
Citation: Shah, S.F.A.; Iqbal, M.; Aziz,

Z.; Rana, T.A.; Khalid, A.; Cheah,

Y.-N.; Arif, M. The Role of Machine

Learning and the Internet of Things

in Smart Buildings for Energy

Efficiency. Appl. Sci. 2022, 12, 7882.

https://doi.org/10.3390/app12157882

Academic Editors: Luisa F. Cabeza

and Salvatore Vasta

Received: 16 June 2022

Accepted: 11 July 2022

Published: 5 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Review

The Role of Machine Learning and the Internet of Things in
Smart Buildings for Energy Efficiency
Syed Faisal Abbas Shah 1, Muhammad Iqbal 2, Zeeshan Aziz 3, Toqir A. Rana 4,5,*, Adnan Khalid 4, Yu-N Cheah 5

and Muhammad Arif 4

1 Faculty of Computer Science & Information Technology, Virtual University of Pakistan,
Lahore 54000, Pakistan

2 Institute of Computing & Information Technology, Gomal University, Dera Ismail Khan 29220, Pakistan
3 School of Science, Engineering, and Environment, University of Salford, The Crescent, Salford M5 4WT, UK
4 Department of Computer Science & IT, The University of Lahore, Lahore 54000, Pakistan
5 School of Computer Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
* Correspondence: toqirr@gmail.com

Abstract: Machine learning can be used to automate a wide range of tasks. Smart buildings, which
use the Internet of Things (IoT) to connect building operations, enable activities, such as monitoring
temperature, safety, and maintenance, for easier controlling via mobile devices and computers. Smart
buildings are becoming core aspects in larger system integrations as the IoT is becoming increasingly
widespread. The IoT plays an important role in smart buildings and provides facilities that improve
human security by using effective technology-based life-saving strategies. This review highlights the
role of IoT devices in smart buildings. The IoT devices platform and its components are highlighted in
this review. Furthermore, this review provides security challenges regarding IoT and smart buildings.
The main factors pertaining to smart buildings are described and the different methods of machine
learning in combination with IoT technologies are also described to improve the effectiveness of
smart buildings to make them energy efficient.

Keywords: machine learning; Internet of Things; smart buildings; challenges in smart buildings;
IoT applications

1. Introduction

The Internet of Things has grown drastically to become one of the most significant
inventions of the 21st century. The IoT consists of a collection of connected physical objects
that are linked together by sensors, applications, and other technologies for data integration
and exchange across devices and systems [1]. These devices connect using the Internet
protocol (IP), which is the same technology that is used to recognize computers on the
Internet and allows users to interact with one another via the Internet. The goal of the
Internet of Things is to have devices that can self-report data and information regularly,
enhancing efficiency and delivering essential information speedier than a system that is
based on human input [2]. Smart buildings use connected technologies, devices, data
analytics, and automation to control infrastructures, such as security, lighting, ventilation,
heating, and air conditioning [3]. Smart heating, ventilation, and air conditioning (HVAC)
controls can reduce HVAC usage, especially during peak energy demand periods, by
limiting power consumption in unoccupied building zones, detecting and diagnosing
issues, and limiting energy consumption.

Smart buildings offer great comfort and increase safety for building occupants, im-
prove energy efficiency, and lower facility running costs via automation, sensors, and
remote features. Smart buildings deploy IoT sensors to detect and analyze several factors
in building parameters that can be used to improve buildings’ environments and activities.
Smart buildings, which use the Internet of Things (IoT) to connect building operations,
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and monitor building temperature, security, and maintenance, are easier to control via
smartphones and tablets. Buildings are becoming smarter due to the IoT, which is capable
of integrating thousands of sensors and enabling real-time data collecting and analysis,
making them more efficient and user-friendly [4]. One of the most key technologies to
consider when designing smart buildings is a fire alarm system. An IoT-based fire alarm
system is essential to ensure the protection of people’s lives and to reduce the amount of
damage as much as possible. In [5] the author explained behaviors and energy consump-
tion trends using the machine learning algorithm (also known as J48) and the Weka API
and then classified it according to energy consumption. For home comfort, security, and
energy-saving, HEMS-IoT, a smart energy management system that is based on the big
data for the home and machine learning, was proposed. Machine learning and big data
are crucial because they allow the system to track and classify energy usage efficiency,
recognize user behavior patterns, and keep the buildings occupants comfortable. In [6] the
authors start by exploring the numerous security issues that IoT applications face, second,
to address current security concerns, the authors conducted a survey. Away for developing
smart building applications that link the IoT with smart building web services is described
in [7]. Ref. [8] demonstrate how the IoT can be applied to design smart buildings; the team
employed a smartphone app and also open-platform servers. As a result, they devised
a system for controlling the devices that included relays and a low-cost microcontroller
Arduino board. An Android smartphone application is also included with the smart system,
and users can interact with it.

Ref. [9] present an overview of the application of machine learning techniques for the
achievement of a global implementation of the IoT. A discussion is performed on some of
the essential strategic technologies and application fields that are supposed to drive Internet
of Things research in future years. In [10] an intelligent controller for commercial and resi-
dential HVAC systems was developed by the authors using machine learning techniques.
It is presented in [11] that IoT networks must make contextual and situational customized
resources and managerial decisions regarding the allocation of resources difficulties. In
comparison to conventional resource methods, such as optimization and heuristics-based
methodologies, game theory, and cooperative methodologies, machine learning models
can produce behaviors from the run-time context in response to changes in the climate, as
well as reconfigure and retrain themselves. For IoT application environments that are large
in scale, complicated, distributed, and continually changing, machine learning algorithms
hold promise for independent resource analysis and decision making [12].

Many researchers have recently focused their studies on a variety of topics, such
as smart buildings, sensor appliances, and building management systems, to raise the
standard of living in smart buildings. The primary goal of the current research is to discover
different aspects of IoT that affect smart buildings. Artificial intelligence combined with
the IoT can bring a transformation of businesses and economic work. Artificial intelligence
(AI) is used to create complicated algorithms to defend networks and systems, including
IoT devices. With little or no human involvement, the IoT is powered by AI technologies
that simulate intelligent behavior and assist in decision-making.

The current review highlights the relevant research dealing with the Internet of Things
and machine learning technology and its involvement in smart buildings. Additionally, the
challenges of the IoT technology in smart buildings as well as machine learning techniques
and methodologies, and their characteristics and association with IoT, to improve the
efficiency of smart buildings, are described in this review. Section 2 provides an overview
of the relevant research on the role of IoT devices in smart buildings. The IoT platform
and its components are also described in this section. Furthermore, the challenges in
IoT-enabled smart buildings are described in the Section 2. In Section 3, we go through
the most essential IoT-enabled factors in depth, which need AI integration to make smart
buildings energy efficient. In Section 4 different machine learning algorithms are discussed
in detail, which are very useful to make the smart building more efficient. Section 5 presents
the conclusion.
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2. The Role of IoT Devices in Smart Buildings

We investigated and analyzed prior material in the fields of machine learning and
the IoT, and their role in smart buildings. The papers that made a substantial contribution
to our research are included in the following paragraphs. In [13] it is stated that many
smart devices, including sensing devices, cell phones, and other smart devices, are linked
through the IoT. These devices can exchange information and interact with one another.
The IoT is a technology that connects Internet-connected gadgets, and enables communi-
cation and interaction throughout the physical world, by extending the current Internet.
In [11] according to the authors, agriculture, military, household appliances, and personal
healthcare are just a few of the applications and services available through the Internet of
Things. A new framework is presented by [14] for delivering and maintaining ubiquitous
connectivity, real-time applications, and solutions for transport system requirements, based
on machine learning and IoT capability.

An intelligent system was also created by [14] to enable real-time monitoring and
operation of appliances in a smart house utilizing a low-cost IoT platform for the lab,
which is a free and open-source Internet of Things platform. Data regarding the home,
such as temperatures, light levels, and resident behaviors, are collected using installed
sensors and cameras. If the data exceed the specified thresholds, the inhabitants of the
home are notified via text messages/emails, allowing them to modify the environment
by manipulating the gadgets. To detect aberrant situations, the system was programmed
using artificial intelligence. With current developments, standard buildings can be changed
into smart buildings at a reasonable cost by taking advantage of recent advances in
machine learning (ML), sensor devices, large-scale data analytics, and the Internet of
Things. Only minor infrastructure improvements are required [15]. A three-tier IoT-based
extensible architecture for processing sensor data and identifying the most important
clinical indicators to diagnose heart disease through the use of ROC analysis, the most
important clinical markers that signal potential heart disease, are determined; this model
is proposed by [16].

Smart lighting uses modern controls to eliminate over lighting by including day
lighting and improved functions for detecting occupancy and dimming. Light level
controllers for luminaries are rapidly evolving and gaining adoption throughout the
industry. Step and continuous dimming control are rewarded in demand-response
schemes [17]. Lighting management systems can be programmed to regulate smart
lighting systems that are controlled wirelessly. Retrofitting is made easier with wireless
controllers, while lighting management capabilities provide users with access to controls
through web-based dashboards.

It is becoming increasingly common to install remote smart building monitoring sys-
tems to improve one’s level of convenience and overall quality of life. To sense, transmit
data, and exert power over the home’s supplies, instruments, and surroundings, these
systems require a network of intelligent Internet of Things sensors. For remote moni-
toring to be supported, the devices should have very low power consumption, and the
network provider should cover a larger area. Figure 1 highlights the IoT-based systems in
smart buildings.
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Figure 1. IoT-based systems in smart buildings.

2.1. The Platform and Components of IoT-Based Devices

The Internet of Things (IoT) is a network of interconnected devices that share, com-
municate, and use real-world data to deliver services to individuals, organizations, and
society. The IoT is a technology that links physical devices to the Internet. The IoT platform
connects devices and objects with built-in sensors, integrating data from huge devices and
utilizing analytics to provide the most useful information [18]. IoT technologies have a
variety of applications, such as detection systems, communications technologies, cloud
technologies, and location technologies.

• IoT sensors:

The sensors save all of the information on the server and display it as required, for
example, to draw energy consumption patterns of building workloads and minimize
power usage [19]. This benefits customers and also improves the outside environment of
the building. The main components of an effective IoT system are depicted in Figure 2.

• IoT gateways:

A gateway’s principal function in telecommunications is to act as a link between
different communications systems. With respect of communication options, interfaces, and
protocols, these technologies can vary [20].

• Cloud infrastructure:

The importance of cloud infrastructure in IoT clouds for IoT services, such as vehicle-
to-vehicle (V2V) connectivity, real-time health tracking, and commercial IoT, is higher than
simple computing services [21]. The most popular endeavor is smart device scheduling.
Smart device scheduling effectively controls device functionality for end-users and also
saves money and energy. At the same time, it is guaranteed that the users’ comfort is not
endangered. In this case, the energy management system schedules the devices efficiently
in response to the external data and user input [22].

• Network infrastructure:

In the coming years it is expected that cellular-based technologies that install low
power wide area networks (LPWAN) would be important growth drivers in the Internet of
Things connectivity of smart buildings. There are several different connectivity options
available, such as LTE and LoRAWAN, which are cellular-based, as well as Wi-Fi-based
options, that can be used to link Internet of Things devices to each other and the cloud.
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These networks can function over a considerably greater distance and at much faster data
speeds [23].

Figure 2. Basic components of an effective IoT system.

Smart buildings, which use the Internet of Things (IoT) to connect building operations,
enable activities, such monitoring building temperature, safety, and maintenance, which
are easier to control via mobile devices and computers. Building management systems, IoT
sensors, artificial intelligence, and machine learning are some of the technologies that can
be used in a smart building to regulate its operation.

• Building management systems:

Building management systems, often referred to as building automation systems, have
an important part in energy management in commercial and industrial buildings [24].
Smart buildings provide better convenience for facility managers, increase safety and
comfort for building occupants, and reduce facility running costs through automation,
sensors, and remote features.

2.2. Challenges in IoT-Enabled Smart Buildings

A new industrial infrastructure built on cyber-physical technologies with embedded
software that is linked to the real world via the Internet of Things is referred to as Industry
4.0 [25]. As part of the production process, this framework facilitates communication
by incorporating machine learning (ML) as well as artificial intelligence (AI) [26]. Some
societal uses of IoT include healthcare, home automation, entertainment, workplaces, and
educational buildings. In smart buildings, for example, equipment and devices can be
monitored and regulated to save energy and enhance tenant security and comfort. There
are many challenges in smart buildings. Smart buildings can be made safer and much
more secure via the application of careful planning, capable management, and sensible
regulations [27]. Table 1 summarizes several challenges faced in smart buildings.
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Table 1. Challenges in IoT-enabled smart buildings.

Sr. # Challenges Function and Role in IoT and
Smart Buildings Description References

1 Big data analytics

In smart buildings, enormous
amounts of data are generated
every second and increase to
crucial quantities.

The Internet of Things (IoT) generates
vast quantities of constantly changing,
high-resolution data that can be used
for big data analytics. In the context.

[28]

2 Availability of services
and networks

Intelligent buildings manage a
complex network.

It is one of the big issues that
intelligent buildings manage a
complex network of connected
functional entities across the building.

[29]

3 Cyber security
concerns

Handle the increasing
complexity of building
operations.

Consumer IoT devices, such as IP
cameras, are being integrated into
building automation systems (BAS) to
handle the increasing complexity of
building operations. However, attack
channels have grown, and attacks
might potentially harm building
residents, these changes raise
significant cyber security issues.

[30]

4
System for controlling
the energy use of a
building

Building’s energy management
system which carries out critical
energy management tasks.

It is necessary for the building’s
energy management system to carry
out critical energy management tasks.
It is a big challenge, namely, checking
energy supply parameters, automated
demand reaction, identifying energy
consumption anomalies, and energy
cost inspection.

[31]

5 Increase visibility Visibility is required to detect
misconfigurations.

With pervasive connectivity, visibility
of resources entering and exiting the
network is essential. Visibility is
required to detect misconfigurations,
errors, or anomalies that could result
in a security flaw.

[32]

6
Manageability,
connectivity, and
programmability

Gives smart services to users
while also maximizing resource
utilization.

Applying IoT technologies to
buildings can providesmart services to
users while also maximizing resource
utilization. There are various
problems in designing apps for these
two domains. Three significant issues
are manageability, connectivity, and
programmability.

[33]

7 Sensors range Sensors are necessary in smart
buildings to transfer data.

Limitations in the sensing range are
expensive, especially for smart
buildings.

[34]

8 Energy efficiency in
smart buildings

It provides analytics that how
energy is absorbed in smart
buildings.

To achieve energy efficiency
enhancement, the very first step is to
identify the important parameters
involved in the issue, this is followed
by the formation of appropriate
algorithms for processing the data and
information that has been obtained
based on the history and results of
forecasting analytics of how energy is
absorbed in smart buildings.

[35]
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Table 1. Cont.

Sr. # Challenges Function and Role in IoT and
Smart Buildings Description References

9 Data collection,
processing, and storage

The system should be able to
collect many kinds of
information at the same time.

In IoT, data can be collected from the
indoor/outdoor environments and
building equipment structure. The
system should be able to collect many
kinds of information at the same time
to ensure that correct data
are obtained.

[36]

10
Recognizing and
predicting resident
behavior

In current buildings, current GPS
systems do not offer the level of
precision needed for navigation.

Understanding resident behavior is
difficult, and finding them inside
structures is a huge difficulty. Within
buildings, current GPS systems do not
offer the level of precision needed for
navigation, and their primary purpose
is to track geofences and other
location-based applications.

[28]

3. Most Essential IoT-Enabled Factors Which Need AI Integration in Smart Buildings
to Make Them Energy Efficient

People can feel safe and comfortable in smart buildings with the integration of AI
and IoT. Data from a range of sensors are used by IoT-enabled smart buildings to reduce
energy consumption and increase operational efficiency [37]. IoT devices installed in smart
buildings help smart buildings to control their energy consumption [38]. The Internet of
Things (IoT) detects and analyzes environmental impacts, such as humidity, temperature,
and pressure, to reduce energy consumption in smart buildings. Smart buildings use IoT
sensors to regulate and manage lighting by turning them on and off as needed. Emergency
management and reaction can be improved with the usage of IoT technologies, resulting in
considerably improved results. By connecting sensors and sending real-time information to
managers, rescuers, and endangered people, the Internet of Things (IoT) has transformed
our perspective regarding safety mechanisms [39]. The application of these technologies,
as well as the utilization of recent advancements, has obvious benefits in smart building
projects as shown in Figure 3. These use-cases can enhance structured smart functionalities
and promote end-user comfort.

• Building automation systems (BAS):

Building automation systems (BAS) are intelligent systems that aim to automate the
management of multiple control functions and increase resources. Scalability issues include
not just adding additional devices, but also managing them, as well as guaranteeing
consistent and robust communication [40]. When comparing different IoT solutions, the
amount of time it takes to install each sensor correlates directly to the entire cost [41]. BAS
keep an eye on each utility’s performance and potential problems and notify the building’s
managers if anything goes wrong.

• IoT indoor localization:

An IoT indoor localization algorithm that determines the position of things must be
hybrid. A hybrid algorithm is a problem-solving algorithm that incorporates two or more
different algorithms. Sensor-based indoor tracking and placement are frequently required
in evolving IoT applications, and efficiency is considerably improved by detecting the
nature of the nearby indoor environment [42].
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Figure 3. AI-based systems for smart buildings.

• Lighting Management System:

IoT-based lighting control is essential for smart buildings, to provide lighting control
in buildings, and a range of vendor-specific approaches and technologies have been im-
plemented. Visible light communications (VLC) solutions, which will become available in
the next several years, are another breakthrough in Internet of Things (IoT) adoption [37].
Infrared transmission has been employed in systems (both outside and indoors the former
is based on free-space optical communication systems). VLC is commonly assumed to
include visible light produced by LEDs [43].

• Protective Schedulers:

Smart plug load controls are receptacles and power strips that automatically turn off
power to equipment that can detect the major load, such as a computer, and adjust the
operation of peripheral devices appropriately. Plug load schedules can be incorporated
into lighting and buildings’ management systems (BMS) for centralized control [44].

• Large Amounts of Data:

Different businesses face basic challenges in integrating and sharing large amounts
of data. Traditional databases are merged with big data databases to generate meaningful
results. Big data exchange among consumers, on the other hand, is seen as a major
difficulty [45]. Furthermore, big data raises serious challenges, such as data privacy and
security. The IoT with AI offers solutions to these problems, as IoT is being integrated into
decentralized energy systems to enhance the environment by increasing energy efficiency
and reducing waste [46].

• Fire Control System:

Only fire control systems that can deliver accurate and timely fire alarms that identify
the specific location of the fire can be considered effective. Enhanced fire safety can be
included in a smart building through the usage of app-based, cloud-based, and wirelessly
connected system components. When integrated into a smart building, it is feasible to
massively improve fire safety in a variety of ways, ranging from temperature sensors that
can determine smoke alarms that can automatically activate in response to an emergency. In
addition, fire protection and alarm systems have developed into highly advanced computer-
based systems, which combine fire detection and disaster communication systems as an
integral component of the entire operations [47].

• Heating, Ventilation, and Air Conditioning (HVAC):

Intelligent heating, ventilation, and air conditioning make use of sensors that are inte-
grated into the building automation system. These sensors compile information about the
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environment. HVAC equipment gives users the flexibility to fine-tune the heat, humidity,
and airflow in several different zones. Early defect prediction and identification in heating,
ventilation, and air conditioning (HVAC) systems have the potential to reduce the damage
that can be caused to equipment, hence enhancing the dependability and safety of smart
buildings [31].

• Security:

The development of so-called smart buildings has given rise to significant issues, in-
cluding safety and the selection of an alarm verification service in order to be in compliance
with regulations and produce an atmosphere that is significantly more comfortable, produc-
tive, and safe. The application of technology is required for the creation of user-centric smart
buildings by organizations. These buildings must be able to keep people safe from physical
threats, allow for a safe return to the workplace following a pandemic, and continue to
operate normally in the event of Internet interruptions such as cyber-attacks [48].

• Weather System:

The term temperature refers to a physical quantity that indicates the relative levels of
heat and cold; in the context of building control, it is a very important parameter. The ability
of modern buildings to make temperature adjustments automatically has the potential
to both make people’s living and working environments more comfortable and save a
significant amount of energy. The most typical being the wind that is cold in the summer
and the wind that is warm in the winter. The primary purpose of the wind sensor is to
determine the velocity of the wind within the ventilation ducts while also performing
volumetric calculations on the air passing through it [49].

4. AI-Based Approaches in Smart Buildings

Smart building is a building that is equipped with automated control systems and
makes use of information to increase the operation of the building as well as the level of
comfort for its users. Artificial intelligence (AI) combined with buildings and IoT devices
have the potential to improve inhabitant experience, operational efficiency, and space and
asset utilization [50]. With the use of AI, building systems can now integrate excess data
from IoT devices and occupant behavior independently to develop knowledge, optimize
processes, and enhance environmental effectiveness.

IoT and AI platforms’ learning capabilities allow for the creation of innovative new
services for interacting with building occupants. Through automated operation processes,
these technologies have the potential to decrease costs [51]. In smart buildings, energy
consumption can be reduced by implementing AI technology for improved control, consis-
tency, and automation. Different machine learning algorithms are compared and applied
in smart buildings. In buildings’ energy systems, AI-based techniques are being applied.
Diesel generators (DGs), wind turbines (WTs), photovoltaic panels (PVs), thermal energy
storage systems, electric energy storage systems, lighting systems, HVAC systems, window
management systems, blind systems, electric vehicles (EVs), electric heaters (EWHs), gas
boilers, and washing machines (WMs), are all examples of energy equipment used in smart
buildings [52]. It is critical to schedule such equipment in a coordinated way because they
have significant social, environmental, and economic implications [53].

4.1. Different Machine Learning Methods and Algorithms Which Can Be Integrated with IoT for
Smart Buildings Energy Efficiency

The most used ML approaches that can be used with IoT to make smart buildings the
most energy-efficient are detailed in the following subsections and highlighted in Figure 4.
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Figure 4. IoT integration with machine learning algorithms for smart building energy efficiency.

4.1.1. Artificial Neural Networks (ANNs)

Smart building strategies aim to reduce energy usage and improve client satisfaction
and comfort. They are based on the use of intelligent sensors and software to analyze both
external and indoor elements to provide comfortable monitoring, as well as safety devices
for energy usage management. Artificial neural networks (ANNs) can learn the most
important information trends in a multidimensional environment. ANNs have been used
in the application of solar energy to estimate building heating needs [54]. ANNs are also
being used in ventilation, solar radiation, air-conditioning technologies, power-generation
modeling and control, load forecasting, and refrigerators. The random forest model was
used to estimate energy consumption in residential structures, and the Bayesian regularized
neural network (BRNN) approach is used to predict several building energy demands
from an environment input data set [55]. The use of the ANN approach makes it possible
to monitor in real-time, for example, an artificial neural network (ANN) can beused to
estimate and forecast the temperature of a specific area in the building [56]. Many different
scenarios can be simulated using the energy simulation software, Energy Plus, creating an
abundance of data that can be used to train an ANN model and calculate energy usage [57].

Neural networks may not always produce the same results for the same input; neural
network-based systems and solutions require extensive training [58]. The flow of input
signal analysis to obtain energy estimation is contained in the signal. The outcome of
the energy calculation from the input signal is widely used to obtain actions regarding
hardware/software-based smart building functionalities. Mobile phones can also be used
to acquire voice instructions to regulate the electrical appliances in intelligent buildings [59].
The user can use a mobile phone to enter voice commands, which are then shared with the
building’s energy management system via Bluetooth and Wi-Fi communication, and then
analyzed to decode the necessary actions of electrical appliances.

4.1.2. Wavelet Neural Network

Building energy usage must be forecasted to achieve effective energy management
and reduce environmental impacts. In variable air volume (VAV) technologies, a wavelet
neural network is a fault detection solution for temperature, flow rate, and pressure sensors.
Wavelet transforms and neural networks are combined in this method. It is possible to
predict the reliance on renewable microgrid systems in time-series data using this method,
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which helps to reduce system costs while also maximizing battery charging time. The
accuracy has been greatly enhanced by combining the two procedures [60].

A wavelet neural network approach was proposed by [61] for improving PID con-
troller performance. PID stands for (proportional + integral + derivative) controller. [62]
implemented neural network PID as the basis for a modern control system that is based
on previous investigation. As it provides the closed-loop control system’s predetermined
value, the central control’s brain is its control strategy management section. Therefore, an
intelligent strategic control process is critical because it has the power of generating control
logic; it is ideal for smart building technologies that are adaptive depending on the latest
environmental parameters [63]. On/off, proportional (P), proportional + integral + deriva-
tive (PID), proportional/integral (PI), as well as control methods, are the most commonly
used control techniques. The on/off control mode is frequently used in building lighting
and shading systems. To monitor the set value, controllers using PI/PID models are widely
utilized in the development of heating and ventilation systems. The self-learning and
dynamic decoupled control characteristics of a neural network PID are excellent [64].

4.1.3. Deep Learning Algorithms

Deep learning approaches, such as unsupervised or semi-supervised extracting fea-
tures, as well as hierarchical feature extraction, are some of the promising aspects of the
field of deep learning algorithms. Recurrent neural networks (RNN), convolution neural
networks (CNN), deep Boltzmann machine (DBM), stacked auto-encoders, and deep belief
networks (DBN) are among the most often used deep learning (DL) techniques. Drop-out
and convolutions are two approaches used by DL for models to learn quickly from large
amounts of data. However, due to the orders of magnitude of parameters needed by the
models, DL needs more data to learn than other algorithms [65]. Deep learning allows
us to design next-generation smart sensors for sophisticated building automation with
tremendous agility. We can instantly respond to new forms of data, adapt to new situations,
and fully utilize computing capacity when they become accessible. Deep learning provides
better performance over classical machine learning. DL allows achieving unprecedented
levels of sensory and analytic intelligence using the most cost-effective and energy-efficient
embedded processors [66].

4.1.4. Time Series Analysis

Time series forecasting is a very essential field of machine learning. Time series data
sets often have high dimensionality. The elimination of dimensionality is one of the main
goals of time series representations, the types of representation are classified as follows:
non-data-adaptive depiction, model-based depiction, and data-adaptive depicting [67].
In smart buildings, [68] established a time series-based framework for deriving temporal
principles from observable physical and instrumental activity. Using a combination of the
fuzzy time series and universal harmonic search methods in conjunction with a support
vector machine (SVM), [67] developed an electric load prediction model that can generate
reliable prediction results. Data-driven methodologies for measuring building energy
were evaluated by [69]. Their findings indicated that data-driven approaches include load
predictions, energy pattern profiles, and retrofit options. The ANNs model was perhaps
the most famous in a wide range of applications, from energy forecasting to retrofitting
solutions [70]. SVM models were commonly used for large-scale building energy analyses
because of their flexibility of training [71].

4.1.5. Regression

Finding a real-valued target function is the goal of a regression problem [72]. It de-
scribes the link between variables that are evaluated frequently using a degree of inaccuracy
in the model’s predictions [73]. Linear regression, regression analysis, and ordinary least
squares regression are the most used regression algorithms. The orthogonal matching pur-
suit algorithm’s regression approach was employed by [74] to discover the environmental
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and physical variables that contribute to smart building energy efficiency. In this study,
researchers evaluated and explored the applicability of regression models for electrical load
prediction in commercial buildings. They used datasets from real buildings to provide em-
pirical comparisons between several models. Regarding other more complex ML models,
the regression models behaved fairly well, according to the researchers [75].

4.1.6. Deep Reinforcement Learning

Reinforcement learning is a well-known machine learning subject that deals with
systematic decision-making in the face of uncertainty [76]. In the case of reinforcement
learning, the artificial object learns and predicts from experience and uses the trial-and-error
method to update its impact. When the solution space for a building energy optimization
process is extremely big, existing approaches cannot solve it in real-time. Traditional
energy-management approaches have specific applicability requirements, indicating that
they are limited in their adaptability when faced with a variety of building situations.
Artificial intelligence technology is finding significant competency in management and
optimization, due to the fast development of IoT technology and computing capabilities.
Deep reinforcement learning (DRL) is a generic artificial intelligence technology that has
the potential to address the difficulties of energy efficiency in smart buildings [77].

4.1.7. Decision Tree Classification Algorithm

As a result of the wide range of machine learning algorithms available, selecting the
one that is best suited to the dataset and problem at hand is the most critical consideration
when creating a model. Decision trees are intended to mimic human decision-making
abilities, thus they are easy to understand [78]. Non-parametric supervised learning with
decision trees can be used for both regression and classification. Decision trees are a type
of predictive modeling that helps in mapping several decisions or solutions to a certain
result. The decision trees are made up of different kinds of nodes. The root node is the
starting point of the decision tree, which is often the entire dataset in machine learning.
The endpoints of branching are referred to as leaf nodes. From a leaf node, the decision
tree will not branch any further. The internal nodes in a decision tree in machine learning
are the data’s attributes, and the leaf node is the result [79]. Decision tree models have been
applied in numerous areas in smart energy buildings, including predicting the danger of
an outage and storing energy management and energy usage in smart buildings [80].

4.1.8. Genetic Algorithms and Their Use-Cases in Machine Learning

A genetic algorithm (GA) is an approach that can be used to solve a wide variety
of optimization issues. GAs can be used to locate huge areas or multimodal spaces. In
order to create a genetic algorithm (GA) to solve problems with search and optimization,
a heuristic type of search strategy is applied [81]. This algorithm is a subclass of the
evolutionary algorithms used in computing. To solve issues, genetic algorithms use the
principles of genetics and natural selection. A genetic algorithm implements the concept
of computation by representing chromosomes with arrays of bits or characters normally
called binary strings [82]. Each string corresponds to a possible solution and the genetic
algorithm then modifies the most probable chromosomes in pursuit of better results. TPOT
(tree-based pipeline optimization) is an auto-ML system to improve machine learning
pipelines through the application of genetic algorithms [83]. [20] developed a prediction-
based power management system for reducing energy usage and enhancing user comfort in
residential structures. To increase the overall performance of energy consumption reduction
and optimize user pleasure, the researchers used data smoothing during the optimization
procedure and employed a genetic algorithm for improving energy efficiency.

4.1.9. Support Vector Machines (SVMs)

Supervised learning algorithms include support vector machines (SVMs) that use
vector support machines. By estimating the occupancy rate, their goal is to be able to predict
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the current state of the facility in terms of facility management, resident satisfaction, and
overall security and safety [84]. Aiming to find the hyper plane with the highest margin of
separation between two categories, the SVM algorithms attempt to divide the data into two
groups: both occupied and empty [85]. To classify non-differentiable pair data, non-linear
kernel functions, such as radial basic functions, can be utilized to describe the data in larger
dimensions and subsequently be used for classification. Classifying data is the most typical
use case for a support vector machine. Finding a function for all the training data, especially
information regarding the target, is the primary goal of these techniques. Temperature,
humidity levels, and the strength of the sun’s radiation should all be taken into account.

In the following Table 2, different kinds of machine learning algorithms and the
objectives of these algorithms are discussed with their use in IoT applications to make
smart buildings more energy efficient.

Table 2. Machine learning algorithms, the objective of IoT technologies, and their domain in smart
building applications.

Sr.
#

Machine Learning
Models/Algorithms

Objectives in IoT
Technologies

Smart Buildings
Applications Domain Advantages Disadvantages

1 ANNs Forecasting and
Modeling.

Reduce energy usage
based on intelligent
sensors.

Excellent accuracy and
comfortable
monitoring

Complex

2 WNN
Forecasting events
based on time series
data.

Used in building
lighting and shading
systems.

Excellent consistency Low speed

3 Deep learning

It is helpful in both the
prediction of data and
the modeling of
patterns.

Useful for designing
and modeling
energy-efficient
systems.

High precision and
acceptable speed Very complicated

4 Time Series Analysis High dimensionality.
Generates reliable
prediction results for
building energy.

Predict the Future

The observations
are not
independent of
one another

5 Regression Behavior prediction.

Discover the
environmental and
physical variables that
contribute to smart
building energy
efficiency.

Rapid speed Unreliable
precision

6 Deep Reinforcement
Learning

Systematic
decision-making.

It has the potential to
address the difficulties
of energy efficiency in
smart buildings.

Solve complicated
tasks Very complicated

7 Decision Tree
Classification

Maps several
decisions.

Predicts the danger of
an outage and handles
energy management
and energy usage in
smartbuildings.

Simple to understand Relative inaccurate

8 Genetic Algorithms Optimization of issues.

Managing loads
optimally and
enhancing energy
efficiency.

Excellent accuracy Low speed

9 Support vector
Machines

The organization of
data and the
protection of it in IoT.

Prediction of the
amount of energy used
in buildings.

Excellent accuracy It is complex and
the speed is low
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5. Conclusions

Researchers in the field of smart buildings are looking to machine learning approaches
for managing, analyzing, and improving the energy efficiency of smart buildings. In this
study, the most essential factors of smart buildings are discussed, with a special emphasis
on what is currently required of smart building and why machine learning algorithms are
important for integration with the IoT to make buildings energy efficient. The use of IoT
technology in smart buildings provides numerous benefits, but it also has some challenges.
In this review, an overview of the topic of Internet of Things technology, as well as its
role in smart buildings has been described. The platform of IoT devices and their basic
components are also presented. Internet of Things (IoT) devices in smart buildings present
many challenges and those challenges need solutions.

We have shown many essential factors and characteristics of smart buildings, which
are described above, and those factors require integration with machine learning to solve
energy efficiency and other challenges. In this review, we outline the most common machine
learning algorithms that can be combined with IoT to make smart buildings more energy-
efficient. These machine learning methods can play a vital role with IoT to make smart
buildings more energy efficient.

There are still a variety of challenges in smart buildings for energy efficiency, despite
the fact that recent technological advancements in machine learning algorithms have made
it possible to implement the concept of smart buildings. If we are able to find more solutions
to the different challenges in a timely manner, it will be a tremendous driving factor for
improvements in both the academic and industrial domains of smart building research.
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