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Abstract. In this paper we present the effect of macroscopic non-homogeneities on
the distribution and evolution of strain non-uniformities during the shearing of thermo-
viscoplastic materials. The thermomechanical parameters (strain hardening, strain rate
sensitivity, and thermal softening), as well as all of the material parameters are sup-
posed to depend explicitly on the space variable. We show that, even under stability
conditions, the strain exhibits intense, time-increasing non-uniformities, following the
non-homogeneities, in a specific rate, which depends on the degree of non-homogeneity
exhibited by the thermomechanical parameters. By considering both the isothermal and
anisothermal cases, we obtain results indicating that non-uniformity measures, based on
the control of the strain gradient, are more suitable to give stability conditions of non-
homogeneous materials. Moreover, we present numerical results concerning the interplay
between material non-homogeneities, initial defects, and boundary conditions for two
specific cases: the shearing of a reinforced slab and the shearing of a plate composed of
several thin layers of periodic structure. The results are in complete agreement with the
analytical behavior of the model.

1. Introduction. During plastic deformation of metals, the strength of the material
is decreasing with respect to temperature (or strain, in isothermal models, where thermal
effects are implicitly taken into account). Then, if the temperature and/or strain are
highly non-uniform, narrow zones of weaker material appear, especially under high strain
rate. Initial strain non-uniformities, due to geometrical defects, may cause additional
weakness. The localized shear deformation may lead to the emergence of adiabatic shear
bands and, eventually, to catastrophic fracture.
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In this paper, we present the effect of material inhomogeneities on the emergence
and evolution of strain non-uniformities during the simple shearing of softened rate-
dependent materials. We are interested on macroscopic inhomogeneities, in the sense that
the material properties, and more specifically the thermomechanical functions, depend
explicitly on the space variable.

The question of strain localization is related to the study of the large time behavior of
strain or strain gradient. An efficient mathematical way, introduced by Dafermos (1982,
1985), Dafermos and Hsiao (1983), and Tzavaras (1986, 1987, 1991, 1992), is based on the
application of nonlinear analysis techniques, in order to obtain stability and instability
conditions between the thermomechanical parameters, namely the thermal softening, the
strain hardening, and the strain rate sensitivity (see also Charalambakis (1984, 1985),
Chen et al. (1989), Maddoks and Malek-Madani (1992), Liu and Jiang (2003) and,
for the two-dimensional case, Rigatos and Charalambakis (2001)). More specifically,
Tzavaras presented a consistent existence and continuation theory for the model of rate-
dependent softened materials. According to this, if the initial data are smooth and
positive, then there exists a unique classical solution, defined on a maximal time interval
of existence, which could be infinite or finite. In the latter case, the shearing under
prescribed tractions at the boundaries leads to a strain and strain-rate blow-up, while
the stress remains bounded. In this context, the concept of L, - localization was used by
Molinari and Clifton (1987), giving similar results. This concept may provide a measure
of strain non-uniformities by following the ratio of strains at two material points. These
findings agree with the theoretical and experimental work of Clifton et al. (1984), Wright
and Batra (1985), Wright and Walter (1987), and Shawki and Clifton (1989). Moreover,
it is of interest to study the implications of some other additional functions, such as the
cold work, which is the portion of plastic work stored to create a new situation of crystal
defects (see Hodowany et al. (2000), Rosakis et al. (2000), and Charalambakis (2001)).
It seems that the variation of this quantity, with respect to strain and strain-rate, is
important for the understanding of the instability regime.

However, in the case of homogeneous materials, these techniques lead to very large
values of critical time, at which instability is manifested as catastrophic failure. This is
due to the fact that, in this case, the concept of shear banding is related to the blow-up
of solutions of the system of partial differential equations describing the problem, i.e., to
extremely large values of strain or temperature, while, in the reality, only a finite value
of strain, called critical strain, suffices to produce shear banding. This is the reason
for the elaboration of some more engineering localization measures, based on linearized
analysis techniques, by Bai (1982), Burns (1983), Molinari (1985), Dodd and Bai (1987),
Fressengeas and Molinari (1987), and Leroy and Molinari (1992). Some of these methods
control the evolution of the relative perturbation in order to obtain critical conditions of

the process.

In this paper, we assume that the flow stress of a power law material, exhibiting
softening, depends explicitly on the space variable x. We are concerned with two specific
types of flow stress, namely (see Shawki and Clifton (1989) and Tzavaras (1992) for the
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homogeneous case)
o(z,t) = G(x)8(z,t) @ y(z, )" Dy, (2, )™, m(z) < a(z), Va, (1)
for the anisothermal case, and

o(2,1) = Gleyy (e, ) ™y, )™, () < M2 < L

v 9
3 ~3 0 (2)

for the isothermal. In (1) and (2), 8, v, and -; denote the temperature, strain, and
strain rate field, respectively (all subscripts indicating differentiation with respect to
the variable indicated), while G(z) is a material parameter. The isothermal case (2) is
justified by the assumption that the temperature acts as a hidden variable, while the
destabilization is driven by the strain softening. In (1) and (2), the functions a(x), m(x),
and n(r) respectively denote the thermal softening, the strain hardening (1) or strain
softening (2), and the strain rate sensitivity, all supposed to be space dependent. We
note that a{x), m(z), and n(z) are supposed to be functions that smoothly approximate
the nonhomogeneous thermomechanical parameters of the material. We also note that
the restriction in (2), between strain softening and strain-rate sensitivity functions, is
only technical.

In Sec. 2, we first verify that similar stability and instability criteria with the homo-
geneous case are valid, with the thermal softening a(z) in (1) (or the strain softening
m(z) in (2)) being the leading factor of instability. We next show the main result of
this paper by following the evolution in time of the strain gradient under stability con-
ditions. Namely, we show that, even in the case of uniform initial straining, the strain
gradient increases in a strongly non-linear way with time in material regions where the
thermomechanical parameters vary rapidly. Then, it appears that the strain gradient
distribution, for large values of time, exhibits an intense oscillation in space, looking like
a function which converges weakly, as the scale parameter tends to zero (Bensoussan et
al. (1978), Suquet (1982)). This result seems to extend the weak formulation results
of a thermoviscoplastic stratified material without strain hardening, presented in Char-
alambakis and Murat (1989 and 1990), where it was shown that the temperature field
converges in a weak manner as the thickness of the layers tends to zero, while the stress
converges strongly. Moreover, in the special case of quasi-static approximation, we show
that the material inhomogeneities, combined with initial temperature or initial strain
non-uniformities sufficiently large, result to L..-localization, even in the case of stability
conditions between the thermomechanical parameters.

Finally, in Sec. 3 we present numerical results confirming the above findings. More
specifically, we show the interplay between the destabilizing role of boundary shear forces,
initial geometrical defects, and material inhomogeneities in two specific cases of non-
homogeneous ductile materials, namely a material reinforced by two thin metallic plates
with nicer thermomechanical parameters and a stratified slab composed of several thin
layers of periodic structure. In both cases, the relative variation (m(z) — a(z))/n(z) (for
the anisothermal case) or m(z)/n(z) (for the isothermal case) seems to be the leading fac-
tor for the localization of the strain gradient in material regions, where these parameters
vary rapidly.
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2. The Main Results. We consider the simple shearing of a plate, made by a non-
homogeneous material, between the planes £ = 0 and z = h, in the y-direction, perpen-
dicular to z. The shearing is uniform in y and z and is caused by steady shear forces
or velocities at the boundaries. Then, the process is described by the following initial-
boundary system of non-linear partial differential equations for (z,t) € (0,h) x (0,T):

P, 1) = 0a(2,1). 3)
c(2)p(2)0r (2, 2) = Bz, 1(w, £), 0z, 1), vl 1) (2, v, 1), (4)

(@) = vl 1), (5)

o(0,t) = o(h,t) =S or v(0,t) =0, v{h,t) =V, (6)

v(z,0) = vo(x) with wve(z,0) >0, 6(2,0)=84(z) >0, ~(z,0)=y(z)>0, (7)

where o is given by (1) or (2) . We note that in the isothermal case (2), Eq. (4} decouples
from (3) and (5). We recall that v, 8, v, and ¢ denote the velocity, temperature, strain,
and stress field, respectively. In the above system, p and c¢ are the density and specific
heat, respectively, while the function # denotes the part of the plastic energy converted
into heat (Hodowany et al. (2000) and Rosakis et al. (2000)). The existence and large
time behavior of solutions of the uniform shearing for the case of a homogeneous material
with constant 3 was fully analyzed by Tzavaras (1987, 1991, 1992), where stability and
instability conditions were presented. The same conditions are valid for the case of a
material with 8 dependent on temperature, strain, and strain-rate, provided that some
additional restrictions on 3 hold (Charalambakis (2001)).

We first study the stability conditions of the above system (3)-(7) and (1) or (2).
By applying the technique proposed by Tzavaras (1991, 1992), we differentiate (1) with
respect to time and use (3) and (5) to find

Lfo] = (o(a.0)1/"9), = G(a) /" p(a, 1)~ o)y (g (@)1
’ (p(x)_lo'xx(x, t) + (1/.0(-7:))10'1(37» t))
- (l/n(:r))G(a:)_l/"(z)G(x,t)“(x)/"(z)'y(x,t)_m(z)/"(r)a(x,t)wn(x)
-1

(= a(@)p(e) ()T Bz, v (@ 1), el 1), 0(z, 1) o (2, 1)8(z, t) " m(x)y(z, 1))
=0,

under boundary conditions (6, first) or (see (6, second) and (3))
0.(0,t) = o.(h,t) =0, (9)

and initial conditions defined by (7) and (1). By applying comparison theorems for
the above problem (see Appendix 5) we find that the shearing (3), (4), (5), and (1) is
stable for T — oo under boundary conditions (6, first) and (6, second) provided that,
for z € (0, h),

p(x) = m(z) + n(z) — a(z) > 0, (10)
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and
su (z,t)e(z) tp(z)™Y) < inf (a(z)m(z)”!) inf (z,)e(z) Lol(x)™h),
S (506 6l) ) < int (al@mE) ™) int (806 ol) )
te(0,T] t€(0,7)

(11)
where 3% = Bz, y(z,t)%:(x,t),0(x,t)). We note that this function is supposed to be a
given smooth function, which can be defined by studying experimentally the dependence
of B on v, v, and @ in each material component. The above condition (10) is similar to the
condition presented by Tzavaras (1992), while (11) is analogous to the condition presented
by Charalambakis (2001). However, as we will see below, condition (10) cannot prevent
the development of highly non-uniform strain at the boundaries of non-homogeneities.
We now start, from the isothermal case (2) and, following the same steps, we differen-
tiate (2) with respect to time and use (3) and (5) to obtain

La[o] = o4(z, t) — n(x)G(z)/"@) g (M@ =1/n(@)y (g ¢)—m(2)/n(2) .
(p(x)tou(z, t))z + m(z)G(z) "M@ g /n@) g (g 4) (@) =n(2))/n(z) (12)
under boundary conditions (6, first) or {9). Applying the comparison theorem (see
Appendix 6), we find that

o(z,) < sup oo(a) (13)
z€[0,h]

Using (2) and integrating over ¢,
y(z, £) (@) =mE@N/(2) _ 3 (n(e)-m(@))/n(2)
: (14)
= ((n(e) = m(@)/n(@)) ()" [ (a0,
0
from which, recalling (13), we conclude that the process (3), (5}, (1) is stable for T — o0,
provided that
n(z) —m(z) >0, V z€][0,h] (15)

However, this condition cannot stop the monotone increase with time of strain non-
uniformities at the interfaces of different material components. To see that, we must
follow the large time behavior of the strain gradient, derived from (14). A simple calcu-
lation gives, with w(z) = m(x)/n(x),

(1 - w(@) (@, )Py (z,1) = wa(z) log (v(z. 1)) vz, 1) 7 + (yo(2)' ")

—G(z) V=) 1o —w(x n(x wel(z ta z, t)V/ ™M@ qr
G(e) /7 108(G() (1~ (o) (1/n(a), +r(2) ) [ ot
+(1 —w(:z:))G(a:)_l/"(")(1/n(x))x/0 log (o(z,7))o(z,7)/™®dr (16)

+ (1 — w(x))G(x)_l/"(z)(l/n(a:)) /OtU(z,T)l/"(z)_lax(z,'r)dT

- (l — w(z))G(w)l/n(z)—lGI(x)(1/n($)) /0 U(l‘,T)l/n(z)dT.
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Using the large time behavior of vy(x,¢) and o(a,t) (see (B.37) and (B.38)), we deduce
from (16)

y(z, t)—w(x)%(n t) ~ t(2—w(r))/(1—w(x))wx(x)

+¢- ((w(r) — 1) ((1/n(:r))z — l/n(a")) — wI(T)> (17)

+(1- w(r))(l/n(r))/o oz, )" @15 (2, 7)dT.

Recalling (B.46) and (B.52) of Appendix 6, we verify that, since

t 1 7t 1 st
/O’(S(,’,T)l/n(I)_lO'z(l‘,T)dT < —/ U(.T,,T)2/"(I)_2d7'+—/ O'Z(JS,T)2dT
0 2 Jy 2 Jo
t h
< Kt+K// Ve, 7)2dzdr, (18)
o Jo

the integral in the right side of (17) is bounded by Kt, since m < n —m . K denotes a
generic constant which can be estimated in terms of the initial data and the properties
of the given functions of the problem. Therefore, there exists a sufficiently large time,
after which

y(x,t)_“(’”)'ya,(x,t) ~ Kt(Q_W(I))/“_“(’”))wz(x),

or, by (B.38),
Yo (x,t) ~ K2 A=0@)y (). (19)

We conclude from (19) that the material non-homogeneities, expressed by the slope
of w(z) = m(x)/n(x), cause increasing strain non-uniformities with a rate which also
depends on w: the larger the slope w, of the ratio of the strain softening m by the strain
rate sensitivity n, the larger the strain non-uniformity at every moment; at the same time,
the larger the ratio w = m/n, the larger the rate of increase of this strain non-uniformity
with time. We note that (16) shows also that, in the absence of non-homogeneities
(we(x) = 0), the strain non-uniformities increase at the material regions with initial
strain non-uniformities or geometrical defects. Regarding the interplay of m(x) and
n(x), we easily verify that combinations of increasing (respectively decreasing) strain
rate sensitivity with decreasing (respectively increasing) strain softening, with respect to
the spatial position in the material, may lead to high values of w,(z) and, by (19), to
material zones with intense and increasing non-uniformities. These regions appear, for
instance, at the interfaces between different material components, in which the material
and thermomechanical parameters are smoothly approximated by the functions p(z),
G(z), o(z), m(z), and n(z) . In the case of composite materials with periodic structure,
the strain gradient exhibits a periodic spatial oscillation, which increases monotonically
with respect to time.

The same technique can eventually be used to establish the behavior of the strain
gradient for the anisothermal case (1). However, in this case, the expression giving -,
(corresponding to (16)) contains additional terms involving the temperature gradient

with a behavior that cannot easily be defined. So, we restrict ourselves to the numerical
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solution of the anisothermal problem, which is presented in the next section. The nu-
merical results do show, as we will see, that the evolution of the strain gradient is similar
to that described above for the isothermal case.

To remedy this situation, we present an alternative analytical description of the in-
terplay between non-homogeneities and non-uniformities, occuring in the case of the
anisothermal situation (1) under quasistatic conditions and boundary shear forces (6,
first). This description is based on the Lo.-localization concept, mentioned in Sec. 1.

For simplicity, we assume that 3 = §(x). The general case can be treated in a similar
manner. Under quasistatic conditions, (3) gives

ox(z,t) = 0. (20)
Combining (20) and (6, first), we conclude that
o(z,t)=8S. (21)
Then, using (4) and (21),
(2, t) = p(z)e(2)B(z) ST (8(z, 1) — bo(z)) + Yo (). (22)
Using (1), (4), (21), and (22),
8(z,t)" 4D/ @, (2, ) (N (2)0(x, t) + L(z))™ ™ = M(z), (23)
where

N(z) = p(a)e(z)B(z)~'S™,  L(z) = —=N(z)bo(z) + ¥(x),
M(z) = G(z) Y™ /@) N (7)1,
We easily verify that, if the initial strain is sufficiently large, namely
Yo(z) > N(z)8p(x), z€][0,h],

then (23) gives that the temperature is an increasing function of time. Writing (23)
at two different points x4 and zp, and denoting by 84(¢) and 6p(t) respectively the
temperature at these points, we obtain

ma/na
OA(t)_aA/nA (NAHA(t)-FLA) 0 44+(t)

mg/ng

= (Mp/Ma)0g(t)~o8/ms <N303(t) + LB) 05t (t), (25)

where a4 = a{z4), ma = m(za), na = n(za), ap = a{zp), mp = m(xg), and
ng = n(zxg). We assume that

pa/na <pp/ns, (26)
where p4 =ma+n4—aa and pg = mp +np —ap, and that the initial temperature at
A, 8oa = 0o(z4), is sufficiently large compared to 8o = 6y(z )}, namely

OZA/TLA > KAngg/nB, (27)

where

Kap = (pangMp/ppnaMa4)(Np + LB/9OB)mB/nBN;mA/nA. (28)
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Then, integration of (25) over time gives

/95,’”-*““)/”%0/4 > (Mp/My)N A" /9,;“5/‘”8(N393 + Lg)™8/™2dfp
and, since g > 6gg, .

gima=na)/mage . S (Mp/MNT™/™ [ 92%2/"8 (Np 4 L /805) ™2/ 075/ ™8 4o
A A B B

(29)
from which, by integrating and recalling (27) and (28),
9%4/71/1 > KABQII;B/HB»
or
(GA/QB)PB/NB > KABHE:B/HB_Z)A/”A). (30)

Since pa/na < pp/np (sec (26)), the right part of (30) tends to infinity as t — oo, the
temperature being an increasing function of time.

The analysis presented shows that, even under stability conditions p(z) = m{z) +
n(x) — a(x) > 0, the non-homogeneity of the thermomechanical parameters p(x) and
n(z) causes increasing non-uniformity, provided that there exists sufficiently large initial
non-uniformity. More specifically, the ratio of 64(¢) by 6p(t) increases faster than a
power of 64(t), as t — oo , enhancing the existing non-uniformity and forming always
patterned solutions. However, this conclusion is valid only if the initial temperature at
x 4 is sufficiently large compared to the corresponding at xp (see (27) and (28)). Finally,
we note that if the material is homogeneous (p4 = pg,na = ng), the above conclusion
is not valid.

3. Numerical Results. We first consider the numerical simulation of thermovis-
coplastic shearing of a slab, caused by boundary shear forces, under instability conditions
between the thermomechanical parameters. The numerical method chosen to solve this
problem of nonlinear partial differential equations (1), (3)-(7), consists of an approxima-
tion space in which, for each ¢, the solution vector is approximated by a cubic piece-wise
polynomial with C! smoothness (see Houstis (1977)). Then we force the approximate
solution to satisfy the system at certain interior (collocation) points, which are chosen
according to Houstis (1977). The software implementation was realized by the appro-
priate selection of parameters of a general finite element collocation program PDECOL
(Madsen and Sincovec (1979)). All material parameters used are selected on the basis of
a cold-rolled steel —AIST 1018 (see Clifton (1984)), with a constitutive law of the form
(1) and with p = m +n — a < 0. To compare with the non-homogeneous case, we
present in Fig. 1 the shear banding of a homogeneous material due to initial geometrical
defects. The material is modeled as follows : G = 436M Pa, p = 7800Kg/m3, ¢ =
500J/Kg.C°, m = 0.015, n = 0.019, and o = 0.38. The strain and strain-rate
non-uniformities persist and grow with time, overcoming the action of boundary con-
ditions and causing the collapse of the stress at the middle. We next consider a slab,
with m = 0.0145, n =0.0185, and « = 0.385, reinforced by two thin plates exhibit-
ing larger hardening (m = 0.015) and strain-rate sensitivity (n = 0.019) and smaller
softening (a = 0.38) (Fig. 2). We have a similar result with the homogeneous case,
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the inhomogeneities being unable to create larger strain gradient at the interfaces. The
shear banding appears again at the middle of the slab, where the stress collapses smoothly
(Fig. 3). On the contrary, in the case of a larger degree of non-homogeneity, namely
(m,n,a) = (0.018,0.0212,0.37) for the plates and (0.015,0.019,0.38) for the slab respec-
tively, the non-homogeneous thermomechanical behavior of the same slab overcomes the
action of boundary forces and initial geometrical defects and creates zones with very sharp
spatial variation of strain, acting as precursors to failure, at a time smaller than the criti-
cal value corresponding to shear banding at the boundaries (Fig. 4). In Fig. 5 we see the
strain gradient distribution for various values of time, allowing for the comparison of the
strain gradient at the interfaces with the same quantity at the boundaries. The thermal
softening coeflicient seems to be very important concerning the outcome of the competi-
tion between the material non-homogeneities and the action of boundary forces. In Fig.
6 the slab is reinforced by two thin plates with a thermal softening coefficient much closer
to the corresponding value of the surrounding material (o takes the values 0.3705 and 0.38
respectively). This quasi-homogeneous thermal behavior relazes the non-uniformities at
the interior and allows the emergence of localized strain at the boundaries. We now
consider a stratified material, made by thin plates with periodic thermomechanical prop-
erties, with (m, n, &) oscillating between (0.015 — 0.01505, 0.019 — 0.01905, .38 — 0.3795)
respectively (Fig. 7). In Fig. 8 we can see the characteristic oscillation of the strain
gradient, indicating that this function converges weakly as the thickness of the layers
tends to zero (Charalambakis and Murat 1989 and 1990). In Fig. 9 we can see the
collapse of stress at one interface of layers for a time interval of 0.16msec. Similar re-
sults are obtained for the case of a non-homogeneous material with thermomechanical
parameters satisfying the stability condition (10). In Fig. 10 we can see the distribution
of the strain of a slab (m = 0.03,n = 0.02,a = 0.0202) reinforced by two thin plates
with considerably higher strength (m = 0.04,n = 0.03,a = 0.0102), while in Figs. 11
and 12 we can see respectively the increasing non-uniformity at the interface and the
corresponding collapse of the stress. We close this paragraph by presenting numerical
examples for the isothermal case (2). Figs. 13, 14, 15, and 16 depict the behavior of
strain, strain gradient, and stress of a slab (m = 0.007,n = 0.019) reinforced by two
thin plates (m = 0.005,n = 0.014), while Figs. 17 and 18 show the behavior of a com-
posite slab made by thin layers with periodic properties modeled as above. We note
that although the above mechanical parameters satisfy the stability conditions (15), the
non-uniformities at the interfaces evolve in a practically catastrophic way. We see the
non-linearly increasing non-uniformity at the interface, for a time interval of 5msec. The
results are in complete agreement with the analytical prediction described in Sec. 2.

4. Concluding remarks. We have examined the effect of macroscopic non-homo-
geneities during the simple shearing of thermoviscoplastic materials at high strain rates.
Two specific constitutive laws were considered, corresponding to the isothermal and the
anisothermal cases.

Stability conditions, based on the concept of bounded strain, were found to be simi-
lar with those holding for the homogeneous case. Nevertheless, we have proved that at
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regions where the thermomechanical parameters (strain hardening m, strain rate sensi-
tivity n, and thermal softening «) vary considerably with respect to the position, the
strain gradient is monotonically increasing in the course of deformation, independently
of the relation between strain hardening, strain rate sensitivity, and thermal softening.
Then, even stable (in the sense that the blow up of the strain is excluded) solutions may
be of catastrophic nature, a conclusion suggesting that new non-uniformity measures,
based on the control of the strain gradient, are more suitable to give stability conditions
for non-homogeneous materials.

We have presented two aspects of the relation between non-homogeneity and strain
non-uniformity: the first is related to the spatial distribution of the strain and the second
to its evolution with time. Both of them were found to depend crucially on the degree
of non-homogeneity, expressed as functions of the thermomechanical parameters, such
as the functions w(z) = m(z)/n(z) and w;(z) for the isothermal case (see (19)) or the
function p(z)/n(z), where p(z) = m(z) + n(z) — a(z), for the anisothermal (see (26),
(30)).

Moreover, in the case of a multicomponent material of periodic structure, results
similar to those of Charalambakis and Murat (1989 and 1990) were found, showing that
the strain gradient oscillates, while the stress converges strongly, as the thickness of the
layers becomes very small. It would be of interest to study the complete homogenization
problem of thermoviscoplastic shearing for defining the homogenized functions satisfying
the system (1)—(7), when the scale parameter tends to zero.

Finally, numerical results were presented concerning the interplay between non-homo-
geneities, initial defects, and boundary conditions.

5. Appendix.

PROPOSITION 1. Assume that c(z), p(x), m(z), n(z), a(z), and B(z,~,v:,8) are all
smooth functions satisfying (10) and (11). Then the solutions of (3)-(7) and (1) satisfy
on [0,A] x [0,T)

olz,t) >0, ~(z,t)>0, ~(zt) >0, (A.31)

and

o(z,t) < ¥ = max ( sup og(x), sup (c(a:)p(m)ﬂ*(x)"lgo(z)'yo(x)"1)). (A.32)
z€[0,h) z€[0,h]

Proof. The proof follows the same lines as the corresponding proof in Tzavaras (1987
and 1992) (see also Charalambakis (2001) for the case of strain, strain-rate, and temper-
ature dependent (), the only difference being that the z-dependence of the thermome-
chanical parameters must be taken into account. We present here only a sketch of the
proof. We apply the comparison theorem (Protter and Weinberger, 1967, p.187) using
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the reaction-diffusion operator (see (8))

Lilf] = (F(z. )Y@, - G(z) /@, £) 2@/ m()y (g ym(@)/n(a)

(@) a0+ (1700, 00
- (1/n(a:))G(x)‘1/"(I)9(x, £)e@/n(@) (g, 1)~/ f (g 4)2/7()

'(‘“‘””’f’(f)”c(x)”ﬂ(x,v(x,t>,%(m,t),eu,t))f(x,t)0<x,t)—1+m(x)v(x,t>“) =0,
(A.33)

under initial and boundary conditions

f(@,0) = fo(z) >0, [f(0,8)=f(h,t)=5 or f;(0,t)=fz(h,t)=0.  (A.34)

We first use f = 0 to conclude that o(z,t) > 0 and, by virtue of (1) and (4), 6{z,t) >
0o(z) and y(z,t) > vo(z), which proves (A.31). Next, we show that, for any k > ¥ ,
where ¥ is defined in (A.32), the function f = k satisfies L; (k) > 0, which, together with
k > sup,¢(o,p 90(2), kK > E (or, for boundary conditions (6, second), f»(0) = fz(h) = 0),
yields to o(z,t) < k. For the proof, we refer to Charalambakis (2001). We only note
that (11) is a sufficient condition for the validity of (A.32). d

PROPOSITION 2. The process described by (3), (4), (5), (1), (6, first), or (6, second) is
stable for ¢ — oo, provided that inequality (10) holds.

Proof. The proof follows easily from (4) and (A.32): we first write (see (1))
Ye(z,t) = G(z) /" ® g (z, 1)/ 2)G(z, )22/ M)y (g 1) —m2) /() (A.35)
We next integrate over time (4) and use (A.32) to obtain
6(z,t) < Kvy(z,t). (A.36)

Hence, using (A.36) and (A.32), integrating over time (A.35), and recalling (10), we
conclude that we can find a priori bound for v valid for all ¢. In other words, inequality
(10) is a sufficient condition for stability, in the sense that the blow-up of the strain at a
finite time is excluded. a

6. Appendix.

PROPOSITION 3. The solutions of (2), (3), (5), (6, first), v(z,0) = vo(x) with vo(z) > 0,
and y(z,0) = vyp(z) > 0 exhibit the following behavior, as T' — oo,

o(z,t) = S + O(3-12), (B.37
(5, ) M@ =mEN/mE@) _ g 4 OO, (B.38)
where
A= (m@/(n@) - m@)). = int ((nte) - 3mo) ) - mie) )

(B.39)
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Proof. The proof follows the same lines as Tzavaras (1987, 1991). The first step is to

show that
d(x) <oz, t) < sup o), (B.40)
z€[0,h]
where
ote)=a( [ meeag 1), (B.41)
0

with the positive constant o being bounded by

o (2=n(@)/nz) min( inf <Uo(x)/( / " p(e)ede + 1)),
0

z€[0,h]

1/ sup (na) Hm(a)Gla) 2ol [ peyeae + 12 ) )
z€[0,h] 0
(B.42)

This can be easily obtained by applying comparison principles (Protter and Weinberger,
1967, p.187) in the differential operator

Lolf] = (@, ) — n(@)G(z) /™) fr(z)=1/n(z) 3 ~m(a)/n()
(p(w)—lfx(aj’t)) + m(r)(;(x)—l/n(vc)f(Hrn(r))/n(vc),),(:,;,t)(m(vc)—n(I))/n(aC)7 (B.43)
x
which can be shown to be uniformly parabolic and satisfies La[o] = 0 (see (2)). The
function ¢(x) is defined by imposing Lo[¢] < 0 and ¢(x) < og(z), V 2 € [0,h]. Then,
recalling (14),
K7 < y(a, t)mE-nE@)/n@) < gt (B.44)

In view of (3) and (6, first) we have the following identity:

1d h h
T p(a:)z/t(x,t)Qd:r:-f—/ 01 (z, )yt (z, t)dT = 0,
t Jo 0
or, by (2),
1d " )
2t J, p(z)ve(z, t)*dz
h
+/ n(2)G ()™ () =DM @ g ()R -R@)y, (2 $)2dz (B.45)
0

h
:/ m(2)C(z) "V @) (g, 1)@ RN /RE@) g () HREN /@)y, (2 ¢ da,
0

By virtue of the boundary conditions (6, first), there exists zg € [0, h] such that
vi(xg,t) = 0.z, t) =0, ¥V t€[0,T),

which, together with Schwarz’s inequality, lead to

h
v(x,t)? < K/ vee(z, t)2d. (B.46)
0
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Using (B.45) and Schwarz's inequality,

h

d ; f :
— | p@)v(z, t)’de+K? f y(z,t) "B/ nE) g (g )=V, (g 1) da
0

4o (B.47)

h
<K / y(, 1) B @ =20 @ /0@ (5, 1) B+nE@)/nE) g
0

Combining (B.40), (B.44), (B.46), and (B.39) with (B.47), we arrive at the differential
inequality

dy(t)/dt + K1t (t) < Kt™*, (B.48)
where

() = /D sl (B.49)

Integrating (B.48) and taking into account that m(z) < n(zx)/2, we obtain
h
/ v (z,t)%dx < Kt—+2 (B.50)
0

from which, using (o(z,t)—8)? < Kfoh oz(z,t)%dz < K jgl vi(x, t)?dz, we obtain (B.37).
Recalling (14) and using (B.37), we easily obtain (B.38).

We note that, to establish the above results, we only need the weaker assumption
m(z) < n(z)/2. However, in order to more easily study the behavior of the strain
gradient, we assume that m(z) < n(z)/3. Recalling (B.47), (B.37), and (B.38),

h
dip(t) /dt + K-lt-*/ v2dr < Kt™* (B.51)
0
from which, by integration,
t ph
/ / vt (2, 7)2dadr < Kt*HH2, (B.52)
0o Jo
We note that, since m(z) < n(z)/3, then 1 — p+ A < 0. The estimate (B.52) is necessary
to obtain the asymptotic behavior of the strain gradient (see (16), (17), (18)). O
04 —
03
g 02 —
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spatial position x (m)

Fia. 1. Shear banding of homogeneous slab.
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Fic. 2. Strain of reinforced slab.
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Fi1G. 3. Evolution of stress distribution.
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Fic. 4. Reinforced slab. Large non-homogeneity overcomes the ac-
tion of boundary forces and initial defects.
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F1G. 5. Reinforced slab. Strain gradient distribution.
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Fic. 6. Quasi-homogeneous thermal behavior.
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Fic. 7. Stratified slab with periodic structure.
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Fic. 8. Oscillation of the strain gradient.
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Fic. 9. Collapse of stress at interface of layers.
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Fi1G. 10. Strain of reinforced slab (case of stability p(z) > 0,¥z).
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Fi1G. 11. Increase of strain gradient at an interface (case of stability
plz) > 0,Vz ).
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F1G. 12. Collapse of stress at an interface (case of stability p(z) >
o,%vz ).

05

L

e %i;? 3
i

EHALLA
2%%

o

0 001 002 003 004 005
spatial position x (m)

FiG. 13. Isothermal case. Strain of reinforced slab.
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F1G. 14. Isothermal case. Strain gradient of reinforced slab.
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Fic. 15. Isothermal case. Stress of reinforced slab.
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Fi1G. 16. Isothermal case. Increase of strain gradient at an interface.
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Fia. 17. Isothermal case. Strain of multicomponent plate.

strain gradient y,

4000 ———— P e

0 001 002 003 004 005
spatial position x (m)

Fic. 18. Isothermal case. Oscillation of strain gradient.
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