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Abstract 

Background: Multiple sclerosis (MS) is a neurological condition whose symptoms, severity, and progression over 
time vary enormously among individuals. Ideally, each person living with MS should be provided with an accurate 
prognosis at the time of diagnosis, precision in initial and subsequent treatment decisions, and improved timeliness 
in detecting the need to reassess treatment regimens. To manage these three components, discovering an accurate, 
objective measure of overall disease severity is essential. Machine learning (ML) algorithms can contribute to finding 
such a clinically useful biomarker of MS through their ability to search and analyze datasets about potential biomark-
ers at scale. Our aim was to conduct a systematic review to determine how, and in what way, ML has been applied to 
the study of MS biomarkers on data from sources other than magnetic resonance imaging.

Methods: Systematic searches through eight databases were conducted for literature published in 2014–2020 on 
MS and specified ML algorithms.

Results: Of the 1, 052 returned papers, 66 met the inclusion criteria. All included papers addressed developing clas-
sifiers for MS identification or measuring its progression, typically, using hold-out evaluation on subsets of fewer than 
200 participants with MS. These classifiers focused on biomarkers of MS, ranging from those derived from omics and 
phenotypical data (34.5% clinical, 33.3% biological, 23.0% physiological, and 9.2% drug response). Algorithmic choices 
were dependent on both the amount of data available for supervised ML (91.5%; 49.2% classification and 42.3% 
regression) and the requirement to be able to justify the resulting decision-making principles in healthcare settings. 
Therefore, algorithms based on decision trees and support vector machines were commonly used, and the maximum 
average performance of 89.9% AUC was found in random forests comparing with other ML algorithms.

Conclusions: ML is applicable to determining how candidate biomarkers perform in the assessment of disease 
severity. However, applying ML research to develop decision aids to help clinicians optimize treatment strategies 
and analyze treatment responses in individual patients calls for creating appropriate data resources and shared 
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Background
Multiple sclerosis (MS) is a condition affecting the cen-
tral nervous system (CNS) characterised by a mixture of 
inflammation and neurodegeneration. Several disease 
patterns (a.k.a. phenotypes) are recognized, including, 
but not limited to, relapsing remitting MS (RRMS) and 
secondary progressive MS (SPMS), but the clinical course 
varies considerably among individuals [1]. In recent 
years, the number of treatments available to reduce 
inflammatory processes has increased dramatically: 
these agents can be very effective in suppressing clinical 
disease activity, but they are not effective in all patients 
and many of them are associated with an appreciable 
risk of significant side effects. This has resulted in a drive 
towards personalised treatment for people living with MS 
(PwMS); ideally, individuals should be provided with (i) 
an accurate prognosis at the time of diagnosis, (ii) opti-
mization of initial treatment decisions, and (iii) greater 
precision in following up the response to treatment and, 
therefore, early detection of the need to modify a particu-
lar treatment regimen [2].

To manage these three components, it is essential to 
discover an accurate, objective way of measuring over-
all disease severity, or status. However, in common with 
many neurological conditions, MS still lacks such a 
measure. Diagnosis is based on a combination of clini-
cal features and information obtained from diagnostic 
tests, most notably magnetic resonance imaging (MRI) 
[3]. Clinical disease severity is generally quantified using 
the Expanded Disability Status Scale (EDSS), MS Severity 
Score (MSSS), or MS Functional Composite (MSFC) [4, 
5], but these tools have drawbacks: each of them suffers 
from intra-subject and intra-observer variability and the 
EDSS and MSSS are biased towards the motor domain 
[6].

Accordingly, there has been a search for a biomarker 
of MS that would facilitate more accurate and objec-
tive definition of disease severity/status. A biomarker 
has been defined as “a characteristic that is objectively 
measured and evaluated as an indicator of normal bio-
logical processes, pathogenic processes, or pharmaco-
logic responses to a therapeutic intervention” [7]. MRI is 
currently the most widely-used biomarker in MS. How-
ever, it is not ideal: abnormalities on MRI are not well 
correlated with clinical manifestations of disease; it is 
expensive, invasive, and time-consuming; and it requires 

patients to travel to MRI scanners. Hence, several alter-
native biomarkers — spanning from blood or breath 
analysis to cognitive measures — are undergoing assess-
ment in different centres [8–10]. Although this research 
into a suitable clinical biomarker other than MRI has 
been extensive, no clear candidate that might comple-
ment, or replace, MRI has yet been found.

An effective biomarker of MS would also contribute to 
better overall health and healthcare experience of PwMS. 
Research examining the experiences of PwMS describes a 
lack of information and support, particularly at the time 
of diagnosis [11, 12], requiring extensive personal effort 
to meet patients’ information needs during an already 
stressful time [13]. Experiences of uncertainty dominate 
this literature, when considering treatment options and 
possible side effects, and in dealing with the impact of 
MS on work, family, and social life [14, 15]. Identification 
of a reliable biomarker would help.

The focus of this systematic review is to study machine 
learning (ML) as a way to support the discovery of bio-
markers that can be measured regularly and inex-
pensively using non-invasive and readily-accessible 
techniques, thus reducing the test burden on PwMS and 
optimizing early detection and treatment management. 
ML refers to computational algorithms for gathering and 
making sense of evidence derived from large volumes of 
data thereby permitting, or facilitating, human judge-
ment and decision-making [16, 17] (see Supplementary 
Material A for further background on ML problems; 
supervised and unsupervised ML algorithms; and their 
timeline). ML has the potential to help in the search for 
a clinically useful biomarker because it can assess how 
well candidate biomarkers perform in the assessment of 
disease severity and prognosis, either individually or in 
combination. ML may also assist in developing decision-
support techniques to aid clinicians and PwMS in mak-
ing optimal individual treatment choices and in assessing 
the response to a chosen treatment.

To determine how best to apply ML, it is important to 
begin by ascertaining what is already known. Compre-
hensive reviews of ML-assisted MRI analysis in MS have 
already been performed [18, 19]. However, to date, ML 
has been applied less frequently to other type of biomark-
ers [20]. This systematic review was therefore designed 
to investigate how ML has been applied to the study of 
potential non-MRI biomarkers in the management of 

experimental protocols. They should target proceeding from segregated classification of signals or natural language 
to both holistic analyses across data modalities and clinically-meaningful differentiation of disease.

Keywords: Deep learning, Disease progression, Medical informatics, Multiple sclerosis, Prognosis, Supervised 
machine learning, Systematic review
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MS, looking specifically at prognosis, disease sever-
ity, choice of treatment, and assessment of response 
to treatment.

Methods
The present systematic literature review, registered under 
the international prospective register of systematic reviews 
(PROSPERO) number CRD42020163161, followed the 
preferred reporting items for systematic reviews and 
meta-analyses (PRISMA) guidelines [21]. Eight resources 
— PubMed, Cochrane, Google Scholar1, ScienceDirect, 
Scopus, Web of Science, Lens, and dblp — were used as 
the primary tools for indexing and retrieving publica-
tions, granted their index size and retrieval reliability 
[22]. The search query was formed by combining the 
term “Multiple Sclerosis” with a number of ML related 
terms as described in Table  1. Namely, depending on 
the resource, both general queries and their more spe-
cific variants were used to maximize number of returned 
relevant publications. Papers published over the 5 years 
following the introduction of generative adversarial net-
works (GANs; Supplementary Material A) [23] (i.e., from 
1 January 2014 to 31 January 2020) were considered.

In order to ensure a low risk of bias, initial searches 
were conducted by three medical ML researchers. They 
performed independent searches (Table 1) using the pro-
tocol described below and each collected a list of relevant 
publications. The decision to include or exclude any 

article not found as relevant by all three reviewers was 
made through discussion until a consensus was reached.

The following exclusion criteria (EC) were defined: 

 EC.1. Duplicates were removed.
 EC.2. Publications that were not original full peer-

reviewed papers (e.g., reviews, book chapters, sur-
veys, and abstracts) were removed.

 EC.3. Papers that were not about PwMS were removed.
 EC.4. Papers that were not about ML were removed.
 EC.5. Papers working solely on data from MRI, opti-

cal coherence tomography, visual perimetry, and/
or lumbar puncture were removed because these 
examinations are either not routinely conducted as 
standard clinical tests for MS or were not aligned 
with our focus on biomarkers that can be measured 
regularly and inexpensively using minimally inva-
sive and readily-accessible techniques.

The selection of the studies considered in this review 
was performed in four phases (Fig. 1). In the identifica-
tion phase, the previously discussed search keywords 
constrained within the search time frame were applied in 
the databases and resulted in 1, 052 publications. In the 
screening phase, 368 publications were were excluded as 
duplicates (EC.1) or non-original papers (EC.2), leaving 
682 documents. In the eligibility phase, 355 papers were 
excluded as they did not consider MS and ML (EC.3 and 
EC.4). A further 261 papers were excluded on the basis of 
looking at MRI or other pre-specified tool (EC.5).

Table 1 “Multiple Sclerosis” and specific machine learning algorithms returned 1, 052 studies from eight search resources

# Sort by relevance

Search terms Search resource Number of 
returned 
studies

“Multiple Sclerosis” AND (“Machine Learning” OR “Machine Intelligence”

OR “Deep Learning” OR “Decision Tree*” OR “Random Forest*” PubMed 75

OR “Pattern Recognition” OR “Genetic Algorithm*” OR “Supervised Algorithm*”

OR “Decision Support System*” OR “Evolutionary Computation*” Cochrane 25

OR “Neural Network*” OR “Support Vector Machine*” OR “Autoencoder*” Google scholar 100 #

OR “Deep Belief Network*” OR “Adversarial Network*”

OR “Self Organizing Map*” OR “Self Organising Map*”)

“Multiple Sclerosis” AND (“machine learning” OR “machine intelligence”) Science direct 340 #

Scopus 169

Web of Science 179 #

Lens 160

“Multiple sclerosis” AND “machine learning” dblp 4 #

Total count (# Sort by relevance) 1052

1 Using an incognito window on Google Chrome to avoid personalized out-
comes.
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Ultimately, 66 papers remained for studying; the major-
ity of them ( n = 22 ) were published in 2019, followed by 
15 and 13 papers in 2018 and 2017, respectively (Fig. 2).

As a validity assurance method, these papers were 
assessed with respect to the guidelines for develop-
ing and reporting ML analyses and predictive mod-
els in biomedical and clinical research [24, 25] (see 

Additional file 2 for the outcomes). Because almost all 
criteria included in the guidelines were followed, no 
further exclusions were made.

Fig. 1 Flow chart of the systematic review process

Fig. 2 Distribution of manuscripts with publication years. The total number of publications adds up to 68 because out of the 66 included 
publications, one discussed both diagnosis and MS sub-types and another discussed both diagnosis and prognosis
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Table 2 Summary of 49 included papers that reported on applications towards supporting diagnosis, disease status assessment, MS 
sub-typing, and prognosis. See Table 3 for a summary of 17 included papers that reported on other applications. Abbreviations as 
below in the Table

Author Data sources ML methods Outcomes

Diagnosis vs normal

Ahmadi et al. [26] EEG OS-ELM; Accuracy in [90.0%, 91.0%].

Andersen et al. [27] Metabolomics LR; RF; AUC in [81.0%, 86.0%].

Bertolazzi et al. [28] Genes KNN; SVM; DT; Accuracy in [92.0%, 95.0%].

Broza et al. [29] Breath markers NN; Accuracy in [72.0%, 90.0%];

AUC in [79.0%, 87.0%].

Chase et al. [30] Medical records NB; NLP; AUC in [90.0%, 94.0%].

deAndrés-G. et al. [31] Genetic pathways Distance-based classifier; Accuracy in [93.8, 98.2%].

Minimum spanning tree; Neurogenesis and Hemoglobin related genes.

Galli et al. [32] Lymphocytes NN; TNF, GM-CSF, IFN-γ , IL2, and CXCR4.

Goldstein et al. [33] SNP RF; LASSO; GLM; KNN; LR; CRHR1.

Goyal et al. [34] Cytokines SVM; NN; DT; RF; Accuracy = 90.9%; AUC = 95.7%.

Lötsch et al. [35] Lipid markers SOM; AdaBoost; KNN; RF; Accuracy in [92.5%, 100%]; AUC in [92.5%, 100%].

Lötsch et al. [36] Lipid markers SOM; Accuracy in [77.0%, 94.6%]; Ceramides.

Perera et al. [37] Tremor Linear Regression; SVR; RF; Accuracy in [84.2%, 90.8%]; Velocity of index finger.

Prabahar et al. [38] MicroRNA SVM; Accuracy in [87.8%, 90.1%].

Severini et al. [39] Balance board SVM; Accuracy in [83.3, 85.5%].

Telalovic et al. [40] lncRNAs RF; Accuracy in [61.5%, 84.6%].

Torabi et al. [41] EEG SVM; KNN; Accuracy in [79.8%, 93.1%].

Zhang et al. [42] Genetic pathways SVM; Accuracy in [61.2%, 70.3%].

Kiiski et al. [43] ERPs Linear Regression; Visual task is better than auditory task.

Saroukolaei et al. [44] Enzymes Linear Regression; NN; Higher CA.

Sun et al. [45] Postural sway RF; Accuracy in [92.3%, 95.6%].

Diagnosis vs  other diseases

Bang et al. [46] Gut microbial SVM; KNN; LogitBoost; Logistic Tree; Accuracy in [96.4%, 98.3%].

Guo et al. [47] Transcriptomics KNN; SVM; NB; NN; LR; RF; Accuracy in [77.2%, 86.4%];

TNFSF10 is allied to the PwMS.

Ohanian et al. [48] Key symptoms DT; Accuracy in [79.2%, 81.2%];

Immune domain is useful in this case.

Ostmeyer et al. [49] B-cell receptor Optimize Log Likelihood; Accuracy in [72.0%, 87.0%].

Disease status

Azrour et al. [50] Gait analysis DT; EDSS score in [< 0.97 (No MS), >4.15 (MS)].

Fritz et al. [51] Falls risk LR; Fallers and near-fallers are at similar risks.

Gudesblatt et al. [52] Falls risk RF; Accuracy in [82.9%, 91.2%];

F1 score in [78.9%, 91.3%].

Haider et al. [53] Body movements SVM; KNN; RF; Accuracy in [95.5%, 100%].

Jackson et al. [54] Genetic markers RF; 19 genetic variants.

Kosa et al. [55] Clinical data, MEP GA; CombiWISE is better than MRI measures.

McGinnis et al. [56] Gait speeds SVR; RMSE speed in [0.12 m/s, 0.14 m/s].

Morrison et al. [57] Motor assessment DT; SVM; Visualisation reduce gap between human and ML.

Shahid et al. [58] Clinical data KNN; SVM; RF; Rough Set; Accuracy in [79.7%, 84.0%].

Supratak et al. [59] Walking speed SVR; Walking speed in [0.57 m/s, 1.22 m/s].

MS sub-types

Acquarelli et al. [60] Pathology NLP; Clustering; Pathological profiles and disease duration.

Fiorini et al. [61] Clinical data LS; LR; SVM; KNN; Accuracy in [75.0%, 78.3%];

F1 score in [62.3%, 70.2%].

Gronsbell et al. [62] EMR SSL; Accuracy in [92.9%, 93.9%].

Gupta et al. [63] Microbiomics RF; Specificity = 86.4%; Sensitivity = 45.4%.
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Results
The 66 included studies explored the application of ML 
to MS for purposes ranging from diagnosis and prog-
nosis to measuring disease status and severity levels 
(Tables  2 and 3; Additional file  3). They all followed the 
recommended reporting guidelines [24, 25] from what to 
include when reporting predictive models in biomedical 
research to how to succinctly present standardized results 
of ML methods. In these studies, algorithmic choices 
were dependent on both the amount of data available for 
supervised ML and the requirement to be able to justify 
the resulting decision-making principles in healthcare set-
tings. Typically, datasets with fewer than 200 PwMS were 
available for supervised ML and, therefore, support vec-
tor machines (SVMs) and decision tree-based algorithms 
were common (Figs. 3 and 4; Additional file  1). These ML 
applications focused on biomarkers of MS, ranging from 
those derived from omics and phenotypical data (e.g., 

cognitive, balance, gait, or other clinical tests) to patients’ 
self-reported assessments (Figs. 5 and 6).

Aims and outcomes of applications
ML applications to differentiate PwMS from controls 
emphasized the benefits of a diversity of data sources in 
the search for a clinically useful biomarker of MS (Table 2 
and Additional file  3). This differentiation problem was 
studied in as many as 20 out of the 66 included studies 
( 30.3% ) [26–45]. These experiments claimed an accuracy 
of over 90.0% in ML looking at medical records [30], elec-
troencephalogram (EEG) signals [26, 41], tremor or pos-
tural-sway measurements [37, 45], and omics data [28, 
34–36, 38]. Decision trees [28, 34], random (decision) 
forests [34, 35, 37, 45], SVMs [28, 34, 37, 38, 41], neural 
networks (NNs) [26, 34], self-organizing maps (SOMs) 

Table 2 (continued)

Author Data sources ML methods Outcomes

Lim et al. [64] Kyneurenine DT; DA; CART; SVM; Accuracy in [83.0%, 91.0%].

Lopez et al. [65] Genetic signatures Clustering; CD69, CCR5, IL13, and STAT3.

Prognosis

Bejarano et al. [66] Clinical, MEP NB; NN; LR; DT; Linear Regression; Accuracy in [67.0%, 80.0%]; AUC in [65%, 76.0%].

Brichetto et al. [67] Clinical data Supervised Algorithms; Accuracy in [82.6%, 86.0%].

Briggs et al. [68] Clinical data LASSO; Obesity and smoking.

Flauzino et al. [69] Clinical data LR; NN; AUC = 84.2; Lower IL4.

Pruenza et al. [70] Clinical data RF; AUC in [80.0%, 82.0%].

Tacchella et al. [71] Clinical data RF; AUC in [69.6%, 72.5%].

Yperman et al. [72] MEP RF; LR; AUC in [72.0%, 75.0%].

Zhao et al. [73] Clinical data SVM; LR; Accuracy in[68.0%, 73.0%].

Zhao et al. [74] Clinical data SVM; KNN; AdaBoost; Accuracy in [76.0%, 90.0%].

Measures: Accuracy = (TP + TN) / (TP + TN + FP + FN); FPR =FP(FP+TN); Precision = TP / (TP+FP); F1 Score = 2*(Recall * Precision) / (Recall + Precision); Sensitivity / 
Recall / TPR = TP / (TP + FN); Specificity = TN / (TN + FP); AUC = Area Under the ROC curve, calculated from the plot of TPR vs. FPR;

Technical: CART = Classification and Regression Tree; DA = Discriminant Analysis; DT = Decision Tree; ET = Extra-Trees; FN = False Negatives; FP = False Positives; 
FPR = False Positive Rate; GA = Genetic Algorithm; GAIMS = Gait Analysis Imaging System; GB = Gradient Boosting; GLM = Generalized Linear Model; IP-GRASP = 
A Greedy Randomized Adaptive Search Procedure with memory; IRT = Item Response Theory; KNN = k-nearest Neighbour; LASSO = Least absolute shrinkage and 
selection operator; LR = Logistic Regression; LS = Least Squares; ML = Machine Learning; MRI = Magnetic Resonance Imaging; NB = Naïve Bayes; NLP = Natural 
Language Processing; NN = Neural Network; OS-ELM = Online Sequential Extreme Learning Machine; QoL = Quality of Life; RF = Random Forest; RMSE = Root Mean 
Square Error; ROC = Receiver Operating Characteristic; RR = Relapsing-Remitting Multiple Sclerosis; SC = Shrunken Centroid; SOM = Self-Organising Map; SNAc = 
Social Network Analysis-based Classifier; SSL = Semi-supervised Learning; SVM = Support Vector Machines; TN = True Negatives; TP = True Positives; TPR = True 
Positive Rate;

Biomedical: CA = Candida Albicans; CAO = Clinician Assessed Outcomes; CFS = Chronic Fatigue Syndrome; CIS = Clinically Isolated Syndrome; EDSS = 
Expanded Disability Status Scale; EEG = Electroencephalogram; EMG = Electromyogram; EMR = Electronic Medical Record; ERPs = Event Related Potentials; HC = 
Healthy Controls; IM &NO = Immune-inflammatory, Metabolic, and Nitro-Oxidative; KP = Kynurenine Pathway; lncRNAs = long non-coding RNAs; ME = Myalgic 
Encephalomyelitis; MEP = Motor Evoked Potentials; MS = Multiple Sclerosis; NAb = Neutralising Antibodies; PP = Primary-Progressive Multiple Sclerosis; PRO = 
Patient Reported Outcomes; PwMS = people living with MS; rRNA = Ribosomal Ribonucleic Acid; SP = Secondary-Progressive Multiple Sclerosis; without MS = 
people living without Multiple Sclerosis; WE = Word Embedding;

Genetics: C6ORF10 = Chromosome 6 Open Reading Frame 10; CASP2 = Caspase 2, Apoptosis-Related Cysteine Peptidase; CCR5 = C-C Chemokine Receptor Type 
5; CD69 = CD69 Antigen (P60, Early T-Cell Activation Antigen); CRHR1 = Corticotropin Releasing Hormone Receptor 1; CXCR4 = C-X-C Motif Chemokine Receptor 
4; GM-CSF = Granulocyte-Macrophage Colony-Stimulating Factor; HLA-DRB1 = Human Leukocyte Antigen haplotype, DR beta 1; IFN-β = Interferon beta; IFN-γ 
= Interferon Gamma; IL2 = Interleukin 2, T Cell Growth Factor; IL4 = Interleukin 4; IL10 = Interleukin 10; IL12Rb1 = Interleukin 12 Receptor Subunit Beta 1; IL13 = 
Interleukin 13; TAP2 = Transporter 2, ATP Binding Cassette Subfamily B Member; TNF = Tumor Necrosis Factor; TNFSF10 = Tumor Necrosis Factor (ligand) superfamily, 
member 10; STAT3 = Signal Transducer and Activator Of Transcription 3;
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[35, 36], and the naïve Bayes algorithm [30] resulted in 
the best learning performance. Analyzing the contribu-
tion of data sources, modalities, and featurizations to the 
ML performance, studies [32, 33, 36, 37, 44] supported 
the possibility of measuring and evaluating stress, anxi-
ety, depression, obesity, and/or inflammatory markers2 as 
diagnostic biomarkers of MS.

Studies on diagnostic applications of ML to distinguish 
MS from other neurological diseases were less com-
mon, but they supplemented our list of promising diag-
nostic biomarkers of MS in the form of genomics and 
gut microbial data (Table  2 and Additional file  3). Four 
studies ( 6.1% ) worked at diagnostic applications of ML to 

distinguish MS from other neurological [47, 49] or medi-
cal diseases3 [46, 48]. These ML applications analyzed 
biological [46, 47, 49] or clinical data [48]. However, the 
ML accuracy of over 90.0% was reached only by analyz-
ing gut microbial data through the LogitBoost classifica-
tion algorithm [48].

Applications of ML to measuring MS status continued 
to encourage our search for disease biomarkers that can 
be measured more regularly and inexpensively than MRI 
(Table 2 and Additional file 3). ML was applied to meas-
uring MS status through disability-scoring or severity 
level computing in eleven studies ( 16.7% ). Data analyzed 
by these applications were drawn from clinical [55, 58], 
physical [45, 50–52, 56, 59], physiological [53, 55, 57], and 

Table 3 Summary of the included papers that reported on applications towards evaluating response to treatment, symptoms, or 
underlying pathophysiology together with those for improving measurement tools or support groups. Abbreviations as above in 
Table 2

Author Data sources ML methods Outcomes

Response to treatment

Baranzini et al. [75] INF-β response RF; Accuracy in [75.0%, 82.0%];

CASP2 / IL10 / IL12Rb1.

Ebrahimkhani et al. [76] microRNA LR; RF; AUC in [65.2%, 91.1%].

Fagone et al. [77] Genomics UCSC; Accuracy = 89.2%.

Karim et al. [78] INF-β response CART; LASSO; SVM; LR; Hazard Ratio[4] in [1.359, 1.372].

Kasatkin et al. [79] Flu-like symptoms NN; Static Model; Sensitivity in [73.4%, 81.2%];

Specificity in [71.6%, 80.6%].

Li et al. [80] Cardiac data DT; Baseline hare rate (HR).

Üçer et al. [81] INF-β response SNAc; SVM; KNN; RF; NB; LR; DT; Accuracy in [63.1%, 64.5%];

F1 score in [77.4%, 78.3%];

Walter et al. [82] Costing data DT; NAb is cheaper than other tests.

Patrick et al. [83] RNAs GB; LR; RF; LASSO; DA; Nearest SC; WE; AUC in [72.1%, 89.9%];

Exacerbation of  symptoms

Bhattacharya et al. [84] Daily activities NN; Fatigue.

Papakostas et al. [85] EMG SVM; RF; ET; Gradient-Boosting; F1 Score in [75.1%, 77.8%].

Underlying pathophysiology

Chi et al. [86] Genetic ancestry LR; RF HLA-DRB1*15:01 and HLA-DRB1*03:01 alleles.

Forbes et al. [87] Gut microbiota RF; Accuracy in [82.0%, 84.0%];

AUC in [91.0%, 94.0%].

Improve measurement tools

Sébastien et al. [88] Gait analysis ET; Accuracy in [70.9%, 91.7%].

Michel et al. [89] Quality of life DT; IRT; Accuracy in [96.0%, 98.0%].

Improve support groups

Rezaallah et al. [90] Social media text NLP; NB; 6 topics related to MS medication.

Deetjen et al. [91] Text data LR; NB; Accuracy in [91.6%, 96.0%];

56% informational and 44% emotional for MS.

2 Namely, the Tumor Necrosis Factor (TNF), Granulocyte-Macrophage Col-
ony-Stimulating Factor (GM-CSF), Interferon Gamma (IFN-γ ), Interleukin 2 
(IL2), and/or C-X-C Motif Chemokine Receptor 4 (CXCR4) [32]; Corticotropin 
Releasing Hormone Receptor 1 (CRHR1) [33]; Ceramides [36]; Candida Albi-
cans (CA) enzymes [44]; and/or velocity of index finger [37]

3 Namely, myalgic encephalomyelitis and chronic fatigue syndrome [46, 48] or 
juvenile idiopathic arthritis, stroke, colorectal cancer, and acquired immune 
deficiency syndrome [46]



Page 8 of 17Hossain et al. BMC Medical Informatics and Decision Making          (2022) 22:242 

genetic [54] sources. However, the only applications to 
exceed the accuracy of 90.0% were those based on assess-
ing body movements [53] or falls risk [52] using random 
forests and SVMs. In contrast, one included study con-
cluded that falls risk should be incorporated into assess-
ment of MS disease status [51].4 Interestingly, when 
considering longitudinal changes in progressive MS, 
the sensitivity5 of the Combinatorial WeIght-adjuStEd  
(CombiWISE) disability-scoring that integrates four 

clinical scales6 was consistently better than that of MRI 
[55].

ML applications to recognize MS sub-types or clin-
ical-courses—such as RRMS, Primary-Progressive MS  
(PPMS), and SPMS, each of which might be mild, mod-
erate, or severe—emphasized the role of medical records 
and omics data in the biomarker search (Table  2 and 
Additional file 3). MS sub-typing was addressed in seven 
studies (10.6%) by analyzing clinical [60–62] and biologi-
cal [44, 63–65] data. However, the accuracy of over 90.0% 

Fig. 3 Sunburst chart of machine learning algorithms applicable to multiple sclerosis studies

4 Namely, fallers and near-fallers should be considered similarly in this meas-
urement.
5 a.k.a. recall or true positive rate

6 Namely, the EDSS, Scripps neurological rating scale, 25-foot walk, and 
9-hole peg test
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was reported only when using data from medical records 
[62] or omics7 [64]. Again, decision trees and SVMs 
achieved the best ML performance.

In the same vein, ML applications were used to assess 
MS prognosis. SVMs to classify clinical data outper-
formed other algorithms and data sources with con-
clusions suggesting the incorporation of obesity and 
smoking history and status (Table  2 and Additional 
file 3). MS prognosis was studied in ten studies (15.2%) by 
analyzing clinical [66–71, 73, 74] and physiological [43, 
66, 72] data. In this application category, only one study 
reported the 90.0% accuracy [74]: it used an SVM classi-
fier on clinical data. Nevertheless, weaker evidence impli-
cating obesity and smoking data as biomarkers of MS was 
provided in the context of applying the Least Absolute 
Shrinkage and Selection Operator (LASSO) algorithm to 
disability prediction [68].

Omics and physiological data, together with data from 
medical records, were promising when applying ML 
to the treatment of MS. Nine studies (13.6%) examined 
responses of PwMS to treatment (Table 3 and Additional 
file 3). These studies analyzed responses to drugs, includ-
ing interferon beta (IFNb) [75, 78, 79, 81, 82], fingoli-
mod [76, 80], natalizumab [77], and glatiramer acetate 
[83]. The Area Under the receiver operating characteris-
tic Curve (AUC) reached over 90.0% only once [76]: this 
study classified micro RiboNucleic Acid (microRNA) 
data using random forests. Finally, after IFNb treatment, 

measuring heart rate8 [80] and triplet testing of Caspase 
2, Apoptosis-Related Cysteine Peptidase (CASP2), Inter-
leukin 10 (IL10), and Interleukin 12 Receptor Subunit 
Beta 1 (IL12Rb1) [75] were the strongest predictors for 
response to MS treatments.

The remaining studies contributed to our biomarker 
searching by looking at fatigue measurement and stress-
ing the strengths of omics and gut microbiome data 
(Table  3 and Additional file  3). Four included studies 
(6.1%) targeted exacerbation of symptoms [84, 85] or 
underlying pathophysiology [86, 87]. Fatigue was a main 
source of impaired quality of life [84, 85], and certain 
genetic patterns9 were highly associated with PwMS 
[86]. In addition, particular patterns of gut microbial 
pathogens10 were found in MS [87]. Another four stud-
ies (6.1%) aimed to improve support groups for PwMS 
by using natural language processing (NLP) to explore 
online forum posts11 or patients’ experiences with MS 
medication [90, 91] or, alternatively, using decision-tree 
and extra-tree algorithms, to enhance measurement tools 
looking at walking patterns or quality-of-life assessments 
[88, 89].

Fig. 4 Histogram of machine learning algorithms in multiple sclerosis studies. The y-axis refers to the number of studies

8 Namely, baseline heart rates from fingolimod induced bradycardia
9 Namely, the Human Leukocyte Antigen haplotype, DR beta 1 (HLA-
DRB1) alleles HLA-DRB1*15:01 and HLA-DRB1*03:01
10 Such as Erysipelotrichaceae (higher) and Dialister (lower)
11 Namely, analyses of their emotional sentiments or informational contents7 Namely, transcriptomics or kynurenine pathway
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ML methods and ML datasets
To analyze the percentage of articles according to ML 
methods studies (details in Tables 2 and 3; and Additional 
file 3), an overview is presented in Fig. 3. Most included 
studies employed supervised ML algorithms (91.5%) and 
only a few proposed unsupervised solutions (4.6%). In 
the case of supervised ML, both classification algorithms 
[49.2%; incl., but not limited to, random forests and 
other decision trees (30.8%) as well as K nearest neigh-
bor (KNN) and other KNN-type algorithms based on 
measuring the distance of, e.g., nearest neighbors (8.5%)] 
and regression algorithms [42.3%; incl., but not limited 
to, SVMs (15.4%) and logistic regression (10.8%)] were 

considered. Applications of later advancements in NNs 
(6.9%) were rare due to the limited amount of labelled 
paired input-output training data available for ML, the 
requirement to be able to justify its decision-making 
principles in healthcare, or slow adoption of these algo-
rithms by researchers in medical informatics and deci-
sion-making. Our further breakdown (Fig. 4) implied that 
researchers considered decision trees, SVMs, regression 
models, NNs, and KNN-type ML algorithms for diagnos-
ing PwMS. Usually, they used decision trees and SVMs 
for measuring disease status. Decision trees and regres-
sion algorithms were mostly considered for measuring 
responses to treatment and MS progression. Typically, all 

Fig. 5 Sunburst chart of machine learning applications and data in multiple sclerosis studies
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ML evaluation was conducted using hold-out methods in 
order to use all annotated data available for ML optimally.

As our quantitative analysis of ML algorithms, we 
reported the average AUC, accuracy, and F1 score from 
their performance evaluations with our findings short-
listing random forests and NNs among the best perform-
ing ML methods on the basis of their above 80% AUC.12 
Most commonly, the included studies considered random 
forests with their average performance of the AUC of 
89.9%, accuracy of 81.5%, and F1 score of 78.1%. In addi-
tion, NNs had the AUC of 81.3% and accuracy of 84.8%; 
SVMs had the accuracy of 79.7% and F1 score of 77.5%; 
and KNNs the accuracy of 76.8%; and decision trees the 
accuracy of 76.7%. Furthermore, 68% studies reported 
validation strategies including k-fold, leave-one-out, and 
nested cross-validation. Overall, most studies deployed 
supervised ML to predict future trends of MS, and ML 
models based on decision trees (i.e., random forests) per-
formed the best and were most commonly used.

Clinical data were particularly useful sources for ML-
based predictive models, but we identified room for 
exploring physiological and biological data as well for 
measuring MS prognosis and distinguishing between 

MS sub-types (Fig. 5). Clinical datasets — such as demo-
graphic data, patient-reported outcomes (PROs, i.e., 
direct responses from patients and controls), clinician-
assisted outcomes (CAOs, i.e., responses provided via a 
clinician acting as intermediary), and electronic medical 
records (EMRs) — were used to separate PwMS from 
controls. PROs and CAOs could describe or reflect how 
a patient feels, functions, or survives while EMRs might 
be interrogated to extract demographic and clinical data 
including prescriptions, pathological diagnosis, medica-
tion usage, and so on. Researchers mostly used biological 
data to support MS diagnosis and to measure response to 
treatment (Fig. 6). Physiological (and physical) data were 
used in computer-assisted MS diagnosis and measure-
ment of MS disease status. Predominantly clinical data 
were used for measuring MS prognosis, disease status, 
and distinguishing among MS sub-types.

Included studies considered both cross-sectional and 
time-series data from, for example, clinical, physiologi-
cal, and biological sources, for purposes ranging from 
diagnosis and prognosis to measuring disease status and 
severity (Fig.  5). For the analyses, clinical data (34.5%) 
were most commonly used, followed by biological data 
(33.3%), and physical and physiological data (23.0%). 
These applications were typically siloed for each data 
type (e.g., natural language or biological signals), and 
multi-modal analyses had not been studied.

Fig. 6 Histogram of data for ML applications. The y-axis refers to the number of studies

12 When a given ML method was considered in more than two included stud-
ies using the same performance evaluation measure(s), we averaged their 
respective measure values.
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Discussion
Overall, the included studies had many different pur-
poses: most of them were developed to support the diag-
nosis of MS (30.3%; 20 out of 66), followed by measuring 
disease status (16.7%; 11/66), prognosis (15.2%; 10/66), 
response to treatments (13.6%; 9/66), and distinguishing 
MS sub-types (10.6%; 7/66), among others. Promising 
data sources in the search for MS biomarkers included 
medical records and other clinical data (e.g., medica-
tions, pathology, as well as clinical history and status); 
EEG, tremor, postural-sway, heart rate, and/or other 
physiological data; the EDSS, Scripps neurological rat-
ing scale, 25-foot walk, 9-hole peg test, and/or other 
disability-scoring data; genetics and/or other omics data; 
and gut microbiome and other biological data. The most 
promising biomarkers themselves consisted of meas-
urements and evaluations of fatigue, stress, anxiety, 
depression, body movements, falls risk, inflammatory 
markers, disability, smoking variables, obesity, and/or 
inducing apoptosis.

However, most studies focused on one of these sources 
and biomarker types, and leads to potential drawbacks. 
For example, looking at studies investigating immunolog-
ical markers [92–94], it is not surprising that mediators of 
inflammation such as cytokines [34] or genes associated 
with inflammation such as TNFSF10 [47] were predictive 
of MS versus non MS given the inflammatory nature of 
MS. The problem in general is to distinguish MS-related 
inflammation from other inflammatory aetiologies.

The majority of included studies focused on either 
diagnosis or prognosis without addressing treatment. 
These studies suggest that it might be possible to discover 
biomarkers for measuring MS status that are less inva-
sive and expensive than MRI. However, bridging the gap 
between health science and data science calls for provid-
ing appropriate data resources and more holistic multi-
modal solutions to allow progress from classification to 
differentiate people living with and without MS, and/or 
measuring MS progression. That is, finding biomarkers to 
monitor treatment seems to be an understudied topic.

Our systematic review suggests that application of 
ML to the MS is yet to adopt the latest ML algorithms 
and to take full utility of these computational model-
ling methods which might support clinicians’ judge-
ment and decision-making. Overall, we found that NNs, 
SVMs, and decision-tree based algorithms performed 
best at differentiating PwMS from controls and recogniz-
ing MS sub-types or clinical-courses. We believe this is 
explained by their tolerance for relatively small amounts 
of data to learn from and/or by ML researchers’ devo-
tion to careful feature engineering [95, 96]. In general, 
applications of ML to MS are constrained by the limited 
amount of annotated data available and as a result, the 

latest advancements in deep NNs are yet to gain popular-
ity. Another technical gap that we identified was the lack 
of time-series and longitudinal datasets to allow study-
ing hidden Markov models, recurrent NNs, and other 
sequential ML methods.

One effective approach to facilitate progress should be 
to organize and facilitate the design, creation, release, and 
use of experimental protocols (e.g., guidelines for devel-
oping and reporting ML analyses in clinical research by 
[24] and [25]), shared datasets (e.g., MSBase [97] and MS 
Floodlight Open [98]), and other community resources 
(e.g., as part of shared tasks, computational challenges, 
evaluation campaigns, or hackathons such as the Intelli-
gent Disease Progression Prediction at the 2022 Confer-
ence and Labs of the Evaluation Forum by Brainteaser 
[99] that targets amyotrophic lateral sclerosis and MS). 
Although the 66 included studies followed the cited 
guidelines carefully in their reporting, comparing their 
aims, outcomes, ML methods would benefit from shared 
experimental protocols, supported by more standardized 
evaluation. More widely in biomedical natural language 
processing (NLP), community initiatives of this kind with 
published problem specifications; training and test data; 
data processing, visualization, and evaluation code and 
software; and benchmark evaluations and lab overviews 
have been successful in establishing strong ecosystems 
across professions and disciplines to conceptualize clin-
ically-meaningful problems and introduce ML methods 
that have become their new state-of-the-art solutions 
[100–104]. Their use has also enhanced replicability 
and reproducibility of biomedical research [105–108]. 
In addition, their use has facilitated transfer of technol-
ogy to clinical practice [109] by viewing data as a holistic 
trustworthy source of information for clinical purpose 
[110].

We recognize two main limitations of this review. ML 
has been extensively applied to MRI, but this was deliber-
ately excluded from the current study. In order to assess 
the possibility of finding an alternative to expensive, inva-
sive, and time-consuming MRI. For recently-published 
reviews of ML application to MRI and its potential in 
clinical settings, see [18, 19]. Another limitation of the 
review was its exclusion of classical statistics algorithms. 
We refer the reader to the paper [111] for more informa-
tion about the theoretical and experimental similarities 
and differences between these ML algorithms in the con-
text of neuroscience.

Improving the capacity to differentiate RRMS from 
other subtypes of MS, and to rate disease severity 
and prognosis would significantly reduce the levels of 
uncertainty described by PwMS. This includes uncer-
tainty related to future disease progression [13, 90, 91], 
whether to have children [92, 93], and fears of becoming 
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a burden [94, 112]. However, alleviating uncertainty for 
some, might mean removing a source of hope that one’s 
condition might not be as severe as other people’s [95]. 
The capacity of ML to inform treatment decisions could 
therefore provide enormous benefit to PwMS whose 
current choices are often constitute a trade-off between 
potential side-effects and limited information about effi-
cacy, making decisions difficult [96, 113].

The collection of adequate quantities of high-quality 
data requires engagement of PwMS, and a willingness on 
their behalf to participate, preferably over long periods of 
time to collect ongoing data. While the use of technology 
to monitor MS is becoming more common (e.g., smart-
watch- and smart phone-based SmartMS Floodlight 
App [98]) [114], the use of these brings both benefits and 
costs to the wearer [15]. In particular, technology often 
requires frequent calibration [115–117], intrudes on daily 
activities [115, 116], and acts as a constant reminder of 
chronic health conditions [118]. While for scientists the 
benefits of having access to large quantities of data may 
be obvious, it is essential that we understand the implica-
tions for vulnerable users, such as PwMS [119, 120].

We believe ML has the potential to be very useful in the 
search for a non-MRI biomarker of MS if applied appro-
priately. To maximize the potential of ML in this way, we 
would suggest to expand the size of the data sets stud-
ied. For example, this can be facilitated by sharing of data 
between different centres and by soliciting direct involve-
ment of PwMS through, e.g., open community resources 
and computational challenges. As part of them, extending 
the study of ML algorithms to the currently understud-
ied deep learning and NNs in MS is advisable; out of the 
top-3 performing ML algorithms of NNs, decision trees, 
and SVMs (average accuracy of 84.8%, 81.5%, and 79.7%, 
respectively), NNs were deployed only in 6.9% of the 22 
included studies while for the other two algorithms, this 
deployment rate was 30.8% and 15.4%, respectively.

Conclusions
ML is applicable to determining how candidate bio-
markers perform in the assessment of MS and its 
severity. For instance, the random forest algorithm is 
both a common and well-performing choice, whilst 
deep learning advances are yet to become prevalent. 
However, applying ML research to clinically meaning-
ful problems, including developing decision-support 
tools to support clinicians to optimize diagnosis, treat-
ment strategies, and analyze treatment responses in 
individual patients calls for creating appropriate data 
resources and shared experimental protocols. To illus-
trate, the progress of these health informatics applica-
tions seems to be hindered by insufficient quantity and 
quality of data. This calls for developing appropriate 

data resources to proceed from classification to clin-
ically-meaningful differentiation of disease and ena-
bling more holistic analyses across data modalities as 
opposed to segregated solutions for signal processing, 
natural language processing, and each other data type.
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