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The role of mammalian fetal membranes in early embryogenesis: lessons from marsupials 
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Abstract 

Across mammals, early embryonic development is supported by uterine secretions taken up through the 

yolk sac and other fetal membranes (histotrophic nutrition). The marsupial conceptus is enclosed in a shell 

coat for the first two-thirds of gestation and nutrients pass to the embryo through the shell and the 

avascular bilaminar yolk sac. At around the time of shell rupture, part of the yolk sac is trilaminar and 

supplied with blood vessels. It attaches to the uterus and forms a choriovitelline placenta. Rapid growth of 

the embryo ensues, still supported by histotrophe as well as exchange of oxygen and nutrients between 

maternal and fetal blood vessels (haemotrophic nutrition). Few marsupials have a chorioallantoic placenta 

and the highly altricial newborn is delivered after a short gestation. Eutherian embryos pass through a 

similar sequence before there is a fully functional chorioallantoic placenta. In most orders, there is 

transient yolk sac placentation, but even before this, nutrients are transferred through an avascular yolk 

sac. Yolk sac placentation does not occur in rodents or catarrhine primates. Early embryonic development 

in the mouse is nonetheless dependent on histotrophic nutrition. In the first trimester of human pregnancy, 

uterine glands open to the intervillous space and secretion products are taken up by the trophoblast. 

Transfer of nutrients to the early human embryo also involves the yolk sac, which floats free in the 
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exocoelom. Marsupials can therefore inform us about the role of fetal membranes and histotrophic 

nutrition in early embryogenesis, knowledge that can translate to eutherians. 

Keywords: 
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Uterine glands 

Yolk sac 

Research highlights 

Early embryogenesis in marsupials is maintained by uterine secretions absorbed initially via an avascular 

yolk sac. 

After loss of the shell coat in marsupials, organogenesis is supported by the yolk sac placenta.  

Eutherians similarly depend on histotrophic nutrition for the early phases of embryogenesis. 

Graphical abstract image 

Yolk sac and chorioallantoic placentas side by side in the hedgehog tenrec  

1 INTRODUCTION 

Significant progress has been made in researching the initial phases of embryonic development in 

mammals. The key has been the development of in vitro systems to culture embryos for two weeks in 

This article is protected by copyright. All rights reserved.
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mouse (Bedzhov et al. 2014, Bedzhov and Zernicka-Goetz 2014) and human (Shahbazi et al. 2016, 

Deglincerti et al. 2016) and for three weeks in crab-eating macaques, Macaca fascicularis (Ma et al. 2019, 

Niu et al. 2019). The genes expressed during differentiation of trophectoderm, epiblast and primitive 

ectoderm (hypoblast) have been mapped as well as the first steps in formation of amnion and yolk sac.  

There remains an interval of days or weeks between these events and the establishment of a 

chorioallantoic placenta that is poorly understood. In human development there is a “black box” spanning 

the interval from implantation to 5-6 weeks of pregnancy when access to samples is limited for ethical 

reasons (James, Carter, and Chamley 2012). Indeed, there is a palpable lack of curiosity about the role 

played by fetal membranes in support of early human development. Comparative studies can be helpful 

but also confusing as there are three different patterns of fetal membrane development in eutherian 

mammals (Carter 2016). Thus, transient yolk sac placentation occurs in most eutherian orders, but not in 

the mouse, where an inverted yolk sac continues to function through term, nor in the human, where the 

secondary yolk sac floats free in the exocoelom during the first trimester. 

In whatever way the membranes develop, we need to ask how the eutherian embryo is nourished through 

the earliest stages of its development. Later the chorioallantoic placenta permits exchange of nutrients 

between maternal and fetal blood, which is known as haemotrophic nutrition. In principle, this can occur at 

earlier stages with a choriovitelline placenta, since the yolk sac has its own set of blood vessels. However, I 

shall argue that absorption of uterine gland secretions and other maternal products is more important. This 

is known as histotrophic nutrition (Enders and Carter 2006). As will be discussed, there is data to show 

uptake of histotrophe by the inverted yolk sac during early embryonic development in rodents and 

lagomorphs. In the first trimester of human pregnancy, there is uterine gland secretion to the intervillous 

This article is protected by copyright. All rights reserved.
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space of the placenta and uptake of the secretion products by the trophoblast (Burton et al. 2002, 

Hempstock et al. 2004).  

Marsupials deliver highly altricial neonates after a short gestation. Embryonic development is supported by 

uterine secretions absorbed, during the first two-thirds of gestation, through the shell coat and an 

avascular yolk sac and in the remaining third, where most of organogenesis occurs, by both avascular and 

vascular regions of the yolk sac (Tyndale-Biscoe and Renfree 1987, Guernsey et al. 2017, Renfree 1973). 

Chorioallantoic placentation is uncommon in marsupials although known from bandicoots, wombats and 

the koala (Tyndale-Biscoe and Renfree 1987). Thus, studies of fetal membranes in marsupials necessarily 

deal with the same structures that support early embryonic development in eutherians. Indeed, they have 

been more extensively studied in marsupials and the present review is predicated on my belief that this 

body of work can suggest avenues of exploration for early embryonic development in eutherians. 

Therefore, after a brief digression on monotremes, close consideration will be given to the fetal 

membranes of marsupials. Attention will then be directed to selected examples of eutherian mammals for 

which there is data to support the critical role of histotrophic nutrition in early embryogenesis. 

2 MONOTREMES 

Monotremes are relicts of an ancient radiation. They last shared a common ancestor with therians in the 

Early Jurassic (Huttenlocker et al. 2018). In addition, there is deep divergence between the extant echidnas 

(Tachyglossus aculeatus; Zaglossus spp.) and the platypus (Ornithorhynchus anatinus; Rowe et al. 2008). 

Nonetheless, it is instructive to consider the role of monotreme fetal membranes in embryonic 

development (Hughes and Hall 1998, Hughes 1993, Flynn and Hill 1947, 1939). Thus, although monotremes 

are oviparous (Haacke 1885),  fully two-thirds of development takes place in the uterus, where the egg 

grows in size through the absorption of uterine secretions (Hughes 1993). In the platypus at full term 

This article is protected by copyright. All rights reserved.
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(oviposition), there is a neurula-stage embryo with 19-20 somites (Figure 1; Hughes and Hall 1998). 

Although there is yolk in the ovulated egg and cleavage is meroblastic (Flynn and Hill 1939), histotrophic 

nutrition from uterine secretions is more important than autotrophic nutrition from the yolk. The 

secretions are taken up by the yolk sac through the leathery eggshell coat, which is about 70 µm thick 

(Hughes 1993). The abembryonic pole of the yolk sac is bilaminar whilst the embryonic pole is trilaminar, 

but lacks blood vessels. The full-term embryo has neither an allantoic sac nor an amnion (Hughes 1993, 

Hughes and Hall 1998). After oviposition and during incubation, however, the trilaminar omphalopleure 

and the allantoic sac become richly vascularized with the latter acting as an organ of gas exchange (Semon 

1894).  

The lessons to be drawn are that an eggshell is no barrier to absorption of fetal secretions and that 

histotrophic nutrition can occur in the absence of a fetal circulation. This is relevant to the understanding of 

early development in both marsupials and eutherians.  

3 MARSUPIALS 

There are 21 families of marsupials (Wilson and Reeder 2005), but most knowledge of their reproductive 

biology is derived from a handful of species (Table 1).  

In marsupials, the length of gestation rarely exceeds that of the oestrous cycle (Tyndale-Biscoe and Renfree 

1987) whereas eutherian gestation always exceeds cycle length (Chavan, Bhullar, and Wagner 2016). There 

is a range of altriciality in marsupials (Smith and Keyte 2018, Hughes and Hall 1988), but all marsupials are 

born at a less developed stage than any eutherian (Werneburg et al. 2016).  

An egg shell coat is present for two-thirds of gestation and intimate contact between the yolk sac and 

uterine lining is first achieved around the time of organogenesis (Menkhorst et al. 2009, Tyndale-Biscoe and 

This article is protected by copyright. All rights reserved.
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Renfree 1987). It was shown in the grey short tailed opossum, that rupture of the egg shell triggers an 

inflammatory response that may be a limiting factor for prolonged gestation (Griffith, Chavan, et al. 2017). 

This response has been modified in eutherians with upregulation of genes favouring implantation and 

downregulation of others (Griffith, Chavan, et al. 2017, Erkenbrack et al. 2018).  

A feature of reproduction in several marsupials, including many kangaroos and wallabies, is embryonic 

diapause (Tyndale-Biscoe and Renfree 1987, Renfree and Fenelon 2017). In these marsupials, the female 

goes into oestrus shortly after parturition (or even before (Menzies, Hildebrandt, and Renfree 2020)). If this 

leads to a new pregnancy, embryonic development is arrested at the 100-cell stage and resumed only when 

the young in the pouch has been weaned (lactational diapause). Researchers can exploit this by removing 

the pouch young to obtain precisely dated uterine embryos. If conception occurs towards the end of the 

breeding season, the embryo may remain in diapause for up to eleven months (photoperiod-induced 

diapause; Renfree and Fenelon 2017). 

3.1 Marsupial membranes 

The tertiary egg membranes are those added during passage of the egg through the genital tract. They 

occur in many amniotes and even non-amniotes. The mucoid coat is added by glands in the Fallopian tube. 

It is clearly seen around uterine eggs in the early stages of cleavage, but rarely persists (Hughes 1977). The 

shell coat is secreted by the uterine glands (Roberts and Breed 1996, Tyndale-Biscoe and Renfree 1987) and 

is present throughout the first two-thirds of gestation (Selwood 2000, Renfree 1973). Indeed, marsupial 

development can be divided into two stages: before and after rupture of the shell coat (Tyndale-Biscoe and 

Renfree 1987). The first stage, embryogenesis, is relatively slow. In contrast, rapid development and growth 

(organogenesis) occur after rupture of the shell coat and apposition of the yolk sac to the uterine wall as a 

choriovitelline placenta. 

This article is protected by copyright. All rights reserved.
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As in other amniotes, the fetal membranes of marsupials comprise amnion, yolk sac, allantois and chorion. 

Extraembryonic endoderm and trophoblast constitute the bilaminar omphalopleure, which is the main 

conduit for maternal-fetal exchange prior to shell rupture. It is converted to the trilaminar omphalopleure 

by expansion of the extraembryonic mesoderm within which blood vessels appear shortly before shell 

rupture. Apposition of the vascular trilaminar omphalopleure to the uterine epithelium is the basis for 

choriovitelline or yolk sac placentation, which supports the final phase of rapid growth. In the following, I 

shall refer to these membranes as the avascular and vascular yolk sac. The fetal membranes of the tammar 

wallaby (Notamacropus eugenii) in late gestation are shown in Figure 2 (Guernsey et al. 2017).  

The trophoblast is moderately invasive in many marsupials including the four-eyed opossum (Philander 

opossum; Enders and Enders 1969) and fat-tailed dunnart (Sminthopsis crassicaudata; Roberts and Breed 

1994a). Recent studies favour the view that the common ancestor of marsupials had an invasive 

trophoblast, whereas a completely non-invasive trophoblast, as in the tammar wallaby and common 

brushtail possum (Trichosurus vulpecula), is a derived state (Laird et al. 2018, Mess and Ferner 2010, Laird 

et al. 2020). 

The allantoic sac has its own blood supply but, in most marsupials, does not make contact with the uterine 

lining. Indeed, it is often hidden in folds of the yolk sac membranes (Tyndale-Biscoe and Renfree 1987). 

However, true chorioallantoic placentation does occur in bandicoots (Perameles nasuta, P. gunnii, Isoodon 

obesulus, I. macrourus), where fetal and maternal capillaries are separated by a thin layer of syncytium (see 

below). A chorioallantoic placenta is also established in the koala (Phascolarctos cinereus) (Hughes 1974, 

Semon 1894) and the closely related wombat (Vombatus ursinus) (Hughes and Green 1998). 

3.2 Uterine responses to pregnancy  

This article is protected by copyright. All rights reserved.
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Several studies have probed the uterine responses to pregnancy. A redistribution of desmosomes and 

associated claudins has been noted in the plasma membrane of epithelial cells in the fat-tailed dunnart 

(Dudley et al. 2015, Buddle et al. 2019) as well as tammar wallaby and brushtail possum (Laird et al. 2018). 

This response was comparable to that preceding attachment in viviparous squamates and eutherians 

(Dudley et al. 2015). There was evidence in the three marsupials of a strengthening of the basal plasma 

membrane (Dudley et al. 2017, Laird et al. 2018, Laird, Turancova, et al. 2017). Thus, comparable changes 

occurred in a species with invasive trophoblast (the dunnart) and two with non-invasive placentation. 

Based on the hypothesis that invasive placentation is the ancestral state for marsupials (Mess and Ferner 

2010, Freyer, Zeller, and Renfree 2003), it was suggested that strengthening of the basal membrane 

prevented peeling off of the epithelium during trophoblast invasion; however, it could also have facilitated 

the transition to a non-invasive state (Laird, Dargan, et al. 2017). 

A second approach was to analyse the transcriptomic changes occurring in the uterus of the fat-tailed 

dunnart prior to rupture of the cell membrane (Whittington et al. 2018). Importantly, many of the top 50 

upregulated genes were associated with nutrient transport, underlining the importance of histotrophe 

secretion in the first two-thirds of embryonic development. A second data set from the grey short-tailed 

opossum found an upregulation of the same category of genes even after shell rupture (Griffith et al. 2019). 

Prior to shell rupture in the dunnart, there was some indication of a downregulation of genes with a 

putative immune function (Whittington et al. 2018). Nevertheless, the overriding impression from the 

opossum was that exposure to fetal tissue after shell rupture triggered an inflammatory response 

(Erkenbrack et al. 2018, Griffith et al. 2019). 

3.3 Histotrophic nutrition  

This article is protected by copyright. All rights reserved.
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Uterine gland secretions are the principal source of nutrition prior to shell rupture. The shell coat is 

permeable to the histotrophe, which is taken up by the bilaminar omphalopleure and later by the 

trilaminar omphalopleure (Sharman 1961). In macropodids such as the tammar wallaby, which has a 

relatively long gestation period, uterine gland secretion continues after shell rupture (Freyer, Zeller, and 

Renfree 2007). A different pattern was found in the grey short-tailed opossum (Monodelphis domestica), 

where a decrease in uterine gland secretion occurred even before shell rupture, suggesting a phase when 

embryonic growth was supported by nutrients stored in the yolk sac (Freyer, Zeller, and Renfree 2007). 

Surveying the available evidence, Freyer and colleagues found this pattern was the most widespread and 

concluded it likely was the ancestral condition (Freyer, Zeller, and Renfree 2002, 2003). 

In the four-eyed and grey short-tailed opossums, the yolk sacs of adjacent embryos fuse (although each 

retains a separate allantois). Formation of a common yolk sac cavity entails a reduction in surface area of 

the bilaminar yolk sac (Enders and Enders 1969, Freyer, Zeller, and Renfree 2002). This is also the case in 

the fat-tailed dunnart (Roberts and Breed 1994b). In the tammar wallaby, the trilaminar yolk sac expands 

from one-third to one-half of the total surface area (Freyer, Zeller, and Renfree 2002). Therefore, it is likely 

that both parts of the yolk sac are important for uptake of histotrophe, a conclusion strengthened by 

ultrastructural observations. Thus, the apical surface of the trophoblast is characterized by microvilli, 

coated pits and vesicles in both, the tammar wallaby and the four-eyed opossum (Figure 3; Enders and 

Enders 1969, Freyer, Zeller, and Renfree 2002). Nevertheless, the trophoblast associated with the bilaminar 

yolk sac of the tammar wallaby comprises larger cells than that in the trilaminar area and with a greater 

number of lysosomes containing degraded histotrophe (Jones et al. 2014).  

3.4 Respiratory gas exchange  

This article is protected by copyright. All rights reserved.
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The oxygen requirements for early embryogenesis are small. Thus a 3-day chick embryo requires just 3.8 µl 

min-1 (Romanoff and Romanoff 1967). The rapid growth of the marsupial embryo following shell rupture 

necessarily implies an increase in oxygen consumption. However, oxygen consumption is still quite 

moderate, about 6 µL min-1, in the newborn pouch young of the tammar wallaby (Baudinette et al. 1988, 

Frappell 2008).  

Early descriptions of marsupial fetal membranes assumed a role for the vascular yolk sac in respiratory gas 

exchange (e.g., Hill 1900). The trophoblast layer is thinner in the trilaminar than in the bilaminar yolk sac of 

the tammar wallaby (Freyer, Zeller, and Renfree 2002, Jones et al. 2014) and this reduction in diffusion 

distance would facilitate oxygen transfer (Carter 2015). 

The early mammalian embryo needs protection from high oxygen levels because of the threat posed by 

reactive oxygen species (Burton 2009). Eutherian embryos have embryonic haemoglobins with high oxygen 

affinities that sequester oxygen and may protect against high oxygen tensions (Kitchen and Brett 1974). 

Marsupial neonates have several embryonic haemoglobins (Holland and Gooley 1997). However, the 

oxygen dissociation curve of neonatal blood does not differ from that of adult blood (Henty, Wells, and 

Brittain 2008). The evolution of alpha and beta globin genes has pursued different paths in marsupials and 

eutherians (Holland, Gooley, and Hope 1998, Opazo, Hoffmann, and Storz 2008). Nevertheless, the 

apparent absence of high affinity haemoglobins in marsupial embryos raises the question of whether they 

mount other defences against reactive oxygen species such as antioxidant enzymes (Burton 2009) or 

scavenging of reactive oxygen species by tissue globins (Fago et al. 2004). 

3.5 Haemotrophic nutrition  

This article is protected by copyright. All rights reserved.
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The passage of nutrients from maternal to fetal blood vessels, called haemotrophic nutrition, is a principal 

function of the eutherian placenta. After shell rupture in marsupials, the interhaemal barrier separating 

fetal capillaries of the vascular yolk sac from uterine capillaries can be rather thin as has been shown for 

the grey short-tailed opossum (Freyer, Zeller, and Renfree 2007) and long-nosed bandicoot (Figure 4a; 

Padykula and Taylor 1976). However, the physiological evidence for haemotrophic nutrition is scant. In the 

tammar wallaby, the composition of yolk sac fluid was found to resemble uterine secretions until rupture of 

the shell coat (Renfree 1973). The proteins that then appeared, such as transferrin, were not maternal in 

origin and probably were produced by the fetus (Renfree 1973, Renfree and Tyndale-Biscoe 1973). Recent 

studies of gene expression give further insight (Guernsey et al. 2017). Genes upregulated in the bilaminar 

yolk sac fall into ontologies associated with nutrient uptake, whereas those upregulated in the trilaminar 

yolk sac are associated with respiration (Guernsey et al. 2017). 

As already noted, a chorioallantoic placenta is found in the koala, wombats and bandicoots. The 

interhaemal region of the long-nosed bandicoot (Perameles nasuta) and southern brown bandicoot 

(Isoodon obesulus) has been examined by transmission electron microscopy (Padykula and Taylor 1976, 

Padykula and Taylor 1977). The fetal and maternal capillaries are at first separated by the trophoblast and 

the uterine lining, which is a syncytium formed by fusion of the epithelial cells (Figure 4b). Later this is 

reduced to a single layer apparently by fusion of trophoblast and syncytium. Although this was seen as 

evidence for haemotrophic nutrition (Padykula and Taylor 1977), it did not translate into greater maturity 

of the neonate (Hughes and Hall 1988, Lyne and Hollis 1977). Rather it allowed shortening of the gestation 

period. At just over 12 days, the northern brown bandicoot (I. macrourus) holds the record for the shortest 

gestation of any mammal (Lyne 1974).  

3.6 Hormone secretion 
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Hormone-related genes are expressed by the fetal membranes of oviparous and viviparous amniotes 

(Griffith, Brandley, et al. 2017). Notwithstanding, knowledge of the endocrine function of the marsupial 

yolk sac is based largely on work in the tammar wallaby. Although the yolk sac can convert pregnenolone to 

progesterone, it likely is not a significant source of steroid hormones (Heap, Renfree, and Burton 1980). It 

does, however, express several peptide hormones and growth factors, including luteinizing hormone, 

prolactin and growth hormone as well as insulin-like growth factor-2 and its receptor (Menzies, Pask, and 

Renfree 2011). Luteinizing hormone could be the signal for pregnancy maintenance perhaps acting in 

concert with prolactin (Menzies, Pask, and Renfree 2011). Growth hormone, GH receptor and IGF-2 are 

upregulated in the later phase of organogenesis that follows shell rupture and may act to promote fetal 

growth (Menzies, Pask, and Renfree 2011).  

An interesting form of epigenetic gene regulation, first shown in eutherians, is genomic imprinting, which 

results in silencing of one of the parental alleles. In marsupials, insulin (INS) is paternally expressed in the 

vascular yolk sac and otherwise only in mammary gland (Ager et al. 2007, Stringer et al. 2012b). Similarly, 

insulin-like growth factor-2 (IGF2) is paternally expressed in the vascular yolk sac and has been ascribed a 

role in promoting vascularization by increasing expression of vascular endothelial growth factor (Stringer et 

al. 2012a, Ager et al. 2008). 

Finally, the yolk sac of the tammar wallaby produces large amounts of prostaglandin F2α in the last few days 

of gestation, peaking at term (Shaw, Gehring, and Bell 1999). Although the endometrium also secretes 

prostaglandins, the fetal signal is thought to initiate parturition (Shaw, Gehring, and Bell 1999, Renfree 

2010). 

4 EUTHERIANS 
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Uterine gland secretions have long been recognized as an essential supplement to haemotrophic nutrition 

via the chorioallantoic placenta of eutherians (Burton 1982, Enders and Carter 2006). Uptake of secretions, 

cell debris and maternal erythrocytes is by pinocytosis and endocytosis to columnar trophoblast cells often 

organized in structures such as the chorionic vesicles of lower primates or the areolae of swine, horse and 

moles (Enders and Carter 2006). Here, we are concerned with the role of histotrophic nutrition in the early 

stages of embryonic development before there is circulation in the chorioallantoic placenta. An overview of 

fetal membrane development is given elsewhere (Carter 2016). 

4.1 The avascular yolk sac of the horse 

Early embryonic development has been well studied in the horse (Equus caballus) because the details are 

important for assisted reproductive technologies (Betteridge 2007). The equine embryo remains spherical 

in shape and moves about the uterus until about day 17 after ovulation. Between about days 7 and 20 it is 

enclosed in a capsule (Figure 5a). This is not a tertiary egg membrane, like the marsupial shell coat. It is 

made up of mucin-like glycoproteins secreted by the trophoblast (Oriol, Sharom, and Betteridge 1993). It is 

not until dissolution of the capsule around day 21 that there is contact with the endometrium (Betteridge 

2007). The conceptus expands during this interval and the capsule with it. The capsule is not a barrier to 

transfer. Within the capsule is a bilaminar yolk sac comprised of trophoblast and endoderm. The mural 

trophoblast is endocytotic as indicated by the transfer of tracers (ferritin and peroxidase) from coated pits 

and tubules to large vacuoles (Enders et al. 1988). Extraembryonic mesoderm appears relatively late and a 

vascular, trilaminar yolk sac is not present until shortly before the capsule dissolves (Figure 5b). However, 

the embryo is well formed by the time the capsule is lost and there is then an effective embryonic 

circulation (Enders et al. 1993). From 22 days embryonic development is supported by a yolk sac placenta 
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(Enders 2015, Enders et al. 1993). A fully functional chorioallantoic placenta is not established until the end 

of the first month of gestation (Allen 2001). 

Importantly, while the conceptus is enclosed in its capsule yolk sac volume increases over time (Betteridge 

2007, Waelchli and Betteridge 1996, Betteridge et al. 1982). Osmolarity, fructose concentration and protein 

concentration remain constant or increase slightly, but do not fall with increasing volume, showing there 

must be uptake of solutes from the uterine fluid (Betteridge 2007). The role of the avascular yolk sac in this 

process was elegantly demonstrated by studies of twinning in horses (Waelchli and Betteridge 2013). If 

there are two embryos in the capsule and one abuts the membranes of the other, the second twin is 

unable to survive, presumably because it cannot absorb uterine secretions. With correct orientation of the 

blastocysts, both can take up nutrients and the twins may survive. This clearly demonstrates that the 

bilaminar yolk sac has a vital function just as it does in marsupials before egg cell rupture.  

4.2 Yolk sac placentas of artiodactyls and tenrecs  

A temporary yolk sac or choriovitelline placenta supports embryonic development in most orders of 

eutherian mammal (Carter 2016). A strict definition requires that this is a vascular yolk sac in intimate 

apposition to the endometrium (Mossman 1987). As in marsupials, however, the yolk sac may take up 

histotrophe well before such an attachment is formed. This section will give three examples of how the yolk 

sac and other membranes support early development. A list of eutherian orders with transient yolk sac 

placentation is given elsewhere (Carter 2016). Yolk sac placentation is not found in haplorrhine primates, 

rodents, lagomorphs, armadillos or sloths (Carter 2016). 

In the pig (Sus scrofa), the blastocyst undergoes a remarkable elongation at 10.5-12 days of gestation, 

reaching about 1 meter in length and 0.75 mm in diameter (Perry 1981, Perry and Rowlands 1962, Heuser 
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1927). The elongated part of the blastocyst is a diverticulum of the exocoelom lined by chorion. The 

chorion participates in maternal-fetal signalling and possibly in absorption of histotrophe secreted by the 

uterine glands (Bazer and Johnson 2014). At the centre is the embryo and yolk sac, the distal part of which 

is bilaminar, and the remainder supplied with blood vessels. This likely transfers nutrients to the rapidly 

developing embryo. Adherence to the uterine wall occurs at 18 days, resulting in transient yolk sac 

placentation (Figure 6a). At this stage the allantois is just a bud protruding into the exocoelom. However, by 

21 days the vascular allantois has displaced the yolk sac from trophoblast and begun to form a 

chorioallantoic placenta (Figure 6b; Perry 1981, Heuser 1927).  

In sheep (Ovis aries) and cattle (Bos taurus, B. indicus), elongation of the chorion is less drastic than in the 

pig, but its two arms are occupied by the yolk sac (Figure 5c; Rüsse et al. 1992, Assis Neto et al. 2010). As 

first shown for the sheep, early expansion of the exocoelom hinders contact between yolk sac and 

endometrium (Assheton 1906). This configuration does not meet the above definition of a yolk sac 

placenta, but the uterine gland secretions cross the chorion and yolk sac to supply the embryo.  

Horses, pigs and cattle belong to the same eutherian clade (Laurasiatheria). My third example, therefore, is 

the lesser hedgehog tenrec (Echinops telfairi), which is from a distant clade (Afrotheria; Murphy et al. 

2001). In the tenrec, organogenesis is supported by a yolk sac placenta until it is displaced by expansion of 

the exocoelom and allantois (Carter et al. 2005). As shown in Figure 7, yolk sac and allantois are richly 

vascularized and apposed to a thickening of the endometrium called the preplacental pad. Thus, there is 

the morphological basis for haemotrophic nutrition via a yolk sac placenta.  

4.3 The inverted yolk sac of rodents  
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In rodents, inversion of the germ layers (day E5 in the mouse) and subsequent loss of the outer wall of the 

yolk sac leaves a visceral yolk sac membrane where extraembryonic endoderm forms an epithelium facing 

the uterine cavity (Sobotta 1911, Rossant and Cross 2001). There is increasing awareness that yolk sac 

membranes support embryonic development well before establishment of the chorioallantoic placenta. In 

the mouse, important events such as closure of the neural folds (Zohn and Sarkar 2010, Terasawa et al. 

1999) precede the start of chorioallantoic circulation at embryonic day E10.5 (Cross et al. 2006). The yolk 

sac endoderm plays a key role in supplying lipids during early embryonic development through synthesis of 

apolipoprotein B and lipoprotein (Farese et al. 1996, Terasawa et al. 1999). In addition, iron uptake by 

endocytosis of transferrin has been shown in mouse (Copp et al. 1992) and rat (Young et al. 1997).  

The rodent yolk sac continues to serve as an accessory to the chorioallantoic placenta through to term. Its 

transport functions have been studied extensively in mid to late gestation in the guinea pig (e.g., King and 

Enders 1970). The yolk sac is also an important conduit for maternal immunoglobulins (Brambell, 

Hemmings, and Rowlands 1948, King and Enders 1970).  

4.4 The yolk sac in haplorrhine primates 

Early in human development, the extraembryonic mesoderm separates the endoderm from the trophoblast 

resulting in a “secondary” yolk sac comprised of endoderm and mesenchyme that comes to lie within the 

exocoelom (Enders and King 1993, Hertig, Rock, and Adams 1956, Jauniaux et al. 2004, Jones 1997). Indeed, 

precocious development of the mesoderm and exocoelom with formation of a secondary yolk sac is a 

characteristic feature of haplorrhine primates (tarsiers, Old and New World monkeys and apes; Luckett 

1974). In the human, a vitelline circulation is established starting around day 16 and yolk sac function 

persists through 9-11 weeks of gestation after which there is a gradual decline. In the first trimester 
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chorioallantoic placenta, the orifices of the maternal arteries are blocked by plugs of trophoblast and there 

is no flow before 6-7 weeks and restricted flow until 12 weeks (Roberts et al. 2017, James et al. 2018). 

However, uterine glands open to the intervillous space of the placenta and their secretion products are 

taken up by the trophoblast (Burton et al. 2002, Hempstock et al. 2004, Moser et al. 2015). Thus, the yolk 

sac functions through a period when perfusion of the intervillous space is minimal and uterine gland 

secretions are an important source of nutrients for the developing embryo. Indeed, the uterine glands may 

be stimulated by hormones released from the trophoblast, such as human placental lactogen and human 

chorionic gonadotrophin, while trophoblast invasion could be promoted by “uterine milk proteins” and 

growth factors (Burton, Cindrova-Davies, and Turco 2020). 

Exocoelomic fluid from the first trimester of human pregnancy has been characterized as an ultrafiltrate of 

maternal plasma with additional proteins from the placenta and secondary yolk sac. It is therefore regarded 

as an important interface for maternal-fetal nutrient transfer and as a nutrient reservoir for the embryo 

(Jauniaux and Gulbis 2000). Yolk sac fluid is not easily obtained, but its protein content is consistent with 

exchange between exocoelomic and yolk sac compartments including transfer of hCG derived from the 

placental trophoblast (Gulbis et al. 1998). The yolk sac mesothelium faces the exocoelomic cavity and has 

the ultrastructural features of pinocytotic activity (Jones 1997, Jones and Jauniaux 1995). Finally, the 

inward-facing endodermal layer expresses the endocytic receptors megalin and cubilin (Burke et al. 2013). 

Transcriptome analysis has confirmed the expression of a broad range of transporters in first trimester 

human yolk sac (Cindrova-Davies et al. 2017). Together these observations support the argument that 

uterine gland secretions and other nutrients are transported to the exocoelom and absorbed by the 

secondary yolk sac whence they are transferred to the vitelline circulation (Jauniaux, Gulbis, and Burton 
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2003). Additional functions of human yolk sac are synthesis of α-fetoprotein and other proteins (Gulbis et 

al. 1998), haematopoiesis (Tavian et al. 2010) and as a repository for germ cells (De Felici 2013).  

5 CONCLUSIONS 

The first lesson to be drawn from this review is that uptake of uterine secretions does not require a 

placenta. The monotreme embryo has reached 18-20 somites by oviposition, its growth supported both by 

yolk and by histotrophe taken up through the avascular yolk sac. Similarly, the first two-thirds of 

development in marsupials is dependent on histotrophe absorbed by the avascular bilaminar yolk sac and 

by a trilaminar yolk sac that has no blood vessels until shortly before shell rupture. An essential role for the 

bilaminar yolk sac in eutherian development is confirmed by studies of twinning in the horse. 

Secondly, a yolk sac placenta supports the growth of the marsupial embryo after shell rupture. It may allow 

for haemotrophic nutrition although the physiological evidence is scant. The vascular yolk sac might be of 

greater importance for the oxygen supply to the embryo. The ancestral condition in eutherians and in most 

extant clades is for a yolk sac placenta to provide nutrition in the early stages of fetal growth. Rodents and 

higher primates do not conform. However, in rodents the inverted yolk sac is functional well before 

establishment of a circulation in the chorioallantoic placenta. In the mouse, that transition occurs at day 

E10.5. Human development is unusual in that the yolk sac never approaches the uterus. However, there is 

ample evidence that early embryonic development is supported by histotrophe transferred via the 

exocoelom and yolk sac. The human embryo is at least partly dependent upon uptake of uterine secretions 

by the trophoblast facing the intervillous space, where blood flow is negligible in the first few weeks of 

pregnancy. 
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Marsupials provide important information about histotrophic nutrition via the avascular yolk sac and later 

the yolk sac placenta. To a large extant these translate to early embryonic development in eutherians. Thus 

there is every reason to incorporate this knowledge when considering the role of fetal membranes in 

eutherians and to encourage further studies of marsupials as essential to a fuller understanding of 

mammalian development and its evolution. 
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Figure legends 

FIGURE 1 Intrauterine development of monotremes is supported by yolk and absorption of uterine 

secretions. 18-20-somite embryo of the platypus (Ornithorhynchus anatinus). H, Hensen’s node; S, somites; 

TGP, trigeminal ganglionic primordia. Reprinted with permission of The Royal Society from (Hughes and Hall 

1998) © The Royal Society (U.K.).  

FIGURE 2 Fetal membranes of the tammar wallaby (Notamacropus eugenii) at 24 days gestation. Right: 

schematic representation of the fetal membranes. Left and middle: cellular components of the avascular 

yolk sac or bilaminar omphalopleure (BOM) and vascular yolk sac or trilaminar omphalopleure (TOM). Cell 

layers are: TL, trophoblast; EL, endoderm; ML, mesoderm (with blood vessels). Reprinted from (Guernsey et 

al. 2017) © the authors. 

FIGURE 3 Electron micrographs of trophoblast from the vascular yolk sac. (a) Tammar wallaby 

(Notamacropus eugenii) at 20 days gestation. Structures shown include coated pits (long arrowheads), 

vesicles (v), and nucleus (N). Reprinted with permission from (Freyer, Zeller, and Renfree 2002) © 

Anatomical Society of Great Britain and Ireland 2002. (b) Grey four-eyed opossum (Philander opossum). 

Note that the apical microvilli are long but do not interdigitate with those of the uterine epithelial cell. 

Arrows indicate coated pits. At the opposite surface, microvilli project into basal infoldings situated 

beneath the basal lamina. Image courtesy of Dr. Allen C. Enders. 

FIGURE 4 The interhaemal barrier in the placentae of the long-nosed bandicoot (Perameles nasuta); crown-

rump length of embryo 10-11 mm. (a) Yolk sac placenta. Fetal blood vessels (fv) appear in the attenuated 

mesoderm between endoderm (E) and trophoblast (T). Maternal capillaries are superficial and above the 

syncytial masses of uterine epithelium (S). CT, endometrial stroma; m, mitochondrion; n, nucleus; x, 
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artefactual space. (b) Chorioallantoic placenta. There is a short diffusion distance between fetal capillaries 

(fv) and maternal ones (mv) separated only by trophoblast (T) and the syncytial masses (S) derived from 

uterine epithelial cells. Reprinted with permission from (Padykula and Taylor 1976) Copyright © 1976 

Wiley-Liss, Inc.  

FIGURE 5 The capsule and yolk sac of the horse and the bovine yolk sac. (a) In the horse at 14.5 days the 

resilient capsule is so tightly applied to the yolk sac that it is invisible. (b) At 17.5 days the flaccid capsule 

hangs intact from the yolk sac. Reprinted from (Betteridge 2007) © (2007) with permission from Elsevier. 

(c) The bovine yolk sac at 20 days comprises a central portion (YSC) and two extended arms (YSE); allantoic 

vessels (arrows) are seen extending from the embryo. Courtesy of Dr. Antonio Assis Neto.  

FIGURE 6 Fetal membranes of the domestic pig (Sus scrofa). Ectoderm is in blue, mesoderm in red and 

endoderm in green. (a) Longitudinal section of the elongated blastocyst at 18 days post coitum. The yolk 

sac is attached to the chorion partly as the bilaminar omphalopleure and partly as a choriovitelline 

placenta. The allantois is expanding into the exocoelom but has not yet reached the chorion. (b) By 21 days 

post coitum, the allantois and chorion have fused to form the allanto-chorion. In the process the yolk sac 

has been displaced. Reprinted with permission from (Perry 1981). Copyright © 1981, Society for 

Reproduction and Fertility. 

FIGURE 7. Fetal membranes of the lesser hedgehog tenrec (Echinops telfairi) at 22 days of gestation. (a) 

Overview showing amniotic cavity (Amn), yolk sac (YS), allantoic cavity (All) and exocoelom (Exo). (b) Yolk 

sac placenta (YS Pl) and allantoic placenta (All Pl). At this stage neither vessels from the yolk sac nor vessels 

from the allantois have entered the preplacental pad (PP). (c) Vessels of yolk sac (above) and allantois 

(below) abut the preplacental pad. Note the more cuboidal endoderm lining the yolk sac vessels. MBS, 

maternal blood space. (d) The allantois displacing the yolk sac. The allantoic cavity (All) is encroaching from 
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either side on the remnants of the exocoelom (Exo) and the yolk sac (YS). Haemotoxylin and eosin. Scale 

bars: 1 mm (a), 100 mm (b), 20 mm (c-d). Reprinted from (Carter et al. 2005)  © (2005) with permission 

from Elsevier.  
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TABLE 1 Marsupial orders and model species. Orders and suborders from (Wilson and Reeder 2005). The 

species shown are those featured in the recent literature.  

Order and suborder Species Common name 

Didelphimorphia Monodelphis domestica Grey Short-Tailed Opossum 

 Philander opossum Grey Four-Eyed Opossum 

Paucituberculata None  

Microbiotheria None  

Notoryctemorphia None  

Dasyuromorphia Sminthopsis crassicaudata Fat-Tailed Dunnart 

Peramelemorphia Isoodon macrourus Northern Brown Bandicoot 

 Isoodon obesulus Southern Brown Bandicoot 

 Perameles nasuta Long-nosed Bandicoot 

Diprotodontia: Vombatiformes Phascolarctos cinereus Koala 

 Vombatus ursinus Common wombat 

Diprotodontia: Phalangeriformes Trichosurus vulpecula Common Brushtail Possum 

 Pseudocheirus peregrinus Common Ringtail Possum 

Diprotodontia: Macropodiformes Potorous tridactylus Long-Nosed Potoroo 

 Notamacropus eugenii Tammar Wallaby 
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TABLE 1 Marsupial orders and model species. Orders and suborders from (Wilson and Reeder 2005). The 

species shown are those featured in the recent literature.  

Order and suborder Species Common name 

Didelphimorphia Monodelphis domestica Grey Short-Tailed Opossum 

 Philander opossum Grey Four-Eyed Opossum 

Paucituberculata None  

Microbiotheria None  

Notoryctemorphia None  

Dasyuromorphia Sminthopsis crassicaudata Fat-Tailed Dunnart 

Peramelemorphia Isoodon macrourus Northern Brown Bandicoot 

 Isoodon obesulus Southern Brown Bandicoot 

 Perameles nasuta Long-nosed Bandicoot 

Diprotodontia: Vombatiformes Phascolarctos cinereus Koala 

 Vombatus ursinus Common wombat 

Diprotodontia: Phalangeriformes Trichosurus vulpecula Common Brushtail Possum 

 Pseudocheirus peregrinus Common Ringtail Possum 

Diprotodontia: Macropodiformes Potorous tridactylus Long-Nosed Potoroo 

 Notamacropus eugenii Tammar Wallaby 
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Yolk sac and chorioallantoic placentas exist side by side in the hedgehog tenrec  
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Diprotodontia: Vombatiformes Phascolarctos cinereus Koala 

 Vombatus ursinus Common wombat 

Diprotodontia: Phalangeriformes Trichosurus vulpecula Common Brushtail Possum 

 Pseudocheirus peregrinus Common Ringtail Possum 

Diprotodontia: Macropodiformes Potorous tridactylus Long-Nosed Potoroo 

 Notamacropus eugenii Tammar Wallaby 
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The role of mammalian fetal membranes in early embryogenesis: lessons from marsupials 

Running title: Mammalian fetal membranes 

Anthony M. Carter 

Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, 

Odense, Denmark 

Abstract 

Across mammals early embryonic development is supported by uterine secretions taken up through the 

yolk sac and other fetal membranes (histotrophic nutrition). The marsupial conceptus is enclosed in a shell 

coat for the first two-thirds of gestation and nutrients pass to the embryo through the shell and the 

avascular bilaminar yolk sac. At around the time of shell rupture, part of the yolk sac is trilaminar and 

supplied with blood vessels. It attaches to the uterus and forms a choriovitelline placenta. Rapid growth of 

the embryo ensues, still supported by histotrophe as well as exchange of oxygen and nutrients between 

maternal and fetal blood vessels (haemotrophic nutrition). Few marsupials have a chorioallantoic placenta 

and the highly altricial newborn is delivered after a short gestation. Eutherian embryos pass through a 

similar sequence before there is a fully functional chorioallantoic placenta. In most orders there is transient 

yolk sac placentation, but even before this, nutrients are transferred through an avascular yolk sac. Yolk sac 

placentation does not occur in rodents or catarrhine primates. Early embryonic development in the mouse 

is nonetheless dependent on histotrophic nutrition. In the first trimester of human pregnancy, uterine 

glands open to the intervillous space and secretion products are taken up by the trophoblast. Transfer of 

nutrients to the early human embryo also involves the yolk sac, which floats free in the exocoelom. 

Marsupials can therefore inform us about the role of fetal membranes and histotrophic nutrition in early 

embryogenesis, knowledge that can translate to eutherians. 

Keywords: 

Histotrophic nutrition 

Placentation 

Shell coat 

Uterine glands 

Yolk sac 

Research highlights 

Early embryogenesis in marsupials is maintained by uterine secretions absorbed initially via an avascular 

yolk sac. 

After loss of the shell coat in marsupials, organogenesis is supported by the yolk sac placenta.  

Eutherians similarly depend on histotrophic nutrition for the early phases of embryogenesis. 

Graphical abstract image 

Yolk sac and chorioallantoic placentas side by side in the hedgehog tenrec  
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 1 INTRODUCTION 

Significant progress has been made in researching the initial phases of embryonic development in 

mammals. The key has been the development of in vitro systems to culture embryos for two weeks in 

mouse (Bedzhov et al. 2014, Bedzhov and Zernicka-Goetz 2014) and human (Shahbazi et al. 2016, 

Deglincerti et al. 2016) and for three weeks in crab-eating macaques (Macaca fascicularis) (Ma et al. 2019, 

Niu et al. 2019). The genes expressed during differentiation of trophectoderm, epiblast and primitive 

ectoderm (hypoblast) have been mapped as well as the first steps in formation of amnion and yolk sac.  

There remains an interval of days or weeks between these events and the establishment of a 

chorioallantoic placenta that is poorly understood. In human development there is a “black box” spanning 

the interval from implantation to 5-6 weeks of pregnancy when access to samples is limited for ethical 

reasons (James, Carter, and Chamley 2012). Indeed, there is a palpable lack of curiosity about the role 

played by fetal membranes in support of early human development. Comparative studies can be helpful 

but also confusing as there are three different patterns of fetal membrane development in eutherian 

mammals (Carter 2016). Thus, transient yolk sac placentation occurs in most eutherian orders, but not in 

the mouse, where an inverted yolk sac continues to function through term, nor in the human, where the 

secondary yolk sac floats free in the exocoelom during the first trimester. 

In whatever way the membranes develop, we need to ask how the eutherian embryo is nourished through 

the earliest stages of its development. Later the chorioallantoic placenta permits exchange of nutrients 

between maternal and fetal blood, which is known as haemotrophic nutrition. In principle this can occur at 

earlier stages with a choriovitelline placenta, since the yolk sac has its own set of blood vessels. However, I 

shall argue that absorption of uterine gland secretions and other maternal products is more important. This 

is known as histotrophic nutrition (Enders and Carter 2006). As will be discussed, there is data to show 

uptake of histotrophe by the inverted yolk sac during early embryonic development in rodents and 

lagomorphs. In the first trimester of human pregnancy, there is uterine gland secretion to the intervillous 

space of the placenta and uptake of the secretion products by the trophoblast (Burton et al. 2002, 

Hempstock et al. 2004).  

Marsupials deliver highly altricial neonates after a short gestation. Embryonic development is supported by 

uterine secretions absorbed, during the first two-thirds of gestation, through the shell coat and an 

avascular yolk sac and in the remaining third, where most of organogenesis occurs, by both avascular and 

vascular regions of the yolk sac (Tyndale-Biscoe and Renfree 1987, Guernsey et al. 2017, Renfree 1973). 

Chorioallantoic placentation is uncommon in marsupials although known from bandicoots, wombats and 

the koala (Tyndale-Biscoe and Renfree 1987). Thus, studies of fetal membranes in marsupials necessarily 

deal with the same structures that support early embryonic development in eutherians. Indeed, they have 

been more extensively studied in marsupials and the present review is predicated on my belief that this 

body of work can suggest avenues of exploration for early embryonic development in eutherians. 

Therefore, after a brief digression on monotremes, close consideration will be given to the fetal 

membranes of marsupials. Attention will then be directed to selected examples of eutherian mammals for 

which there is data to support the critical role of histotrophic nutrition in early embryogenesis. 

2 MONOTREMES 
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Monotremes are relicts of an ancient radiation. They last shared a common ancestor with therians in the 

Early Jurassic (Huttenlocker et al. 2018). In addition, there is deep divergence between the extant echidnas 

(Tachyglossus aculeatus; Zaglossus spp.) and the platypus (Ornithorhynchus anatinus) (Rowe et al. 2008). 

Nonetheless, it is instructive to consider the role of monotreme fetal membranes in embryonic 

development (Hughes and Hall 1998, Hughes 1993, Flynn and Hill 1947, 1939). Thus, although monotremes 

are oviparous (Haacke 1885),  fully two-thirds of development takes place in the uterus, where the egg 

grows in size through the absorption of uterine secretions (Hughes 1993). In the platypus at full term 

(oviposition), there is a neurula-stage embryo with 19-20 somites (Figure 1) (Hughes and Hall 1998). 

Although there is yolk in the ovulated egg and cleavage is meroblastic (Flynn and Hill 1939), histotrophic 

nutrition from uterine secretions is more important than autotrophic nutrition from the yolk. The 

secretions are taken up by the yolk sac through the leathery eggshell coat, which is about 70 µm thick 

(Hughes 1993). The abembryonic pole of the yolk sac is bilaminar whilst the embryonic pole is trilaminar 

but lacks blood vessels. The full-term embryo has neither an allantoic sac nor an amnion (Hughes 1993, 

Hughes and Hall 1998). After oviposition and during incubation, however, the trilaminar omphalopleure 

and the allantoic sac become richly vascularized with the latter acting as an organ of gas exchange (Semon 

1894).  

The lessons to be drawn are that an eggshell is no barrier to absorption of fetal secretions and that 

histotrophic nutrition can occur in the absence of a fetal circulation. This is relevant to the understanding of 

early development in both marsupials and eutherians.  

3 MARSUPIALS 

There are 21 families of marsupials (Wilson and Reeder 2005), but most knowledge of their reproductive 

biology is derived from a handful of species (Table 1).  

In marsupials, the length of gestation rarely exceeds that of the oestrous cycle (Tyndale-Biscoe and Renfree 

1987) whereas eutherian gestation always exceeds cycle length (Chavan, Bhullar, and Wagner 2016). There 

is a range of altriciality in marsupials (Smith and Keyte 2018, Hughes and Hall 1988), but all marsupials are 

born at a less developed stage than any eutherian (Werneburg et al. 2016).  

An egg shell coat is present for two-thirds of gestation and intimate contact between the yolk sac and 

uterine lining is first achieved around the time of organogenesis (Menkhorst et al. 2009, Tyndale-Biscoe and 

Renfree 1987). It was shown in the grey short tailed opossum, that rupture of the egg shell triggers an 

inflammatory response that may be a limiting factor for prolonged gestation (Griffith, Chavan, et al. 2017). 

This response has been modified in eutherians with upregulation of genes favouring implantation and 

downregulation of others (Griffith, Chavan, et al. 2017, Erkenbrack et al. 2018).  

A feature of reproduction in several marsupials, including many kangaroos and wallabies, is embryonic 

diapause (Tyndale-Biscoe and Renfree 1987, Renfree and Fenelon 2017). In these marsupials, the female 

goes into oestrus shortly parturition (or even before (Menzies, Hildebrandt, and Renfree 2020)). If this 

leads to a new pregnancy, embryonic development is arrested at the 100-cell stage and resumed only when 

the young in the pouch has been weaned (lactational diapause). Researchers can exploit this by removing 

the pouch young to obtain precisely dated uterine embryos. If conception occurs towards the end of the 

breeding season, the embryo may remain in diapause for up to eleven months (photoperiod-induced 

diapause) (Renfree and Fenelon 2017). 
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3.1 Marsupial membranes 

The tertiary egg membranes are those added during passage of the egg through the genital tract. They 

occur in many amniotes and even non-amniotes. The mucoid coat is added by glands in the Fallopian tube. 

It is clearly seen around uterine eggs in the early stages of cleavage, but rarely persists (Hughes 1977). The 

shell coat is secreted by the uterine glands (Roberts and Breed 1996, Tyndale-Biscoe and Renfree 1987) and 

is present throughout the first two-thirds of gestation (Selwood 2000, Renfree 1973). Indeed, marsupial 

development can be divided into two stages: before and after rupture of the shell coat (Tyndale-Biscoe and 

Renfree 1987). The first stage, embryogenesis, is relatively slow. In contrast, rapid development and growth 

(organogenesis) occur after rupture of the shell coat and apposition of the yolk sac to the uterine wall as a 

choriovitelline placenta. 

As in other amniotes, the fetal membranes of marsupials comprise amnion, yolk sac, allantois and chorion. 

Extraembryonic endoderm and trophoblast constitute the bilaminar omphalopleure, which is the main 

conduit for maternal-fetal exchange prior to shell rupture. It is converted to the trilaminar omphalopleure 

by expansion of the extraembryonic mesoderm within which blood vessels appear shortly before shell 

rupture. Apposition of the vascular trilaminar omphalopleure to the uterine epithelium is the basis for 

choriovitelline or yolk sac placentation, which supports the final phase of rapid growth. In the following I 

shall refer to these membranes as the avascular and vascular yolk sac. The fetal membranes of the tammar 

wallaby (Notamacropus eugenii) in late gestation are shown in Figure 2 (Guernsey et al. 2017).  

The trophoblast is moderately invasive in many marsupials including the four-eyed opossum (Philander 

opossum) (Enders and Enders 1969) and fat-tailed dunnart (Sminthopsis crassicaudata) (Roberts and Breed 

1994a). Recent studies favour the view that the common ancestor of marsupials had invasive trophoblast, 

whereas completely non-invasive trophoblast, as in the tammar wallaby and common brushtail possum 

(Trichosurus vulpecula), is a derived state (Laird et al. 2018, Mess and Ferner 2010, Laird et al. 2020). 

The allantoic sac has its own blood supply but, in most marsupials, does not make contact with the uterine 

lining. Indeed, it is often hidden in folds of the yolk sac membranes (Tyndale-Biscoe and Renfree 1987). 

However, true chorioallantoic placentation does occur in bandicoots (Perameles nasuta, P. gunnii, Isoodon 

obesulus, I. macrourus), where fetal and maternal capillaries are separated by a thin layer of syncytium (see 

below). A chorioallantoic placenta is also established in the koala (Phascolarctos cinereus) (Hughes 1974, 

Semon 1894) and the closely related wombat (Vombatus ursinus) (Hughes and Green 1998). 

3.2 Uterine responses to pregnancy  

Several studies have probed the uterine responses to pregnancy. A redistribution of desmosomes and 

associated claudins has been noted in the plasma membrane of epithelial cells in the fat-tailed dunnart 

(Dudley et al. 2015, Buddle et al. 2019) as well as tammar wallaby and brushtail possum (Laird et al. 2018). 

This response was comparable to that preceding attachment in viviparous squamates and eutherians 

(Dudley et al. 2015). There was evidence in the three marsupials of a strengthening of the basal plasma 

membrane (Dudley et al. 2017, Laird et al. 2018, Laird, Turancova, et al. 2017). Thus, comparable changes 

occurred in a species with invasive trophoblast (the dunnart) and two with non-invasive placentation. 

Based on the hypothesis that invasive placentation is the ancestral state for marsupials (Mess and Ferner 

2010, Freyer, Zeller, and Renfree 2003), it was suggested that strengthening of the basal membrane 
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prevented peeling off of the epithelium during trophoblast invasion; however, it could also have facilitated 

the transition to a non-invasive state (Laird, Dargan, et al. 2017). 

A second approach was to analyse the transcriptomic changes occurring in the uterus of the fat-tailed 

dunnart prior to rupture of the cell membrane (Whittington et al. 2018). Importantly, many of the top 50 

upregulated genes were associated with nutrient transport, underlining the importance of histotrophe 

secretion in the first two-thirds of embryonic development. A second data set from the grey short-tailed 

opossum found an upregulation of the same category of genes even after shell rupture (Griffith et al. 2019). 

Prior to shell rupture in the dunnart, there was some indication of a downregulation of genes with a 

putative immune function (Whittington et al. 2018). Nevertheless, the overriding impression from the 

opossum was that exposure to fetal tissue after shell rupture triggered an inflammatory response 

(Erkenbrack et al. 2018, Griffith et al. 2019). 

3.3 Histotrophic nutrition  

Uterine gland secretions are the principal source of nutrition prior to shell rupture. The shell coat is 

permeable to the histotrophe, which is taken up by the bilaminar omphalopleure and later by the 

trilaminar omphalopleure (Sharman 1961). In macropodids such as the tammar wallaby, which has a 

relatively long gestation period, uterine gland secretion continues after shell rupture (Freyer, Zeller, and 

Renfree 2007). A different pattern was found in the grey short-tailed opossum (Monodelphis domestica), 

where a decrease in uterine gland secretion occurred even before shell rupture, suggesting a phase when 

embryonic growth was supported by nutrients stored in the yolk sac (Freyer, Zeller, and Renfree 2007). 

Surveying the available evidence, Freyer and colleagues found this pattern was the most widespread and 

concluded it likely was the ancestral condition (Freyer, Zeller, and Renfree 2002, 2003). 

In the four-eyed and grey short-tailed opossums, the yolk sacs of adjacent embryos fuse (although each 

retains a separate allantois). Formation of a common yolk sac cavity entails a reduction in surface area of 

the bilaminar yolk sac (Enders and Enders 1969, Freyer, Zeller, and Renfree 2002). This is also the case in 

the fat-tailed dunnart (Roberts and Breed 1994b). In the tammar wallaby, the trilaminar yolk sac expands 

from one-third to one-half of the total surface area (Freyer, Zeller, and Renfree 2002). Therefore, it is likely 

that both parts of the yolk sac are important for uptake of histotrophe, a conclusion strengthened by 

ultrastructural observations. Thus, the apical surface of the trophoblast is characterized by microvilli, 

coated pits and vesicles in both the tammar wallaby and the four-eyed opossum (Figure 3) (Enders and 

Enders 1969, Freyer, Zeller, and Renfree 2002). Nevertheless, the trophoblast associated with the bilaminar 

yolk sac of the tammar wallaby comprises larger cells than that in the trilaminar area and with a greater 

number of lysosomes containing degraded histotrophe (Jones et al. 2014).  

3.4 Respiratory gas exchange  

The oxygen requirements for early embryogenesis are small. Thus a 3-day chick embryo requires just 3.8 µl 

min-1 (Romanoff and Romanoff 1967). The rapid growth of the marsupial embryo following shell rupture 

necessarily implies an increase in oxygen consumption. However, oxygen consumption is still quite 

moderate, about 6 µL min-1, in the newborn pouch young of the tammar wallaby (Baudinette et al. 1988, 

Frappell 2008).  

Early descriptions of marsupial fetal membranes assumed a role for the vascular yolk sac in respiratory gas 

exchange (e.g. (Hill 1900)). The trophoblast layer is thinner in the trilaminar than in the bilaminar yolk sac of 
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the tammar wallaby (Freyer, Zeller, and Renfree 2002, Jones et al. 2014) and this reduction in diffusion 

distance would facilitate oxygen transfer (Carter 2015). 

The early mammalian embryo needs protection from high oxygen levels because of the threat posed by 

reactive oxygen species (Burton 2009). Eutherian embryos have embryonic haemoglobins with high oxygen 

affinities that sequester oxygen and may protect against high oxygen tensions (Kitchen and Brett 1974). 

Marsupial neonates have several embryonic haemoglobins (Holland and Gooley 1997). However, the 

oxygen dissociation curve of neonatal blood does not differ from that of adult blood (Henty, Wells, and 

Brittain 2008). The evolution of alpha and beta globin genes has pursued different paths in marsupials and 

eutherians (Holland, Gooley, and Hope 1998, Opazo, Hoffmann, and Storz 2008). Nevertheless, the 

apparent absence of high affinity haemoglobins in marsupial embryos raises the question of whether they 

mount other defences against reactive oxygen species such as antioxidant enzymes (Burton 2009) or 

scavenging of reactive oxygen species by tissue globins (Fago et al. 2004). 

3.5 Haemotrophic nutrition  

The passage of nutrients from maternal to fetal blood vessels, called haemotrophic nutrition, is a principal 

function of the eutherian placenta. After shell rupture in marsupials, the interhaemal barrier separating 

fetal capillaries of the vascular yolk sac from uterine capillaries can be rather thin as has been shown for 

the grey short-tailed opossum (Freyer, Zeller, and Renfree 2007) and long-nosed bandicoot (Figure 4 (a)) 

(Padykula and Taylor 1976). However, the physiological evidence for haemotrophic nutrition is scant. In the 

tammar wallaby, the composition of yolk sac fluid was found to resemble uterine secretions until rupture of 

the shell coat (Renfree 1973). The proteins that then appeared, such as transferrin, were not maternal in 

origin and probably were made by the fetus (Renfree 1973, Renfree and Tyndale-Biscoe 1973). Recent 

studies of gene expression give further insight (Guernsey et al. 2017). Genes upregulated in the bilaminar 

yolk sac fall into ontologies associated with nutrient uptake, whereas those upregulated in the trilaminar 

yolk sac are associated with respiration (Guernsey et al. 2017). 

As already noted, a chorioallantoic placenta is found in the koala, wombats and bandicoots. The 

interhaemal region of the long-nosed bandicoot (Perameles nasuta) and southern brown bandicoot 

(Isoodon obesulus) has been examined by transmission electron microscopy (Padykula and Taylor 1976, 

Padykula and Taylor 1977). The fetal and maternal capillaries are at first separated by trophoblast and the 

uterine lining, which is a syncytium formed by fusion of the epithelial cells (Figure 4 (b)). Later this is 

reduced to a single layer apparently by fusion of trophoblast and syncytium. Although this was seen as 

evidence for haemotrophic nutrition (Padykula and Taylor 1977), it did not translate into greater maturity 

of the neonate (Hughes and Hall 1988, Lyne and Hollis 1977). Rather it allowed shortening of the gestation 

period. At just over 12 days, the northern brown bandicoot (I. macrourus) holds the record for the shortest 

gestation of any mammal (Lyne 1974).  

3.6 Hormone secretion 

Hormone-related genes are expressed by the fetal membranes of oviparous and viviparous amniotes 

(Griffith, Brandley, et al. 2017). Notwithstanding, knowledge of the endocrine function of the marsupial 

yolk sac is based largely on work in the tammar wallaby. Although the yolk sac can convert pregnenolone to 

progesterone, it likely is not a significant source of steroid hormones (Heap, Renfree, and Burton 1980). It 

does, however, express several peptide hormones and growth factors, including luteinizing hormone, 
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prolactin and growth hormone as well as insulin-like growth factor-2 and its receptor (Menzies, Pask, and 

Renfree 2011). Luteinizing hormone could be the signal for pregnancy maintenance perhaps acting in 

concert with prolactin (Menzies, Pask, and Renfree 2011). Growth hormone, GH receptor and IGF-2 are 

upregulated in the later phase of organogenesis that follows shell rupture and may act to promote fetal 

growth (Menzies, Pask, and Renfree 2011).  

An interesting form of epigenetic gene regulation, first shown in eutherians, is genomic imprinting, which 

results in silencing of one of the parental alleles. In marsupials, insulin (INS) is paternally expressed in the 

vascular yolk sac and otherwise only in mammary gland (Ager et al. 2007, Stringer et al. 2012b). Similarly, 

insulin-like growth factor-2 (IGF2) is paternally expressed in the vascular yolk sac and has been ascribed a 

role in promoting vascularization by increasing expression of vascular endothelial growth factor (Stringer et 

al. 2012a, Ager et al. 2008). 

Finally, the yolk sac of the tammar wallaby produces large amounts of prostaglandin F2α in the last few days 

of gestation, peaking at term (Shaw, Gehring, and Bell 1999). Although the endometrium also secretes 

prostaglandins, the fetal signal is thought to initiate parturition (Shaw, Gehring, and Bell 1999, Renfree 

2010). 

4 EUTHERIANS 

Uterine gland secretions have long been recognized as an essential supplement to haemotrophic nutrition 

via the chorioallantoic placenta of eutherians (Burton 1982, Enders and Carter 2006). Uptake of secretions, 

cell debris and maternal erythrocytes is by pinocytosis and endocytosis to columnar trophoblast cells often 

organized in structures such as the chorionic vesicles of lower primates or the areolae of swine, horse and 

moles (Enders and Carter 2006). Here we are concerned with the role of histotrophic nutrition in the early 

stages of embryonic development before there is circulation in the chorioallantoic placenta. An overview of 

fetal membrane development is given elsewhere (Carter 2016). 

4.1 The avascular yolk sac of the horse 

Early embryonic development has been well studied in the horse (Equus caballus) since the details are 

important for assisted reproductive technologies (Betteridge 2007). The equine embryo remains spherical 

in shape and moves about the uterus until about day 17 after ovulation. Between about days 7 and 20 it is 

enclosed in a capsule (Figure 5 (a)). This is not a tertiary egg membrane, like the marsupial shell coat. It is 

made up of  mucin-like glycoproteins secreted by the trophoblast (Oriol, Sharom, and Betteridge 1993). It is 

not until dissolution of the capsule around day 21 that there is contact with the endometrium (Betteridge 

2007). The conceptus expands during this interval and the capsule with it. The capsule is not a barrier to 

transfer. Within the capsule is a bilaminar yolk sac comprised of trophoblast and endoderm. The mural 

trophoblast is endocytotic as indicated by the transfer of tracers (ferritin and peroxidase) from coated pits 

and tubules to large vacuoles (Enders et al. 1988). Extraembryonic mesoderm appears relatively late and a 

vascular, trilaminar yolk sac is not present until shortly before the capsule dissolves (Figure 5 (b)). However, 

the embryo is well formed by the time the capsule is lost and there is then an effective embryonic 

circulation (Enders et al. 1993). From 22 days embryonic development is supported by a yolk sac placenta 

(Enders 2015, Enders et al. 1993). A fully functional chorioallantoic placenta is not established until the end 

of the first month of gestation (Allen 2001). 
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Importantly, while the conceptus is enclosed in its capsule yolk sac volume increases over time (Betteridge 

2007, Waelchli and Betteridge 1996, Betteridge et al. 1982). Osmolarity, fructose concentration and protein 

concentration remain constant or increase slightly, but do not fall with increasing volume, showing there 

must be uptake of solutes from the uterine fluid (Betteridge 2007). The role of the avascular yolk sac in this 

process was elegantly demonstrated by studies of twinning in horses (Waelchli and Betteridge 2013). If 

there are two embryos in the capsule and one abuts the membranes of the other, the second twin is 

unable to survive, presumably because it cannot absorb uterine secretions. With correct orientation of the 

blastocysts, both can take up nutrients and the twins may survive. This clearly demonstrates that the 

bilaminar yolk sac has a vital function just as it does in marsupials before egg cell rupture.  

4.2 Yolk sac placentas of artiodactyls and tenrecs  

A temporary yolk sac or choriovitelline placenta supports embryonic development in most orders of 

eutherian mammal (Carter 2016). A strict definition requires that this is a vascular yolk sac in intimate 

apposition to the endometrium (Mossman 1987). As in marsupials, however, the yolk sac may take up 

histotrophe well before such an attachment is formed. This section will give three examples of how the yolk 

sac and other membranes support early development. A list of eutherian orders with transient yolk sac 

placentation is given elsewhere (Carter 2016). Yolk sac placentation is not found in haplorrhine primates, 

rodents, lagomorphs, armadillos or sloths (Carter 2016). 

In the pig (Sus scrofa), the blastocyst undergoes a remarkable elongation at 10.5-12 days of gestation, 

reaching about 1 meter in length and 0.75 mm in diameter (Perry 1981, Perry and Rowlands 1962, Heuser 

1927). The elongated part of the blastocyst is a diverticulum of the exocoelom lined by chorion. The 

chorion participates in maternal-fetal signalling and possibly in absorption of histotrophe secreted by the 

uterine glands (Bazer and Johnson 2014). At the centre is the embryo and yolk sac, the distal part of which 

is bilaminar, and the remainder supplied with blood vessels. This likely transfers nutrients to the rapidly 

developing embryo. Adherence to the uterine wall occurs at 18 days, resulting in transient yolk sac 

placentation (Figure 6 (a)). At this stage the allantois is just a bud protruding into the exocoelom. However, 

by 21 days the vascular allantois has displaced the yolk sac from trophoblast and begun to form a 

chorioallantoic placenta (Figure 6 (b)) (Perry 1981, Heuser 1927).  

In sheep (Ovis aries) and cattle (Bos taurus, B. indicus), elongation of the chorion is less drastic than in the 

pig, but its two arms are occupied by the yolk sac (Figure 5 (c)) (Rüsse et al. 1992, Assis Neto et al. 2010). As 

first shown for the sheep, early expansion of the exocoelom hinders contact between yolk sac and 

endometrium (Assheton 1906). This configuration does not meet the above definition of a yolk sac 

placenta, but the uterine gland secretions cross the chorion and yolk sac to supply the embryo.  

Horses, pigs and cattle belong to the same eutherian clade (Laurasiatheria). My third example, therefore, is 

the lesser hedgehog tenrec (Echinops telfairi), which is from a distant clade (Afrotheria) (Murphy et al. 

2001). In the tenrec, organogenesis is supported by a yolk sac placenta until it is displaced by expansion of 

the exocoelom and allantois (Carter et al. 2005). As shown in Figure 7, yolk sac and allantois are richly 

vascularized and apposed to a thickening of the endometrium called the preplacental pad. Thus, there is 

the morphological basis for haemotrophic nutrition via a yolk sac placenta.  
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4.3 The inverted yolk sac of rodents  

In rodents, inversion of the germ layers (day E5 in the mouse) and subsequent loss of the outer wall of the 

yolk sac leaves a visceral yolk sac membrane where extraembryonic endoderm forms an epithelium facing 

the uterine cavity (Sobotta 1911, Rossant and Cross 2001). There is increasing awareness that yolk sac 

membranes support embryonic development well before establishment of the chorioallantoic placenta. In 

the mouse, important events such as closure of the neural folds (Zohn and Sarkar 2010, Terasawa et al. 

1999) precede the start of chorioallantoic circulation at embryonic day E10.5 (Cross et al. 2006). The yolk 

sac endoderm plays a key role in supplying lipids during early embryonic development through synthesis of 

apolipoprotein B and lipoprotein (Farese et al. 1996, Terasawa et al. 1999). In addition, iron uptake by 

endocytosis of transferrin has been shown in mouse (Copp et al. 1992) and rat (Young et al. 1997).  

The rodent yolk sac continues to serve as an accessory to the chorioallantoic placenta through to term. Its 

transport functions have been studied extensively in mid to late gestation in the guinea pig (e.g. (King and 

Enders 1970)). The yolk sac is also an important conduit for maternal immunoglobulins (Brambell, 

Hemmings, and Rowlands 1948, King and Enders 1970).  

4.4 The yolk sac in haplorrhine primates 

Early in human development, the extraembryonic mesoderm separates the endoderm from the trophoblast 

resulting in a “secondary” yolk sac comprised of endoderm and mesenchyme that comes to lie within the 

exocoelom (Enders and King 1993, Hertig, Rock, and Adams 1956, Jauniaux et al. 2004, Jones 1997). Indeed, 

precocious development of the mesoderm and exocoelom with formation of a secondary yolk sac is a 

characteristic feature of haplorrhine primates (tarsiers, Old and New World monkeys and apes) (Luckett 

1974). In the human, a vitelline circulation is established starting around day 16 and yolk sac function 

persists through 9-11 weeks of gestation after which there is a gradual decline. In the first trimester 

chorioallantoic placenta, the orifices of the maternal arteries are blocked by plugs of trophoblast and there 

is no flow before 6-7 weeks and restricted flow until 12 weeks (Roberts et al. 2017, James et al. 2018). 

However, uterine glands open to the intervillous space of the placenta and their secretion products are 

taken up by the trophoblast (Burton et al. 2002, Hempstock et al. 2004, Moser et al. 2015). Thus, the yolk 

sac functions through a period when perfusion of the intervillous space is minimal and uterine gland 

secretions are an important source of nutrients for the developing embryo. Indeed, the uterine glands may 

be stimulated by hormones released from the trophoblast, such as human placental lactogen and human 

chorionic gonadotrophin, while trophoblast invasion could be promoted by “uterine milk proteins” and 

growth factors (Burton, Cindrova-Davies, and Turco 2020). 

Exocoelomic fluid from the first trimester of human pregnancy has been characterized as an ultrafiltrate of 

maternal plasma with additional proteins from the placenta and secondary yolk sac. It is therefore regarded 

as an important interface for maternal-fetal nutrient transfer and as a nutrient reservoir for the embryo 

(Jauniaux and Gulbis 2000). Yolk sac fluid is not easily obtained but its protein content is consistent with 

exchange between exocoelomic and yolk sac compartments including transfer of hCG derived from the 

placental trophoblast (Gulbis et al. 1998). The yolk sac mesothelium faces the exocoelomic cavity and has 

the ultrastructural features of pinocytotic activity (Jones 1997, Jones and Jauniaux 1995). Finally, the 

inward-facing endodermal layer expresses the endocytic receptors megalin and cubilin (Burke et al. 2013). 

Transcriptome analysis has confirmed the expression of a broad range of transporters in first trimester 
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human yolk sac (Cindrova-Davies et al. 2017). Together these observations support the argument that 

uterine gland secretions and other nutrients are transported to the exocoelom and absorbed by the 

secondary yolk sac whence they are transferred to the vitelline circulation (Jauniaux, Gulbis, and Burton 

2003). Additional functions of human yolk sac are synthesis of α-fetoprotein and other proteins (Gulbis et 

al. 1998), haematopoiesis (Tavian et al. 2010) and as a repository for germ cells (De Felici 2013).  

5 CONCLUSIONS 

The first lesson to be drawn from this review is that uptake of uterine secretions does not require a 

placenta. The monotreme embryo has reached 18-20 somites by oviposition, its growth supported both by 

yolk and by histotrophe taken up through the avascular yolk sac. Similarly, the first two-thirds of 

development in marsupials is dependent on histotrophe absorbed by the avascular bilaminar yolk sac and 

by a trilaminar yolk sac that has no blood vessels until shortly before shell rupture. An essential role for the 

bilaminar yolk sac in eutherian development is confirmed by studies of twinning in the horse. 

Secondly, a yolk sac placenta supports the growth of the marsupial embryo after shell rupture. It may allow 

for haemotrophic nutrition although the physiological evidence is scant. The vascular yolk sac might be of 

greater importance for the oxygen supply to the embryo. The ancestral condition in eutherians and in most 

extant clades is for a yolk sac placenta to provide nutrition in the early stages of fetal growth. Rodents and 

higher primates do not conform. However, in rodents the inverted yolk sac is functional well before 

establishment of a circulation in the chorioallantoic placenta. In the mouse, that transition occurs at day 

E10.5. Human development is unusual in that the yolk sac never approaches the uterus. However, there is 

ample evidence that early embryonic development is supported by histotrophe transferred via the 

exocoelom and yolk sac. The human embryo is at least partly dependent upon uptake of uterine secretions 

by the trophoblast facing the intervillous space, where blood flow is negligible in the first few weeks of 

pregnancy. 

Marsupials provide important information about histotrophic nutrition via the avascular yolk sac and later 

the yolk sac placenta. To a large extant these translate to early embryonic development in eutherians. Thus 

there is every reason to incorporate this knowledge when considering the role of fetal membranes in 

eutherians and to encourage further studies of marsupials as essential to a fuller understanding of 

mammalian development and its evolution. 
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Figure legends 

FIGURE 1 Intrauterine development of monotremes is supported by yolk and absorption of uterine 

secretions. 18-20-somite embryo of the platypus (Ornithorhynchus anatinus). H, Hensen’s node; S, somites; 

TGP, trigeminal ganglionic primordia. Reprinted with permission of The Royal Society from (Hughes and Hall 

1998) © The Royal Society (U.K.).  

FIGURE 2 Fetal membranes of the tammar wallaby (Notamacropus eugenii) at 24 days gestation. Right: 

schematic representation of the fetal membranes. Left and middle: cellular components of the avascular 

yolk sac or bilaminar omphalopleure (BOM) and vascular yolk sac or trilaminar omphalopleure (TOM). Cell 

layers are: TL, trophoblast; EL, endoderm; ML, mesoderm (with blood vessels). Reprinted from (Guernsey et 

al. 2017) © the authors. 

FIGURE 3 Electron micrographs of trophoblast from the vascular yolk sac. (a) Tammar wallaby 

(Notamacropus eugenii) at 20 days gestation. Structures shown include coated pits (long arrowheads), 

vesicles (v), and nucleus (N). Reprinted with permission from (Freyer, Zeller, and Renfree 2002) © 

Anatomical Society of Great Britain and Ireland 2002. (b) Grey four-eyed opossum (Philander opossum). 

Note that the apical microvilli are long but do not interdigitate with those of the uterine epithelial cell. 

Arrows indicate coated pits. At the opposite surface, microvilli project into basal infoldings situated 

beneath the basal lamina. Image courtesy of Dr. Allen C. Enders. 

FIGURE 4 The interhaemal barrier in the placentae of the long-nosed bandicoot (Perameles nasuta); crown-

rump length of embryo 10-11 mm. (a) Yolk sac placenta. Fetal blood vessels (fv) appear in the attenuated 

mesoderm between endoderm (E) and trophoblast (T). Maternal capillaries are superficial and above the 

syncytial masses of uterine epithelium (S). CT, endometrial stroma; m, mitochondrion; n, nucleus; x, 

artefactual space. (b) Chorioallantoic placenta. There is a short diffusion distance between fetal capillaries 

(fv) and maternal ones (mv) separated only by trophoblast (T) and the syncytial masses (S) derived from 

uterine epithelial cells. Reprinted with permission from (Padykula and Taylor 1976) Copyright © 1976 

Wiley-Liss, Inc.  

FIGURE 5 The capsule and yolk sac of the horse and the bovine yolk sac. (a) In the horse at 14.5 days the 

resilient capsule is so tightly applied to the yolk sac that it is invisible. (b) At 17.5 days the flaccid capsule 

hangs intact from the yolk sac. Reprinted from (Betteridge 2007) © (2007) with permission from Elsevier. 

(c) The bovine yolk sac at 20 days comprises a central portion (YSC) and two extended arms (YSE); allantoic 

vessels (arrows) are seen extending from the embryo. Courtesy of Dr. Antonio Assis Neto.  

FIGURE 6 Fetal membranes of the domestic pig (Sus scrofa). Ectoderm is in blue, mesoderm in red and 

endoderm in green. (a) Longitudinal section of the elongated blastocyst at 18 days post coitum. The yolk 

sac is attached to the chorion partly as the bilaminar omphalopleure and partly as a choriovitelline 

placenta. The allantois is expanding into the exocoelom but has not yet reached the chorion. (b) By 21 days 

post coitum, the allantois and chorion have fused to form the allanto-chorion. In the process the yolk sac 

has been displaced. Reprinted with permission from (Perry 1981). Copyright © 1981, Society for 

Reproduction and Fertility. 

FIGURE 7. Fetal membranes of the lesser hedgehog tenrec (Echinops telfairi) at 22 days of gestation. (a) 

Overview showing amniotic cavity (Amn), yolk sac (YS), allantoic cavity (All) and exocoelom (Exo). (b) Yolk 

sac placenta (YS Pl) and allantoic placenta (All Pl). At this stage neither vessels from the yolk sac nor vessels 
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from the allantois have entered the preplacental pad (PP). (c) Vessels of yolk sac (above) and allantois 

(below) abut the preplacental pad. Note the more cuboidal endoderm lining the yolk sac vessels. MBS, 

maternal blood space. (d) The allantois displacing the yolk sac. The allantoic cavity (All) is encroaching from 

either side on the remnants of the exocoelom (Exo) and the yolk sac (YS). Haemotoxylin and eosin. Scale 

bars: 1 mm (a), 100 mm (b), 20 mm (c-d). Reprinted from (Carter et al. 2005)  © (2005) with permission 

from Elsevier.  
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TABLE 1 Marsupial orders and model species. Orders and suborders from (Wilson and Reeder 2005). The 

species shown are those featured in the recent literature.  

Order and suborder Species Common name 

Didelphimorphia Monodelphis domestica Grey Short-Tailed Opossum 

 Philander opossum Grey Four-Eyed Opossum 

Paucituberculata None  

Microbiotheria None  

Notoryctemorphia None  

Dasyuromorphia Sminthopsis crassicaudata Fat-Tailed Dunnart 

Peramelemorphia Isoodon macrourus Northern Brown Bandicoot 

 Isoodon obesulus Southern Brown Bandicoot 

 Perameles nasuta Long-nosed Bandicoot 

Diprotodontia: Vombatiformes Phascolarctos cinereus Koala 

 Vombatus ursinus Common wombat 

Diprotodontia: Phalangeriformes Trichosurus vulpecula Common Brushtail Possum 

 Pseudocheirus peregrinus Common Ringtail Possum 

Diprotodontia: Macropodiformes Potorous tridactylus Long-Nosed Potoroo 

 Notamacropus eugenii Tammar Wallaby 
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