations that can be used to identify the correlations between the bioprinting
parameters for each process [12]. Each bioprinting process has different parameters of
interest and different bioinks require unique bioprinting parameters depending on the
material behaviour. For the extrusion-based bioprinting techniques, the important parame-
ters that could be investigated using ML techniques, include the printing resolution, the
nozzle diameter, the material viscosity, the nozzle length, the stage speed and the change in
pressure (Figure 9A). The relationships between these parameters can be modelled using
deep learning that can be trained by taking the main printing parameters as inputs and
error minimising between the predicted and actual outcomes. By selecting the optimal
parameters of the key outputs, e.g., printing resolution, cell viability and fabrication, speed
may be influenced [12]. Furthermore, Ng et al. recommended the use of a reinforcement
learning agent to automatically select the values for the pressure drop and plate speed. This
will help the reinforcement learning to learn and select the ideal values for printing param-
eter variables that will remove the parameter selections that could result in poor outcomes,
such as a low cell viability. This will enable the production of improved bioprinted scaffolds
with the desired fabrication speed, higher cell viability and better printing resolution [12].
Finally, the use of in-situ monitoring in bioprinting can help reduce possible errors, such as
excess or missing layers of material, to guarantee consistency in the fabrication of 3D bio-
printed constructs (Figure 9B). In this study, a CNN classifier was trained by using images
labelled as ‘under extrusion’, ‘good quality’ and ‘over extrusion’ (Figure 9B). The schematic
diagram represents a feedback loop that adjusts the 3D printing parameters, such as the
material flow rate. This is accomplished by using real-time in-situ monitoring (recording
images) and the CNN model. This ML approach enables the production of constructs with
a higher repeatability and accuracy. This approach can also be used to predict the material
properties of a diverse range of bioink compositions and for the development of novel
scaffold designs for specific purposes by learning from a huge database of materials and
designs [13].

Conev et al. have also applied ML for the optimisation of the 3D printing parameters.
The study aims to distinguish between low-quality and high-quality printing configurations
as a first step toward developing a recommendation system for identifying the optimal
printing circumstances. The ML-based framework takes the composition of the material
and the printing parameters as inputs and predicts whether the quality of the print will
be “low” or “high”. They apply two ML-based strategies: (1) a direct classification-based
method that uses a regression ML model to approximatively predict the values of a printing
quality metric and (2) an indirect approach that uses an ML model to train a classifier to
distinguish between “low” and “high” quality prints. The random forests method is the
foundation of both models. One of the main issues faced within this study was the lack of
data. Their analysis has revealed that a complete factorial design for data collecting can
result in data redundancy in the context of ML [66].

One challenge in the application of ML to biomaterial and TE applications is the
limited data available for the model generation. Bone et al. addressed the problem of a
small dataset by constructing a hierarchal ML (HML) algorithm, wherein the structure
of the middle layer leverages the known physical relationships relating to the alginate’s
gelation process [15]. This approach was applied to optimise the alginate hydrogel scaffolds
fabricated by 3D bioprinting, using the freeform reversible embedding of the suspended
hydrogel (FRESH) method. Within the study, the material selection, material formulation
and the process parameters were explored to achieve the optimal print fidelity of the printed
scaffolds, in terms of linewidth and shape fidelity. The process firstly involved generating
a dataset of both high- and low-fidelity alginate prints by systematically varying the print
input parameters and assessing the resulting prints in terms of dimensional similarity to the
original CAD designs. The model fit was assessed by cross-validation and then optimised
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to minimize the print error, generating a new set of optimised input variables predicted to
generate the high-fidelity prints with an error of less than 10% in dimensionality from the
original CAD specification.
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An alternative approach to overcome the challenge relating to the small dataset was
employed by Ruberu et al., where they utilised the Bayesian optimisation (BO), a sam-
ple efficient optimisation algorithm, for the optimisation of the 3D bioprinting of gelatin
methacryloyl (GelMA) and hyaluronic acid methacrylate (HAMA) bioinks [14]. The perfor-
mance of two fundamental criteria encountered in the printing process: (1) the filament
formation of the bioink and (2) the layer stacking of the 3D scaffold, were incorporated into
a scoring system established to assess the printability. The process involved adding the
bioink concentration and printer parameter settings to the optimiser search space and the
output recommendations predicted by a ‘black-box’ model were provided to the experi-
menter where they were scored, based on a visual assessment of the filament morphology
and pore architecture.

For numerical simulations, data-driven methods using ML have also been shown
to outperform traditional methods grounded in mathematics and physics. Koeppe et al.
applied neural networks and deep learning to forecast the stress in a 3D printed lattice
structure [19]. The approach involved manufacturing and mechanically testing the lattice
specimens. The experimental results were used to validate a parameterised FEA model
designed to calculate the stresses in the structures with different design parameters during
deformation. Finally, these deformations and design parameters were used to train a neural
network. They reported that an ML model takes roughly 0.47 s to predict the stresses,
instead of 5–10 h for an FEA simulation [19]. Similarly, Khadilkar et al. used the data-driven
CNN to make stress predictions in milliseconds, compared to an FEA method which took a
2–3 min to give stress predictions [105].

4. Classical ML Techniques Compared with DoE Methods

The selection of a ML approach over a DoE approach requires a clear understanding
of the differences between the two methodologies. Nowadays, DoE is used widely to
help optimise processes by reducing the running time and cost of experiments [106]. The
process is a human-centred method using a relatively small volume of data, where the
researcher is required to select the necessary input factors that need to be included within
an experiment, depending on their existing knowledge of the process. By comparison, ML
is an automated process, where the data patterns are detected, based on both the input
and the output data [107]. According to Freiesleben et al., ML supervised algorithms may
be slightly human biased because of the data labelling compared to the unsupervised
algorithms but still give better and faster results once trained [106]. In some cases, dealing
with a high volume of data, i.e., “big data”, or data with a high dimensionality (p >> n) can
have a great effect on the performance of the statistical methods. Typically DoE methods
may encounter problems when data are not in numerical format [108], whereas some ML
approaches can incorporate different input and output data types. Therefore, the size and
type of the data to be used can have a greater influence on the performance of the DoE
studies, compared to ML-based studies.

Comparing the two approaches for application in biomaterials and TE research, it
is noted that the use of the DoE methodologies is more effective in terms of experiment
reduction, by detecting the most relevant factors, while ML can be used for the high
accuracy prediction or classification on a large amount of data. In terms of TE, ML can
play an important role in simplifying the modelling of complex interactions involved in
multiple biological, chemical, and physical processes in TE. Understanding and defining
the principles underlying these processes is considered highly challenging. While standard
statistical optimisation, e.g., DoE, has been used in numerous studies in recent years to
produce optimal design/fabrication parameters [18], ML has, more recently, shown the
potential to produce prediction in terms of scaffold fabrication. The main objective for
both ML and the more specific statistical optimisation is to use data to learn and develop
mathematical models. The main differences are that statistical optimisation requires a
connection between the selected variables to make predictions for the new variables.
However, ML can predict data without having to make a new assumption about the actual
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relationship between the variables. This means that ML treats algorithms, such as a black
box [18]. In summary, the two methodologies have two different aims; a DoE primarily
focusses on identifying the optimal input factors for the relevant process while ML focuses
on identifying patterns in unstructured raw data [106].

One challenge in developing ML models is that using large datasets to train a model
can be time consuming and expensive. Therefore, the combination of DoE methods with
ML holds the potential to further enhance the optimisation within the field of TE. This
approach has been successfully applied in product innovation [108], and the chemical [109]
and energy consumption industries [110]. DoE data has been used previously in ML
algorithms to optimise the initial parameter settings (Figure 10) [106]. In addition, the use
of ML has also helped the aim of DoE by detecting the optimal factors and interactions
(Figure 10), where the final ML algorithm proposes the next experimental configuration.
Therefore, this strategy is often referred to as “active learning” [111] since it puts the learner
in control of the data and from that, the machine learns [105,109,112].
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Figure 11 illustrates the core processes for the two methodologies—emphasising the
human-based and the software-based parts. This schematic shows how the potential
support can be provided to the DoE core process by using ML, and the possibility of
replacing the human-based part with a fully software-based core [106]. While DoE and
ML are often regarded as if they are independent, in reality, the quality of final results is
dependent on both. The initial DoE design decision must be made with the ML algorithm
in mind and the ML models should be picked based on the unique characteristics of the
dataset collected by the DoE. However, to date, the combined application of DoE and ML
approaches has yet to be used to its full potential.
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5. Summary and Future Perspectives

The present work in biomaterials and TE research has great potential to be improved
by applying DoE and ML techniques for material and process development and optimi-
sation. Due to the simplicity of the DoE approach and its advantages over one-at-a-time
experimentation, it is widely used in materials and process optimisation and there is signif-
icant scope to apply these methods more widely within the fields of biomaterials and TE.
However, the approach has limitations relating to the amount and type of data that can be
utilised. ML can handle a much higher volume of data with different formats rapidly and
consistently. It has the potential for the widespread application in all stages of the ‘bench-
to-bedside’ development of tissue-engineered constructs, particularly in the application
of image analysis and the phenotypic recognition algorithms, potentially leading to the
improved assay or data analysis protocols [113,114].

To date, ML has not been widely implemented for biomaterials and TE applications.
Numerous challenges prevent the widespread adoption of these techniques within these
fields. These include difficulties in obtaining suitable datasets for the development and
training of ML algorithms. Currently, data collection is not standardised across different
research groups and laboratories, making it difficult to combine/compare data. The
development of a big database, necessary for the operation of ML algorithms, relies on the
sharing of data. The development and widespread adoption of standards for materials
testing, data collecting, and pre-processing would enable more widespread data sharing
and stimulate collaboration across the TE field as more groups of researchers work on new
materials and processes. A greater integration between ML and TE researchers would also
aid in accelerating research within these converging fields, ensuring that complete and
labelled datasets in the required formats can be obtained. Furthermore, making data and
code publicly available would help the growth and development of the field.

It is difficult to recommend a single specific ML or DoE technique in TE as it depends
on the required outputs, i.e., is the research objective to classify, cluster, predict or optimise?
In addition, the complexity of the problem under investigation, the resources available and
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the types of data produced (e.g., literature, experimental, computer experiments, simulation
or synthetic data) all need to be considered. The summary information highlighting the
key characteristics and applications for DoE (Table 1) and ML (Table 2) may be helpful in
identifying the most promising techniques. In addition, for many scenarios, a combination
of approaches (sometimes called a ‘polyglot’ solution) will be necessary.

There is also significant scope for the development of new ML techniques designed
specifically for application in biomaterials and TE research. Additionally, combining the
DoE approach with the implementation of ML models has the potential for enhancing
biomaterials and TE research. More research in this area is urgently needed to determine
how to best integrate these two methods and explore their application for the optimisation
of the bioprinting process, bioink formulations and of other biomaterials and scaffold
fabrication processes. Such fusion opens an exciting opportunity for future biomaterials
and TE progress. Overall, applying ML techniques within all stages of the development
and clinical application of biomaterials and tissue-engineered constructs present exciting
new challenges for researchers in both ML and TE and the potential to bring about rapid
clinical advancements and improved patient outcomes.
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96. Simek, K.; Fujarewicz, K.; Świerniak, A.; Kimmel, M.; Jarząb, B.; Wiench, M.; Rzeszowska, J. Using SVD and SVM methods for
selection, classification, clustering and modeling of DNA microarray data. Eng. Appl. Artif. Intell. 2004, 17, 417–427. [CrossRef]

97. El Bouchefry, K.; de Souza, R.S. Learning. In Knowledge Discovery in Big Data from Astronomy and Earth Observation: Astrogeoinfor-
matics; Škoda, P., Adam, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 225–249.

http://doi.org/10.1016/b978-0-12-804291-5.00007-6
http://doi.org/10.1002/qua.24939
http://doi.org/10.1126/sciadv.aaw9918
http://www.ncbi.nlm.nih.gov/pubmed/31667342
http://doi.org/10.1109/JPROC.2015.2494218
http://doi.org/10.1016/c2014-0-00329-2
http://doi.org/10.1016/b978-1-78548-109-3.50002-3
http://doi.org/10.1016/b978-0-12-817736-5.00009-0
http://doi.org/10.1115/1.4042084
http://doi.org/10.1016/j.mfglet.2019.09.005
http://doi.org/10.1007/s40684-020-00197-4
http://doi.org/10.1016/j.isprsjprs.2015.05.005
http://doi.org/10.1007/s10845-017-1315-5
http://doi.org/10.1002/jcb.20136
http://www.ncbi.nlm.nih.gov/pubmed/15258901
http://doi.org/10.1016/j.engappai.2004.04.015


Bioengineering 2022, 9, 561 26 of 26

98. Sengupta, A.; Naresh, G.; Mishra, A.; Parashar, D.; Narad, P. Chapter Five—Proteome analysis using ma-chine learning approaches
and its applications to diseases. In Advances in Protein Chemistry and Structural Biology; Donev, O., Karabencheva-Christova, T.,
Eds.; Academic Press: Cambridge, MA, USA, 2021; Volume 127, pp. 161–216.

99. Arulkumaran, K.; Deisenroth, M.P.; Brundage, M.; Bharath, A.A. Deep Reinforcement Learning: A Brief Survey. IEEE Signal
Process. Mag. 2017, 34, 26–38. [CrossRef]

100. Nguyen, T.; Nguyen, N.D.; Bello, F.; Nahavandi, S. A New Tensioning Method using Deep Reinforcement Learning for Surgical
Pattern Cutting. IEEE Int. Conf. Ind. Technol. 2019, 55, 1339–1344. [CrossRef]

101. Jiang, Y.; Jiang, Z.P. Robust adaptive dynamic programming and feedback stabilization of nonlinear systems. IEEE Trans. Neural
Netw. Learn. Syst. 2014, 25, 882–893. [CrossRef] [PubMed]
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