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Abstract

Although differences in goodness-of-fit indices (DGOFs) have been advocated for
assessing measurement invariance, studies that advanced recommended differential
cutoffs for adjudicating invariance actually utilized a very limited range of values repre-
senting the quality of indicator variables (i.e., magnitude of loadings). Because quality
of measurement has been found to be relevant in the context of assessing data-model
fit in single-group models, this study used simulation and population analysis methods
to examine the extent to which quality of measurement affects DGOFs for tests of
invariance in multiple group models. Results show that DMcDonald’s NCI is minimally
affected by loading magnitude and sample size when testing invariance in the measure-
ment model, while differences in comparative fit index varies widely when testing
both measurement and structural variance as measurement quality changes, making it
difficult to pinpoint a common value that suggests reasonable invariance.
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In social and behavioral studies, researchers are often interested in comparing groups

on latent constructs that are not observed directly. Although research interests fre-

quently concern differences in an underlying structural model of the latent variables

across key groups such as sex, ethnicity, nationality, or socioeconomic status (e.g.,

Fonseca-Pedrero et al., 2010; Moura, dos Santos, Rocha, & Matos, 2010), in order to

make group comparisons of those latent constructs’ relations meaningful it is prere-

quisite to ensure that constructs are indeed the same in all populations (Horn &

McArdle, 1992; Meredith & Teresi, 2006). If different latent constructs are captured

by a measurement instrument in different populations, group comparisons involving

the latent constructs could be meaningless and invalid. As Vandenberg and Lance

(2000) stated, if a set of items does not mean the same thing to different groups,

group comparison on the latent constructs ‘‘may be tantamount to comparing apples

and spark plugs’’ (p. 9).

Construct equivalence is a conceptual notion and is related to theoretical validity

(van de Vijver & Tanzer, 2004). Thus, construct equivalence cannot be statistically

tested and often rests on substantive theories or strong beliefs by researchers. Despite

this, one statistical procedure, measurement invariance testing, has been used to col-

lect evidence of construct equivalence, that being measurement equivalence. Even

though measurement equivalence may not be a sufficient condition for ensuring con-

struct equivalence, establishing measurement equivalence is often viewed as a critical

assumption when comparing latent constructs and their relations across populations

(e.g., Cheung & Rensvold, 1999; Meredith, 1993; Meredith & Teresi, 2006).

Measurement Invariance

Types of Invariance

Tests of measurement invariance across populations are typically conducted through

multigroup confirmatory factor analysis (MCFA) by examining the extent to which

model parameters are invariant. Specifically, Meredith (1993) and Meredith and

Teresi (2006) described three types of measurement invariance: weak, strong, and

strict factorial invariance.1 The first, and least restrictive, is weak factorial invar-

iance, which is also referred to as factor loading invariance (or metric invariance).

Weak factorial invariance indicates that measured indicator variables (e.g., items)

are related to their latent constructs in the same way across the populations of inter-

est; however, factor means, factor variances and covariances, intercepts, and error

variances do not necessarily have to be equal across population to achieve weak fac-

torial invariance. If weak factorial invariance does not hold, the equivalence of the

latent constructs across populations comes into question, and hence group compari-

sons might become tenuous. Often, achieving weak factorial invariance is considered

sufficient to proceed with group comparisons for the structural covariance model

(Byrne, Shavelson, & Muthén, 1989; Horn, McArdle, & Mason, 1983).2

Strong factorial invariance indicates that the factor loadings and intercepts of mea-

sured variables are the same across populations. The factor means, factor variances
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and covariances, and error variances do not necessarily need to be invariant across

populations in order to achieve strong factorial invariance. The intercept invariance

indicates that any differences in means on the measured variables correspond to dif-

ferences in means on the latent constructs alone, and hence strong factorial invariance

allows a researcher to compare group differences on intercepts of the latent constructs

directly (Brown, 2006).

Finally, with strict factorial invariance, variances and covariances of errors, as well

as factor loadings and intercepts of measures, are constrained across populations.

Under strict factorial invariance, any differences in variances and covariance of mea-

sured variables are attributable to differences in variances and covariances of latent

constructs, and thus it allows unbiased group comparisons on the latent constructs.

Given that these three types of invariance require that particular parameters (e.g.,

factor loadings with weak invariance, factor loadings and indicator intercepts with

strong invariance) are constrained in all populations, strictly speaking, it is unlikely

for these equalities to hold exactly in reality (Little, Card, Slegers, & Ledford, 2007;

Millsap & Meredith, 2004). Some researchers have proposed partial measurement

invariance in which a subset of parameters is invariant while another subset of para-

meters may not be invariant and are allowed to be freely estimated across groups

(Byrne et al., 1989). When only partial measurement invariance is upheld, however,

it is debatable whether comparisons of latent construct across populations are mean-

ingful because partial measurement invariance does not support measurement equiva-

lence across populations, which may be a necessary condition for ensuring construct

equivalence. Furthermore, some researchers have suggested that partial measurement

invariance may indicate construct nonequivalence because nonequivalence of factor

loading means that the latent constructs are inferred from the observed variables in a

different way across populations (e.g., Meredith & Teresi, 2006). Therefore, some

researchers have argued that weak factorial invariance is the minimum needed to con-

sider construct equivalence (Cheung & Rensvold, 1999; Little et al., 1997; Meredith

& Teresi, 2006).

Assessing Measurement Invariance

In order to test each level of measurement invariance, two measurement models (e.g.,

an unconstrained model and a model with factor loadings, intercepts, and/or error

variances constrained across groups) generally are fit to the same sample data and

compared. One common statistic used to compare the unconstrained and constrained

models is the difference between the minimum fit function chi-square statistics across

models (DTML; Jöreskog, 1971). To calculate DTML, first the model is fit without any

constraints imposed between the groups, and the TML statistic is calculated by

TML = (n� 1) min (ln Sj j � ln Sj j+ tr SS�1
h i

� p),

Kang et al. 535



where S is the observed covariance matrix, S is the model-implied covariance

matrix, p is the number of observed variables, and n is sample size. Then, the con-

straints are imposed on the model (e.g., constraining factor loadings to be equal if

testing weak factorial invariance) and the TML statistic is again calculated for the

constrained model. The constrained model should fit the data worse or at best equally

well (i.e., Tunconstrained� Tconstrained) because the data are being modeled with fewer

parameters (e.g., one estimated loading applies to both groups rather than each group

having a separate loading estimate). Under standard assumed conditions, the differ-

ence between Tconstrained and Tunconstrained is chi-square distributed with the degrees of

freedom equal to the difference in the degrees of freedom of the two models (which

is also equal to the number of constrained parameters). The difference in the TML sta-

tistics for the constrained and unconstrained models can be used to test whether the

fit for the constrained model is significantly worse than the unconstrained model. A

statistically significant DTML test suggests noninvariance for the constrained para-

meters and that certain parameters should to be freely estimated for data-model fit to

improve (i.e., implying partial invariance or noninvariance).

Although DTML is most frequently used, there has been some opposition to using

it to assess invariance. For instance, it has been found to be highly sensitive to sample

size in invariance testing because TML for the unconstrained and unconstrained mod-

els becomes overpowered with larger sample sizes and trivial differences between

groups may be flagged as noninvariant across populations (Cheung & Rensvold,

2002; Meade, Johnson, & Braddy, 2008; Wu, Li, & Zumbo, 2008). For instance,

Brown (2006) noted that with larger sample sizes it is possible for the DTML test to

be significant but that follow-up diagnostics do not detect that unconstraining any of

the parameters would lead to appreciably better data-model fit (see Campbell-Sills,

Liverant, & Brown, 2004, for an example of this in an applied study). Similar types

of arguments were, in fact, the foundation for developing and favoring goodness of

fit indices (e.g., root mean square error of approximation [RMSEA], standardized

root mean square residual [SRMR], comparative fit index [CFI]) in single group

models. However, DTML is more commonly reported in applied multiple group stud-

ies compared to the reporting of TML in single group studies. Cheung and Rensvold

(2000) and Vandenberg and Lance (2000) have noted this apparent double standard

between single group and multiple group tests: If TML is not trusted for assessing fit

in single group models, then why should it be trusted for multiple group models with

the same data?

For this reason, research has suggested to use alternative goodness-of-fit indices

(GOFs) in invariance testing that are potentially less sensitive to sample size. Cheung

and Rensvold (2002) discussed DGOFs, which take the difference of a GOF for an

unconstrained model and a constrained model in the same vein as DTML. This

approach has received support in the literature, such as Byrne (2008) stating,

Researchers have argued that this Dx2 value is an impractical and unrealistic criterion upon

which to base evidence of equivalence. Thus, there has been a trend towards basing
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comparative models on the difference between the CFI values as a more practical approach

to determining the extent to which models are equivalent. (p. 878)

Cheung and Rensvold (2002) outlined four desirable properties of DGOFs used for

testing measurement invariance:

1. DGOFs should not be sensitive to the overall fit in the baseline model.

2. DGOFs should not be sensitive to model complexity.

3. DGOFs should not be redundant with other GOFs.

4. DGOF should not be sensitive to sample size.

Following these four criteria, Cheung and Rensvold (2002) examined 20 GOFs.

Their simulations found that DCFI, DGamma-hat, DMcDonald’s NCI (hereafter

abbreviated DMNCI), DIFI, and DRNI adhere to the desirable properties. Due to high

correlation among DIFI, DCFI, and DRNI (and thus violating the third desirable

property), they suggested reporting only one of these three indices. Given that CFI is

a popular index in confirmatory factor analysis, they recommended using DCFI to

assess measurement invariance along with DGamma-hat and DMNCI, which also

performed well in accordance with the four desirable properties. Furthermore,

Cheung and Rensvold provided empirically derived cutoff values for DCFI,

DGamma-hat, and DMNCI that were 20.01, 20.001, and 20.02,3 respectively,

which approximately correspond to the empirical 1st percentile across all types of

invariance tests including invariance tests at both the measurement and structural

levels.

F. F. Chen (2007) extended this work by further examining the performance of

DGOFs specifically for detecting measurement noninvariance, focusing on five

DGOFs, DCFI, DRMSEA, DSRMR, DGamma-hat, and DMNCI, under both mea-

surement invariance and noninvariance conditions. With one-factor models, she

found that all DGOFs except for DSRMR were unaffected by sample size and three

types invariance (weak, strong, strict), resulting in common cutoff values for those

four DGOFs across invariance tests. She provided empirically derived cutoff values

for DCFI, DRMSEA, DGamma-hat, and DMNCI that were 20.005, 0.01, 20.005,

and 20.01, respectively, at a = .01 across three types of invariance. For DSRMR,

she provided cutoffs of 0.025 for weak factorial invariance and 0.005 for strong or

strict factorial invariance. Inconsistent with Cheung and Rensvold (2002), she found

that DGamma-hat had a strong relation with DCFI and thus did not recommend using

DGamma-hat. Moreover, she did not recommend using DMNCI because DRMSEA

and DSRMR had slightly higher power than DMNCI for detecting measurement

noninvariance.

A similar study by Meade et al. (2008) was conducted to empirically derive cutoff

values for DGOFs. Similar to F. F. Chen (2007), they expanded on the work by

Cheung and Rensvold (2002) by investigating the performance of 20 DGOFs under

the both measurement invariance and noninvariance (partial invariance) conditions.
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In general, the results were consistent with those of Cheung and Rensvold (2002),

finding that DIFI, DRNI, DGamma-hat, DCFI, and DMNCI performed relatively well

with respect to the original criteria by Cheung and Rensvold (2002) and had rela-

tively high power to detect measurement noninvariance. Inconsistent with Cheung

and Rensvold (2002), however, but consistent with F. F. Chen (2007), it was found

that DGamma-hat was also highly correlated with DIFI, DRNI, and DCFI. In the end,

Meade et al. (2008) recommended using one of the four indices among DGamma-

hat, DIFI, DRNI, and DCFI along with DMNCI. In their second simulation, they

derived empirical cutoff values of DCFI and DMNCI under different conditions vary-

ing sample size, number of indicators per factor, and number of factors while holding

other model parameters constant (e.g., factors’ reliability). Consistent with Cheung

and Rensvold (2002), they found that model complexity (e.g., number of factors and

number of indicators) and sample size had little effect on DCFI, and use of a com-

mon cutoff value for DCFI that was empirically derived performed well in detecting

lack of measurement invariance. Therefore, they provided a common cutoff value

for DCFI of 20.002 to assess either weak or strong factorial invariance. Of interest-

ing note was that DMNCI appeared to have different levels of power for detecting

lack of measurement invariance depending on model complexity even though the

effect size from ANOVA showed little effect of model complexity on DMNCI.

Given this, they provided different empirically derived cutoff values for DMNCI

based on the number of factors and indicators.

Shortcomings of DGOF Strategy

Despite the support in the literature for using the DGOF approach to assess invar-

iance, the broad utility of the method has not been definitively demonstrated and

many works have advocated for further research. For instance, Wu et al. (2008) stated

that ‘‘more research like Cheung and Rensvold’s is needed to validate their findings

in other settings’’ (p. 6). Kline (2011) also mentioned in his popular text that ‘‘specif-

ically, it is unknown whether this rule of thumb [DCFI � 0.01] would generalize to

other models or data sets not directly studied by Cheung and Rensvold (2002)’’ (p.

254). Brown (2006) similarly declared ‘‘although the authors [Cheung & Rensvold]

proposed cutoffs for three fit statistics, the validity of these proposals awaits further

research’’ (p. 303). Thus, because DGOFs are indices and not statistics with typical

distributions, cutoff values that are indicative of invariance or noninvariance are

derived from simulated empirical distributions that may not be broadly generalizable

to conditions not included in the study used to derive those values.

Such conditions include measurement quality. Specifically, although Cheung and

Rensvold (2002), F. F. Chen (2007), and Meade et al. (2008) explicitly or implicitly

mentioned the role of measurement quality or factor indicator quality (e.g., the mag-

nitude of the factor loadings) as a potential factor in assessing measurement invar-

iance, these studies did not examine how measurement quality affects DGOFs in

invariance testing. For instance, Cheung and Rensvold (2002) manipulated the factor
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loadings using two patterns for each level of number of factor’s indicators (e.g., 1:1:1

and 1:1.25:1.5 for 3 indicators), but their focus was on factor loading pattern (e.g.,

homogeneous vs. heterogeneous) and thus was not related to measurement quality.

Similar to Cheung and Rensvold (2002), all factor loadings were equal across all

models with same structures in Meade et al. (2008). For example, the four-factor

models where each factor had four indicators had equal factor loadings across all

simulation conditions and was not a manipulated condition. In F. F. Chen (2007), the

factor loadings were set to 0.90 for all factor loadings except for reference variable

(which was fixed to 1) across all conditions. Measurement quality does, however,

play an important role in the calculation of GOFs, as will be extensively discussed in

the subsequent sections.

The Impact of Measurement Quality

The Role of Measurement Quality in Previous Studies

In order to better understand the relation between measurement quality and DGOFs,

the former must be defined. Measurement quality can be determined by both factor

loading magnitude and number of factor indicators in a model. Collectively, these

inform the stability or reliability of the factor, which has been found to be a signifi-

cant determinant of convergence and accuracy of parameter estimates (Gagné &

Hancock, 2006). Furthermore, it also has been found that factor reliability is a signif-

icant factor in precision and power of measurement invariance testing along with

sample size (Meade & Bauer, 2007).

Although factor reliability as determined by factor loading magnitude and number

of indicators has been known to be an important factor in measurement invariance

testing, the previous studies investigating DGOFs to assess measurement invariance

did not examine the effect of measurement quality, and instead the factor reliability

was constrained to be equal or within a very small range across all simulation condi-

tions. For example, with a measure of factor’s reliability by Fornell and Larcker

(1981) (discussed in greater detail below) the simulation in Cheung and Rensvold

(2002) fixed the reliability of each factor to be 0.80 in all conditions, and Meade et

al. (2008) also fixed the reliability of each factor within a range from 0.74 to 0.82.

Based on factor loadings and residual variances, the factor reliability in the models

used in F. F. Chen (2007) was at least 0.92 across simulation conditions.

These previous studies cannot be faulted for not including all possible values for

factor loadings as the simulation would become unwieldy; nonetheless, substantive

invariance studies routinely have factor reliabilities that fall well below the rather

optimistic conditions used in these studies. For recent examples across fields such as

business, education, psychology, and public health that use DGOFs with factor reli-

abilities below what previous methodological studies have covered, see, for example,

Karcher and Sass (2010); Pan, Rowney, and Peterson (2012);Savickas and Porfeli

(2012); and Zhang et al. (2011).
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Interestingly, Meade et al. (2008) found that cutoff values for DCFI and DMNCI

approach zero as the number of indicators per factor increased. Their results may

suggest that models with large number of factor indicators tend to yield smaller val-

ues of DGOFs. Even though Meade et al. (2008) explained that the reasons of the

discrepancy in cutoff values for DCFI provided between their study and Cheung and

Rensvold (2002) might be attributable to difference in models’ complexity and level

of invariance tests, it may be also due to difference in measurement quality of the

models used in the two studies. Given the fact that overall measurement model qual-

ity in F. F. Chen (2007) and Meade et al. (2008) was higher than in Cheung and

Rensvold (2002), the model with high-quality latent constructs would have less sam-

pling variability in DGOFs and hence one would expect smaller DGOFs. This finding

also implies that the same cutoff values should not be applied to assess measurement

invariance when measurement models with latent variables have different quality,

making the generalizability of such cutoffs highly suspect.

Overview of Reliability Measures

Various measures of factor reliability have been proposed by several researchers.

One popular measure of factor reliability by Fornell and Larcker (1981) can be

expressed for a k-indicator factor as follows:

r =

Pk
i = 1

li

� �2

Pk
i = 1

li

� �2

+
Pk
i = 1

var(ei)

,

where li indicates the factor loading of indicator i and ei indicates the residual var-

iance of indicator i. Given that this measure mainly focuses on assessing composite

scales that are created by factor indicators rather than the expected stability of the

modeled latent construct itself, Hancock and Mueller (2001) advocated a measure of

maximal reliability (or construct reliability) as a more appropriate measure of reliabil-

ity of the latent construct. Construct reliability can be considered as the extent to

which the latent construct is reproducible from its own measured indicators (Hancock

& Mueller, 2001), and their coefficient H can be expressed for a single k-indicator

factor using its standardized loadings (ai) as follows:

H =

Pk
i = 1

a2
i

(1�a2
i
)

1 +
Pk
i = 1

a2
i

(1�a2
i
)

:

This index has been shown to be directly linked to power in mean and covariance

structure models (e.g., Hancock, 2001; Hancock & French, 2013).
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The Role of Measurement Quality on GOFs

The effect of factor reliability on GOFs has been previously documented in the con-

text of single-group models by Hancock and Mueller (2011) and Saris, Satorra, and

van der Veld (2009). In an illustrative study, Hancock and Mueller constructed a pop-

ulation covariance matrix based on a six-factor, longitudinal structural model with

each factor having three manifest indicator variables that each had the same standar-

dized factor loading value in the population. To induce misfit, the fitted model was

specified to lack nonnull structural paths that were present in the population model

so that the model-implied covariance matrix did not exactly replicate the population

covariance matrix. Without altering the misspecified paths, the values of the standar-

dized factor loadings were manipulated so that they took on values between 0.40 and

0.95 in increments of 0.05, thereby systematically altering the reliability of the latent

factors. After fitting the misspecified model to the population covariance matrices

resulting from different loading patterns, frequently employed GOFs (i.e., SRMR,

RMSEA, goodness-of-fit index [GFI], adjusted goodness-of-fit index [AGFI], and

CFI) were recorded and compared for the range of factor loading values. Using the

values in the appendix of Hancock and Mueller (2011), Figure 1 reproduces their

results for RMSEA, SRMR, AGFI, CFI, and GFI. In the left panel of Figure 1, the

dashed horizontal lines represent the Hu and Bentler (1999) suggested cutoffs for

acceptable data-model fit where values above the dashed lines indicate poor data-

model fit and values below the dashed lines indicate acceptable data-model fit. In

right panel of Figure 1, AGFI, CFI, and GFI values above the dashed line indicate

acceptable data-model fit, whereas values below the dashed line indicate poor data-

model fit.

Intuitively, one might expect that less reliable latent factors would result in poorer

data-model fit. However, even though the model was misspecified and should have

been recognized as such, for standardized factor loadings less than 0.70 the tracked

indices suggested acceptable data-model fit based on criteria set forth by Hu and

Bentler (1999) including an SRMR at or below 0.08, RMSEA at or below 0.06, and

CFI, GFI, and AGI at or above 0.95. The seemingly contradictory finding of obtain-

ing better data-model fit under poorer measurement conditions is resolved, of course,

by understanding that worse measurement quality leads to reduced sensitivity to

detect latent misspecifications. Notwithstanding, this result was especially troubling

because it implies that model fit index cutoff values that are ubiquitously referenced

in the latent variable model literature (such as those of Hu and Bentler) cannot be

universally applied because they themselves were derived under specific (and lim-

ited) quality of measurement conditions. Hu and Bentler (1999), for example, had

only considered standardized factor loading values between 0.70 and 0.80, which is

precisely where the approximate fit indices perform well in Hancock and Mueller

(2011). Thus, by extension and as addressed in the current work, the differing derived

DGOF cutoff values among Cheung and Rensvold (2002), F. F. Chen (2007), and

Meade et al. (2008) may similarly be attributed to the role of different measurement

quality contexts.
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To elaborate, this study will explicate further the relation between measurement

quality and DGOFs and will attempt to derive empirical cutoff values for DGOFs as

a function of measurement model quality and sample size, thereby creating more

refined practical guidelines for assessing measurement invariance. This study will

explicitly focus on the effect that measurement quality has on DGOFs in assessing

measurement invariance and the measurement quality has when assessing structural

invariance. Additionally, the study will consider whether cutoffs can truly exist if

they greatly vary based on quality of measurement.

Figure 1. Replicated results from Hancock and Mueller (2011).

542 Educational and Psychological Measurement 76(4)



Method

Measurement Invariance Study

As Cheung and Rensvold (2002), F. F. Chen (2007), and Meade et al. (2008)

collectively advocated for DCFI and DMNCI, we will focus only on these two

indices in the current study. Given that previous studies found little effect of num-

ber of factors in sampling variability in DCFI and DMNCI (Cheung & Rensvold,

2002; Meade et al., 2008), the current study also considered only a two-group,

one-factor model in the simulation. Three conditions were manipulated in our

simulation:

1. Number of indicators per factor (3 or 5 indicators per factor)

2. Factor loading magnitude (standardized values of 0.40 to 0.95 in increments

of 0.05)

3. Sample size (100, 200, 300, 600, and 1,000 per group)

Even though previous studies found little effect for the number of factor indicators

on DCFI and DMNCI, the number of indicators per factor was manipulated to thor-

oughly investigate the relation between measurement quality and the change in the

two indices. Based on the factor loading magnitudes, construct reliability (H) ranged

between 0.35 and 0.97 for the 3 indicator condition and between 0.49 and 0.98 for the

5 indicator condition. Even though two indices were previously found to be insensi-

tive to sample size, sample size was manipulated to investigate whether there is an

interaction effect between sample size and measurement quality. For each of the 120

conditions in the 12 3 5 3 2 design (12 factor loading conditions, 5 sample sizes

conditions, and 2 number of indicators per factor conditions), we simulated 1,000

data sets, each drawn from a multivariate normal distribution. In addition, data were

generated for the two groups such that they were invariant in terms of factor loadings

(i.e., adhered to weak invariance).

For each condition, two models were estimated. In the first (unconstrained)

model, model parameters were freely estimated across groups. In the second (con-

strained) model, factor loadings were constrained to be equal across groups to test

weak factorial invariance. For model identification, the factor variances in both

groups were set to 1 in the unconstrained model. For the constrained model, the fac-

tor variance in only one group was set to 1 while constraining all factor loadings to

be equal across groups. The difference of CFI and MNCI between the unconstrained

model and the constrained model was calculated over 1,000 replications. For each

DCFI and DMNCI, the 5th and 1st percentiles of two indices were calculated to

derive the empirical cutoff values at the a = .05 and a = .01 levels. The data gener-

ation and analysis of the sample data was conducted using the Mplus Version 6.0

(Muthén & Muthén, 2010), and SAS 9.2 was then used to perform additional analy-

ses including ANOVA.
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Structural Invariance Study

Although much of the previous literature on invariance testing is concerned with

investigating the tenability of invariance in the measurement model (Finch & French,

2013), invariance of the structural model across groups can also be of interest sub-

stantively if reasonable evidence for measurement invariance exists. Similar methods

can be applied to testing structural invariance as are applied to test measurement

invariance such as DTML or DGOFs (Byrne, 2013). Moreover, substantive studies

have applied the recommendations for DGOFs for measurement invariance from

Cheung and Rensvold (2002) to structural invariance as well (see, e.g., H. Chen,

Keith, Weiss, Zhu, & Li, 2010; Teo, Lee, Chai, & Wong, 2009), and these recom-

mendations have been suggested for invariance testing broadly (Byrne, 2013).

Thus, the second study will investigate the role that measurement quality has on

the ability of Cheung and Rensvold criteria for DCFI and DMNCI to detect nonnull

differences in structural parameters in the presence of measurement invariance (i.e.,

if measurement quality affects Type II errors for structural parameters). Due to the

more widespread methodological interest in assessing measurement invariance and

due to the space limitations, the structural invariance study will use a population anal-

ysis using Hancock and Mueller (2011) as a template rather than a more expansive

simulation study.

The population covariance matrix is created from a six-factor longitudinal design

where three covarying exogenous factors each have a causal impact on one of three

endogenous factors. All six factors were specified to have three manifest indicator

variables each with identical population values for the factor loadings. All indicator

variables were standardized to have a mean of 0 and variance of 1. The structure of

the population model was identical in each of the two groups and the population val-

ues for the measurement model were identical across groups (i.e., weak factorial

invariance) but the population values for the structural paths differed between groups.

Figure 2 presents a conceptual path diagram for the structural and measurement

models.

Similar to the measurement invariance study above and to Hancock and Mueller

(2011), the population values for the factor loadings were manipulated from 0.40 to

0.95 in increments of 0.05. Between-group misfit was induced through the specifica-

tion of different population values for the structural parameters across groups, while

the analysis model constrained the structural paths to be equivalent between groups.

The degree of misfit had three separate conditions. The first was a large discrepancy

condition (Condition 1) where the structural paths for Group 1 were set to a standar-

dized value of 0.80, while the structural paths for Group 2 were set to a standardized

value of 0.10. Condition 2 was a medium discrepancy condition where the structural

paths for Group 1 were set to a standardized value of 0.80, and the structural paths

for Group 2 were set to a standardized value of 0.40. Condition 3 was a small discre-

pancy condition where the structural paths for Group 1 were set to a standardized

value of 0.80 and the structural paths for Group 2 were set to a standardized value of

0.60.
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For all three conditions, the exogenous factors had unit variance and covariances

of 0.50 for both groups, although these parameters were not constrained to be equal

in the analysis model. The latent variables were given scale by the reference variable

method of setting a factor loading to 1 for each of the six factors. Since each indica-

tor variable loaded identically for each factor and all indicator variables were standar-

dized, the choice of which factor loading to constrain was arbitrary and thus the first

variable was selected for each factor. Factor variances and indicator variable error

variances were allowed to be freely estimated in both groups. Analyses were imple-

mented using maximum likelihood in SAS 9.2 using Proc Calis because fit statistics

and criteria are reported to four decimal places, which can better capture the nuances

of DGOFs, which often have small magnitudes. A sample size of n =1,000 was used

in each group.

Results

Measurement Invariance Study
Convergence Rates. Convergence rates for all conditions were found to be good, rang-

ing from 96% to 100% across all conditions with two exceptions. The exceptions

were observed in the two unconstrained models where the population factor loadings

were 0.40 and 0.45, sample size was 100 per group, with three factor indicators.

Specifically, the nonconvergence rates reached up to 23% and 10% when population

factor loadings were 0.40 and 0.45, respectively. In the constrained models, conver-

gence rates for all conditions were either 99% or 100% with one exception. The

exception occurred in the model where the population factor loadings were 0.40, the

Figure 2. Pictorial depiction of population model for both groups.
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sample size was 100 per each group, and three indicators per factor. However, the

nonconvergence rate for that condition was still less than 6%.

Factor Loading Bias. In the conditions with nonconvergence rates exceeding 10%, the

factor loading estimates were found to be biased. For the unconstrained model that

exhibited nonconvergence rates as high as 23%, factor loading relative bias ranged

between 9.7% and 21.8%. Given the 65% criterion by Hoogland and Boomsma

(1998) for negligibly biased estimates, the factor loading estimates under these con-

ditions were considered to be unacceptable. Similar results also occurred under the

condition where the population factor loadings were 0.45. In addition, unacceptable

factor loading relative bias was observed in the baseline model where the sample size

was 200 per group, the population factor loadings were 0.40, with three indicators

per factor. These results were not surprising given that previous studies have consis-

tently found that the combination of small sample sizes and low measurement quality

have significant effects on recovery of parameter estimates (e.g., Gagné & Hancock,

2006). As expected, as sample size or factor loading magnitude increased, the con-

vergence problem and magnitude of bias rapidly decreased. In most of conditions,

the relative bias for the factor loading estimates was negligible based on criteria in

Hoogland and Boomsma (1998), ranging from 0% to 4% in absolute value. Samples

with convergence problems in the above three conditions with unacceptable factor

loading relative bias were omitted from further analyses.

Measurement Quality. For the main analyses, the effects of sample size and factor

loading magnitude on the DCFI and DMNCI were tested by conducting two-way

analyses of variances (ANOVAs) for each index. Table 1 and 2 show the results of

ANOVAs along with v2 effect size for DCFI and DMNCI when number of indicators

per factor was 3 and 5, respectively. It was found that the sample size, factor loading

magnitude, and sample size 3 factor loading magnitude interaction had significant

effects on DCFI at the 0.01 level of significance regardless of the number of indica-

tors per factor. When the number of indicators per factor was 3, the v2 effect sizes4

of sample size, factor loading magnitude, and sample size 3 factor loading magni-

tude were 0.014, 0.030, and 0.013, respectively, for DCFI. When the number of fac-

tor indicators was increased to 5, the v2 effect sizes of sample size, factor loading

magnitude, and sample size 3 factor loading magnitude decreased to 0.004, 0.013,

and 0.008, respectively. These findings imply that sample size, factor loading magni-

tude, and sample size 3 factor loading magnitude have small, but noticeable, impacts

on DCFI.

For DMNCI, the factor loading magnitude and sample size 3 factor loading mag-

nitude interactions had significant effects at the 0.01 level of significance when the

number of indicators per factor was 3. When the number of indicators per factor was

increased to 5, however, only the sample size was found to have significant effect on

DMNCI at the 0.01 level of significance. However, the v2 effect sizes showed that
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all effect sizes for the main effects and interactions effects were less than or equal to

0.001, indicating that there may be little practical impact on DMNCI.

Table 1. Results of the ANOVA Tests for DCFI and DMNCI (Number of Indicators = 3).

DCFI

Source df MS F v2

Between
Sample size 4 0.11278 224.51 0.014
Factor loading 11 0.08826 175.69 0.030
Sample size 3 Factor loading 44 0.00967 19.24 0.013

Within 59,461 0.00050
Total 59,520

DMNCI

Source df MS F v2

Between
Sample size 4 0.00001 1.00 \0.001
Factor loading 11 0.00005 7.13 \0.001
Sample size 3 Factor loading 44 0.00003 3.90 0.001

Within 59,461 0.00001
Total 59,520

Table 2. Results of the ANOVA Tests for DCFI and DMNCI (Number of Indicators = 5).

DCFI

Source df MS F v2

Between
Sample size 4 0.00726 64.29 0.004
Factor loading 11 0.00811 71.89 0.013
Sample size 3 Factor loading 44 0.00139 12.36 0.008

Within 59,902 0.00011
Total 59,961

DMNCI

Source df MS F v2

Between
Sample size 4 0.00013 9.09 \0.001
Factor loading 11 0.00002 1.66 \0.001
Sample size 3 Factor loading 44 0.00002 1.27 \0.001

Within 59,902 0.00001
Total 59,961
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Table 3 and Table 4 list the means, standard deviations, 5th percentile, and 1st per-

centile of DCFI and DMNCI for testing weak factorial invariance of each combina-

tion of sample size and factor loading magnitude when number of factor indicators

was 3 and 5, respectively. As sample size and factor loading magnitude increased, the

means and standard deviations of DCFI decreased, resulting in different 5th and 1st

percentiles (i.e., cutoff values) of DCFI. As shown in Figure 3, models with higher

factor loading magnitude (i.e., higher measurement quality) and bigger sample size

tended to yield values of the 1st percentile of DCFIs with smaller magnitudes and

vice versa. Graphs for the 5th percentile of DCFIs are similar and thus not presented.

As expected, as shown in Figure 4, the number of indicators generally seemed to have

little impact on the 1st percentiles of DCFI, which is consistent with previous studies

(F. F. Chen, 2007; Cheung & Rensvold, 2002; Meade et al., 2008).

Of interesting note in general, DMNCI did not seem to be affected by sample size,

factor loading magnitude, and number of factor’s indicators, resulting in relatively

similar 5th and 1st percentiles of DMNCI across all conditions. As shown in Figure

5, the 1st percentiles of DMNCI seemed to be very similar across different levels of

sample size, factor loading magnitude, and number of factor’s indicators. As a result,

the DMNCI equivalent of Figure 4 is not reported because it essentially features

nearly overlapping horizontal lines.

Structural Noninvariance Study

Misfit Condition 1 (Large Discrepancy). Regardless of the condition for the factor load-

ing magnitude, DMNCI always surpassed 20.02 in Condition 1, indicating that with

a large discrepancy between groups, DMNCI was able to consistently detect the struc-

tural noninvariance for the sample size used in this study. However, DCFI did not

perform as well. As shown in Figure 6 (the dashed black line is a reference for the

Cheung and Rensvold recommendation for DMNCI; the dashed gray line is a refer-

ence for DCFI), not until the factor loading magnitudes were about 0.55 was DCFI

able to detect that constraining the structural parameters between groups was a mis-

specification when using criteria set forth by Cheung and Rensvold (2002). Similar to

findings from Hancock and Mueller (2011) presented Figure 1, DCFI had a slight

quadratic pattern for higher measurement quality conditions. As the factor loading

magnitude increased, the indices became more and more sensitive to the misfit as

seen by the upward trend for both values. The line representing DMNCI is not shown

for larger factor loading magnitude values in Figure 6 because the values were too

large to display simultaneously with DCFI.

Misfit Condition 2 (Medium Discrepancy). DMNCI exceeded the 20.02 suggested cut-

off when the standardized factor loadings were 0.55 or greater, correctly detecting

that structural parameter constraints equal did not fit well. On the other hand, DCFI

was not able to detect the misfit in the constrained structural parameters based on cri-

teria set forth in Cheung and Rensvold (2002) until factor loadings became quite
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Table 3. Mean, Standard Deviation, 5th Percentile, and 1st Percentile of DCFI and DMNCI
(Number of Indicators per Factor = 3).

N Loading

DCFI DMNCI

Mean SD 5th 1st Mean SD 5th 1st

n1 = n2 = 100 .40 2.0126 .1401 2.1650 2.3184 .0011 .0040 2.0060 2.0128
.45 2.0241 .0667 2.1462 2.2768 .0006 .0045 2.0075 2.0181
.50 2.0200 .0433 2.1066 2.2068 .0003 .0047 2.0087 2.0189
.55 2.0155 .0321 2.0844 2.1590 .0000 .0050 2.0100 2.0199
.60 2.0115 .0237 2.0638 2.1177 2.0001 .0052 2.0107 2.0206
.65 2.0083 .0172 2.0457 2.0818 2.0001 .0052 2.0111 2.0199
.70 2.0061 .0126 2.0333 2.0579 2.0002 .0052 2.0111 2.0195
.75 2.0045 .0093 2.0253 2.0446 2.0002 .0052 2.0111 2.0190
.80 2.0033 .0068 2.0186 2.0324 2.0002 .0052 2.0115 2.0191
.85 2.0024 .0050 2.0128 2.0241 2.0002 .0052 2.0109 2.0191
.90 2.0017 .0035 2.0091 2.0168 2.0002 .0052 2.0107 2.0191
.95 2.0011 .0023 2.0056 2.0114 2.0002 .0052 2.0104 2.0194

n1 = n2 = 200 .40 2.0207 .0468 2.1133 2.2078 .0005 .0043 2.0080 2.0143
.45 2.0156 .0339 2.0823 2.1633 .0002 .0046 2.0091 2.0155
.50 2.0109 .0227 2.0581 2.1101 .0000 .0048 2.0096 2.0162
.55 2.0075 .0154 2.0401 2.0745 .0000 .0048 2.0096 2.0161
.60 2.0053 .0108 2.0288 2.0482 .0000 .0048 2.0093 2.0159
.65 2.0038 .0078 2.0201 2.0347 .0000 .0048 2.0095 2.0157
.70 2.0028 .0057 2.0148 2.0265 .0000 .0048 2.0099 2.0176
.75 2.0021 .0043 2.0106 2.0206 2.0001 .0049 2.0099 2.0183
.80 2.0016 .0032 2.0080 2.0153 2.0001 .0050 2.0098 2.0193
.85 2.0012 .0024 2.0060 2.0114 2.0001 .0051 2.0101 2.0196
.90 2.0008 .0017 2.0044 2.0081 2.0002 .0051 2.0101 2.0190
.95 2.0005 .0011 2.0028 2.0054 2.0002 .0052 2.0102 2.0192

n1 = n2 = 300 .40 2.0156 .0318 2.0913 2.1432 .0000 .0015 2.0033 2.0055
.45 2.0108 .0222 2.0608 2.0979 .0000 .0016 2.0035 2.0061
.50 2.0073 .0150 2.0418 2.0656 .0000 .0017 2.0036 2.0059
.55 2.0050 .0104 2.0288 2.0455 .0000 .0017 2.0036 2.0059
.60 2.0036 .0074 2.0204 2.0327 .0000 .0017 2.0036 2.0059
.65 2.0026 .0054 2.0148 2.0232 .0000 .0017 2.0036 2.0059
.70 2.0019 .0040 2.0111 2.0173 .0000 .0017 2.0037 2.0058
.75 2.0014 .0030 2.0084 2.0125 .0000 .0017 2.0037 2.0058
.80 2.0011 .0022 2.0062 2.0095 .0000 .0017 2.0037 2.0058
.85 2.0008 .0017 2.0044 2.0072 2.0001 .0017 2.0037 2.0059
.90 2.0006 .0012 2.0033 2.0052 2.0001 .0018 2.0039 2.0061
.95 2.0004 .0008 2.0022 2.0036 2.0001 .0018 2.0040 2.0064

n1 = n2 = 600 .40 2.0090 .0183 2.0534 2.0795 .0000 .0016 2.0038 2.0050
.45 2.0055 .0117 2.0321 2.0530 .0000 .0008 2.0018 2.0029
.50 2.0037 .0078 2.0216 2.0347 .0000 .0008 2.0018 2.0031
.55 2.0026 .0054 2.0145 2.0242 .0000 .0009 2.0018 2.0032
.60 2.0019 .0038 2.0100 2.0171 .0000 .0009 2.0018 2.0031
.65 2.0014 .0028 2.0075 2.0123 .0000 .0009 2.0018 2.0031
.70 2.0010 .0021 2.0055 2.0091 .0000 .0009 2.0018 2.0033
.75 2.0008 .0015 2.0042 2.0068 .0000 .0009 2.0018 2.0033
.80 2.0006 .0012 2.0031 2.0055 .0000 .0009 2.0019 2.0034
.85 2.0004 .0009 2.0023 2.0042 .0000 .0009 2.0019 2.0036
.90 2.0003 .0006 2.0016 2.0029 2.0001 .0009 2.0019 2.0036
.95 2.0002 .0004 2.0011 2.0019 2.0001 .0009 2.0020 2.0035

(continued)
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Table 4. Mean, Standard Deviation, 5th Percentile, and 1st Percentile of DCFI and DMNCI
(Number of Indicators per Factor = 5).

N Loading

DCFI DMNCI

Mean SD 5th 1st Mean SD 5th 1st

n1 = n2 = 100 .40 2.0110 .0505 2.1074 2.2213 2.0005 .0075 2.0152 2.0245
.45 2.0061 .0341 2.0655 2.1412 2.0003 .0074 2.0143 2.0232
.50 2.0035 .0234 2.0440 2.0925 .0000 .0073 2.0143 2.0225
.55 2.0022 .0165 2.0327 2.0633 .0001 .0072 2.0144 2.0227
.60 2.0014 .0120 2.0241 2.0454 .0002 .0071 2.0130 2.0220
.65 2.0010 .0089 2.0174 2.0318 .0003 .0071 2.0133 2.0228
.70 2.0006 .0066 2.0133 2.0246 .0003 .007 2.0136 2.0229
.75 2.0005 .0050 2.0099 2.0189 .0004 .0069 2.0130 2.0220
.80 2.0003 .0037 2.0074 2.0139 .0004 .0069 2.0132 2.0212
.85 2.0002 .0027 2.0055 2.0103 .0004 .0068 2.0128 2.0203
.90 2.0002 .0019 2.0038 2.0074 .0004 .0067 2.0131 2.0202
.95 2.0001 .0013 2.0026 2.0049 .0004 .0066 2.0127 2.0202

n1 = n2 = 200 .40 2.0045 .0249 2.0532 2.1007 2.0002 .0036 2.1007 2.0108
.45 2.0027 .0162 2.0343 2.0666 2.0001 .0036 2.0666 2.0114
.50 2.0018 .0110 2.0235 2.0445 .0000 .0035 2.0445 2.0118
.55 2.0012 .0078 2.0163 2.0316 .0000 .0035 2.0316 2.0118
.60 2.0009 .0057 2.0118 2.0218 .0000 .0035 2.0218 2.0114
.65 2.0007 .0042 2.0091 2.0165 .0000 .0035 2.0165 2.0116
.70 2.0005 .0032 2.0069 2.0122 .0000 .0035 2.0122 2.0116
.75 2.0004 .0024 2.0054 2.0091 .0000 .0035 2.0091 2.0123
.80 2.0003 .0018 2.0041 2.0071 .0000 .0035 2.0071 2.0119
.85 2.0002 .0014 2.0030 2.0056 2.0001 .0035 2.0056 2.0115
.90 2.0002 .0010 2.0021 2.0041 2.0001 .0035 2.0041 2.0120
.95 2.0001 .0007 2.0015 2.0027 2.0002 .0036 2.0027 2.0119

(continued)

Table 3. (continued)

N Loading

DCFI DMNCI

Mean SD 5th 1st Mean SD 5th 1st

n1 = n2 = 1, 000 .40 2.0051 .0107 2.0281 2.0499 .0000 .0005 2.0009 2.0020
.45 2.0032 .0069 2.0174 2.0317 .0000 .0005 2.0010 2.0019
.50 2.0022 .0046 2.0115 2.0211 .0000 .0005 2.0010 2.0019
.55 2.0015 .0032 2.0080 2.0146 .0000 .0005 2.0010 2.0019
.60 2.0011 .0023 2.0058 2.0106 .0000 .0005 2.0010 2.0019
.65 2.0008 .0017 2.0042 2.0078 .0000 .0005 2.0011 2.0020
.70 2.0006 .0012 2.0031 2.0058 .0000 .0005 2.0011 2.0020
.75 2.0004 .0009 2.0024 2.0044 .0000 .0005 2.0011 2.0020
.80 2.0003 .0007 2.0018 2.0033 .0000 .0005 2.0011 2.0020
.85 2.0002 .0005 2.0013 2.0024 .0000 .0005 2.0011 2.0020
.90 2.0002 .0004 2.0010 2.0017 .0000 .0005 2.0011 2.0020
.95 2.0001 .0002 2.0006 2.0011 .0000 .0005 2.0012 2.0019
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high. As seen in Figure 7, DCFI required factor loadings of 0.85 before detecting that

constraining the structural parameters did not fit the data well.

Misfit Condition 3 (Small Discrepancy). When the discrepancy between the groups was

smaller (standardized structural paths of 0.60 vs. 0.80 across groups), DMNCI was

only able to detect misfit for factor loading magnitudes of 0.75 or above. DCFI was

not able to detect misfit based on criteria set forth in Cheung and Rensvold (2002)

Table 4. (continued)

N Loading

DCFI DMNCI

Mean SD 5th 1st Mean SD 5th 1st

n1 = n2 = 300 .40 2.0038 .0190 2.0395 2.0790 2.0001 .0025 2.0050 2.0083
.45 2.0023 .0123 2.0264 2.0509 2.0001 .0025 2.0049 2.0080
.50 2.0015 .0084 2.0182 2.0345 2.0001 .0025 2.0051 2.0079
.55 2.0011 .0059 2.0126 2.0242 2.0001 .0025 2.0052 2.0082
.60 2.0008 .0043 2.0094 2.0175 2.0001 .0025 2.0052 2.0082
.65 2.0006 .0031 2.0070 2.0132 2.0001 .0025 2.0050 2.0083
.70 2.0004 .0024 2.0055 2.0104 2.0001 .0025 2.0052 2.0084
.75 2.0003 .0018 2.0042 2.0080 2.0001 .0025 2.0048 2.0087
.80 2.0003 .0013 2.0030 2.0060 2.0001 .0025 2.0050 2.0089
.85 2.0002 .0010 2.0022 2.0046 2.0001 .0025 2.0051 2.0091
.90 2.0002 .0007 2.0016 2.0033 2.0001 .0025 2.0054 2.0091
.95 2.0001 .0005 2.0011 2.0023 2.0002 .0026 2.0056 2.0092

n1 = n2 = 600 .40 2.0014 .0092 2.0200 2.0406 .0000 .0013 2.0024 2.0044
.45 2.0009 .0060 2.0125 2.0261 .0000 .0012 2.0025 2.0043
.50 2.0006 .0041 2.0085 2.0180 .0000 .0012 2.0025 2.0042
.55 2.0004 .0029 2.0058 2.0128 .0000 .0012 2.0025 2.0043
.60 2.0003 .0021 2.0044 2.0093 .0000 .0012 2.0025 2.0043
.65 2.0002 .0015 2.0033 2.0067 .0000 .0012 2.0025 2.0042
.70 2.0002 .0011 2.0025 2.0049 .0000 .0012 2.0025 2.0041
.75 2.0001 .0009 2.0018 2.0037 .0000 .0012 2.0024 2.0041
.80 2.0001 .0006 2.0013 2.0029 .0000 .0012 2.0024 2.0043
.85 2.0001 .0005 2.0010 2.0021 .0000 .0012 2.0023 2.0041
.90 2.0001 .0004 2.0007 2.0016 .0000 .0012 2.0022 2.0042
.95 2.0000 .0002 2.0005 2.0011 .0000 .0012 2.0023 2.0041

n1 = n2 = 1, 000 .40 2.0011 .0055 2.0118 2.0220 2.0001 .0008 2.0015 2.0026
.45 2.0007 .0035 2.0077 2.0138 2.0001 .0008 2.0015 2.0025
.50 2.0005 .0024 2.0053 2.0095 2.0001 .0008 2.0015 2.0024
.55 2.0003 .0017 2.0038 2.0069 2.0001 .0007 2.0015 2.0024
.60 2.0002 .0012 2.0027 2.0046 2.0001 .0007 2.0015 2.0023
.65 2.0002 .0009 2.0021 2.0033 2.0001 .0007 2.0015 2.0022
.70 2.0001 .0007 2.0016 2.0024 2.0001 .0007 2.0015 2.0021
.75 2.0001 .0005 2.0012 2.0018 2.0001 .0007 2.0016 2.0022
.80 2.0001 .0004 2.0010 2.0014 2.0001 .0007 2.0016 2.0022
.85 2.0001 .0003 2.0007 2.0011 2.0001 .0007 2.0016 2.0022
.90 .0000 .0002 2.0005 2.0008 2.0001 .0008 2.0016 2.0022
.95 .0000 .0001 2.0003 2.0006 2.0001 .0008 2.0015 2.0024
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regardless of the condition for the factor loading magnitude. Figure 8 shows the

DGOFs across conditions for Condition 3.

Asymptotic Standard Errors and Test Statistics. In addition to implications for assessing

data-model fit over the range of factor loading magnitude, the standard error esti-

mates of the structural parameters also are affected by changes in the magnitude of

the standardized factor loadings. More specifically, the standard error estimates are

much larger when the magnitude of the loadings is smaller, which results in much

smaller Z-values, which could affect inferences made from the model. Table 5 shows

the estimate from the constrained structural estimate from Factor 1 to Factor 4, its

standard error, and the Z-value for the 0.40 and 0.95 factor loading conditions. The

structural parameters from Factor 2 to Factor 5 and Factor 3 to Factor 6 were quite

similar, so they are not reported for brevity. Although the binary null hypothesis deci-

sion would be congruent in either case in this example, the difference in the Z-values

Figure 3. Changes in 1st percentile of DCFI.

552 Educational and Psychological Measurement 76(4)



is by no means trivial and models using smaller sample sizes could easily results in

incongruent decisions solely based on measurement quality.

Conclusions, Discussion, and Recommendations

The main purpose of this study was to investigate the role of factor loading magni-

tude, number of factor indicators, and sample size on recommended cutoff values for

Figure 4. Changes in 1st percentile of DCFI across number of factor’s indicator.
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assessing measurement invariance with DCFI and DMNCI, with a secondary focus

on the ability of DCFI and DMNCI to detect structural noninvariance across different

levels of measurement quality. Most notably and most unexpectedly based on

Hancock and Mueller (2011), DMNCI was found to be essentially unaffected by

changes in measurement quality (and sample size) when testing measurement invar-

iance, indicating that a single fit index criteria may be relatively stable across a wide

range of conditions. Although there is debate within the methodological about the

utility of using cutoff values to determine data-model fit (see, e.g., Barrett, 2007;

Hayduk, Cummings, Boadu, Pazderka-Robinson, & Boulianne, 2007), should

researchers subscribe to this philosophy (with all appropriate precautions), the rec-

ommended empirically derived cutoff values across conditions of measurement qual-

ity for DMNCI are 20.007 and 20.01 for the 5th and 1st percentile, respectively,

based on the results of the simulation performed here.

Figure 5. Changes in 1st percentile of DMNCI.
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This study also found little effect of the number of indicators per factor and sam-

ple size on DMNCI. Inconsistent with Meade et al. (2008), the number of indicators

per factor was found to have little impact on DMNCI with an v2 effect size less than

Figure 6. DGOF values by standardized factor loading, Condition 1.

Figure 7. DGOF values by standardized factor loading, Condition 2.
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\0.001 in this study (Meade et al. reported an v2 effect size of 0.063 for number of

indicators per factor). With regard to structural invariance, DMNCI performed best

in the population analysis, although, unlike tests for measurement invariance, there

was a noticeable impact of measurement quality on DMNCI and the magnitude of

values steadily increased as measurement quality increased. However, DMNCI was

able to detect structural noninvariance far better than DCFI (especially when the dif-

ference between groups is rather small) and DMNCI is thus recommended when test-

ing either measurement or structural invariance with the caveat that a single fit index

value cannot apply broadly across factor loading conditions when testing structural

invariance. A more comprehensive study would be needed to more definitively sup-

port use of DMNCI for structural invariance and what values of DMNCI are indica-

tive of invariance or noninvariance in the structural portion of the model.

Figure 8. DGOF values by standardized factor loading, Condition 3.

Table 5. Structural Parameter Estimate, Standard Error, and Z-Values for Two Different
Loading Conditions Across Misfit Conditions.

Misfit condition

Loading = 0.40 Loading = 0.95

Estimate SE Z-value Estimate SE Z-Value

1 0.45 0.067 6.98 0.45 0.021 21.18
2 0.60 0.090 6.72 0.60 0.020 30.56
3 0.70 0.096 7.33 0.70 0.018 38.46
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Inconsistent with the findings of previous studies (Cheung & Rensvold, 2002;

Meade et al., 2008), this study found that DCFI appeared to be affected by sample

size. This effect may not have been detected in previous studies because DCFI tended

to be more affected by sample size when models had low measurement quality (as

noted by the significant interaction effect in the ANOVA) and previous studies

employed models with consistently high measurement quality. When sample size

was small, means of DCFI had relatively larger magnitudes and the variability of

DCFI was relatively larger, resulting in relatively larger magnitudes of the 5th and

1st percentiles (i.e., cutoff values) of DCFI. When sample size was large, however,

means of DCFI were relatively smaller in magnitude and the variability of DCFI

became relatively smaller, yielding cutoff values of DCFI that were smaller in magni-

tude (closer to 0). It was found that increases in factor loading magnitude generally

led to means with smaller magnitude and smaller standard deviation values of DCFI

across all sample sizes, resulting in cutoff values for DCFI with smaller magnitudes.

Thus, under a broader range of conditions (particularly for measurement quality),

DCFI does not appear to follow the fourth desirable property of DDOFs advanced by

Cheung and Rensvold (2002). Using DCFI to assess invariance (either measurement

or structural) is not recommended because, as demonstrated in the simulation, values

suggestive of invariance change markedly as a function of factor loading magnitude,

the number of indicators per factor, and the sample size: the differential values of

DCFI across measurement quality conditions make a single cutoff difficult to pin-

point because values obtained and suggested in methodological studies may not gen-

eralize well to other contexts.

As limitations, only a few DGOFs were investigated and other model fit indices

such as the Jöreskog-Sörbom GFI (Jöreskog & Sörbom, 1993), adjusted GFI

(Jöreskog & Sörbom, 1993), and standardized root mean squared residual (Jöreskog

& Sörbom, 1993) have not been investigated. DGOFs were chosen based those that

previous studies found to have desirable properties, but future studies could examine

how measurement quality relates to changes in additional model fit indices in invar-

iance testing under a broader set of conditions in the event that additional indices

may perform well. Another limitation is that this study examined the Type I error

rate for measurement invariance and Type II errors for structural invariance (not

Type II error rate because a population analysis was used). It is recommended, thus,

that future studies investigate power of DGOFs under various degrees of measure-

ment and structural noninvariance conditions as well (although only DMNCI has

demonstrated reasonable performance across a variety of conditions, so power may

be a moot point if only one GOF exhibits desirable properties). The simulation study

and population analysis also did not include trivial misspecifications when data were

generated. Analysis models used in the studies had perfect fit, which is not entirely

reminiscent of models seen in practice. Therefore, the results might be considered a

baseline for the effect of sample size and measurement quality on DGOFs. This study

was intended more so to familiarize readers with the associated issues with DGOFs

and varying measurement quality in multiple group models because this has yet to
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receive attention in the methodological literature; future research to expand on this

study (e.g., different models, more indices, including trivial misspecifications) would

be valuable given the widespread interest in invariance testing that exists across

many disciplines.

Overall, the effect Hancock and Mueller (2011) found in single group models

whereby higher measurement quality leads to seemingly worse data-model fit was

found to generalize to multiple group scenarios, as expected, with the exception of

DMNCI for testing invariance in the measurement model. However, seeing as mea-

surement invariance testing is the most widely implemented type of invariance test,

this finding is a potentially valuable one for applied researchers. Methodological

studies that provide the current conventional cutoffs for poor or acceptable data-

model fit may not be as widely applicable as applied researchers presume (although

cutoffs were admittedly not intended to be appropriate in all circumstances; see Hu

& Bentler, 1998, 1999) and researchers should heed quality of measurement when

testing invariance of both the measurement and structural model across groups. If

this information is not taken into account, in the specific context of multiple group

analyses, the failure to detect that parameters should not be constrained can have a

detrimental impact on inferences in practical applied scenarios. Constructs might be

erroneously considered to function similarly between different countries, cultures, or

demographic groups not as a result of more theoretical or modeling choices but sim-

ply as a result of poor measurement quality, which not only would result in flawed

inferences from the model such as tests, assessments, or instruments being inappro-

priately administered as interchangeable between groups, but would also quell fur-

ther research efforts into explaining possible differences between groups or revising

instruments to so that they are more broadly administrable.
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Notes

1. Some sources (e.g., van de Schoot, Lugtig, & Hox, 2012) also mention a fourth, more basic

type called configural invariance, which assumes that the same theoretical model holds

across all relevant groups. Under the four-type classification, configural invariance is pre-

requisite to weak, strong, and strict invariance.

2. Comparisons of mean structures (if present) may not be warranted with only weak invar-

iance. If one can only establish weak invariance, then latent means may be due to
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differences in manifest intercepts, which are not constrained with weak invariance

(Brown, 2006).

3. The cutoff values are negative because higher values of these indices are indicative of bet-

ter fit. DGOFs are calculated by subtracting the unconstrained GOF value (which will have

equal or greater fit and will therefore be higher) from the constrained GOF (which will

have equal or worse fit and will therefore be lower), resulting in negative values.

4. v2 values between 0.01 and 0.06 are typically interpreted as being ‘‘small’’ effects

(Cohen, 1988).
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