
The Role of Metadata for Data Warehousing�

Martin Staudt
y

Anca Vaduva
z

Thomas Vetterli
y

y Swiss Life, Information Systems Research (CH/IFuE),

P.O. Box, CH-8022 Zurich, Switzerland

<�rstname>.<lastname>@swisslife.ch

z University of Zurich, Department of Computer Science,

Winterthurerstr. 190, CH-8057 Zurich, Switzerland,

vaduva@i�.unizh.ch

Abstract

Metadata has been identi�ed as a key success factor in data warehouse projects. It

captures all kinds of information necessary to extract, transform and load data from

source systems into the data warehouse, and afterwards to use and interpret the data

warehouse contents. This paper gives an overview about the role metadata plays for data

warehousing and reviews existing standards, commercial solutions and research actions

relevant to metadata management. It turns out that an overall solution for managing all

metadata in a central or federated repository is still missing regarding a global metadata

schema as well as system aspects and interoperability among involved tools producing

metadata. The divergence of proposed standards will probably prevent a breakthrough

within the near future.

1 Introduction

The topic is as old as data exist: metadata have ever been needed to describe the meaning or

properties of data with the aim to better understand, manage, and use that data. A classical

example are libraries. Books (data) may be classi�ed, managed and retrieved only by means

of appropriate metadata (i.e., title, author and content keywords).

Metadata is commonly understood as any information needed in information technology

in order to analyse, design, build, implement and then use computer systems [2]. In the case

of information systems, metadata particularly facilitates managing, querying, consistent use

and understanding of data.

Many recent e�orts within both the academic and industrial community have concentrated

on issues related to metadata. The generation, storage and management of metadata promise

to better support the exploitation of the huge amount of data available nowadays in every

conceivable electronic form. Since everything computers work with is inherently data and (a

�This work was supported in part by the Swiss Federal O�ce of Professional Education and Technology
under grant KTI-3979.1 (SMART).

1

kind of) metadata accompanies any data, the notion may be found in any thinkable application

domain and takes various forms depending on its use.

This paper aims to clarify the role of metadata in the particular case of data warehousing1.

Starting with the pioneering work of Inmon [16], the popularity of data warehousing grew

exponentially during the last years. Competitive organizations are just on the way to build

data warehouses or to extend, reengineer, and improve already existing one(s). An abundance

of software products for building and exploiting data warehouses are on the market.

Data warehousing is a collection of concepts and tools which aims at providing and man-

aging a set of integrated data (the data warehouse) for business decision support within an

organization. In this way, important business trends may be discovered and explored and

better and faster decisions may be achieved regarding multiple aspects of the business like

sales and customer service, marketing, and risk assessment.

In order to cope with the complexity of building, using and maintaining a data warehouse,

a metadata management system is indispensable. It may be used by other components in

the data warehouse system or directly by humans to e�ectively and e�ciently achieve their

particular tasks.

The rest of this paper is organized as follows: In Section 2 we give an introduction

to data warehousing discussing the relevant tasks and architectural components of a data

warehouse environment. Section 3 summarizes the objectives pursued with metadata in the

data warehouse context. Based on that, Section 4 and 5 confront the requirements for a

metadata management system and for a metadata schema dedicated to data warehousing

with the solutions and concepts provided by current tools, standards and research projects.

In particular, a classi�cation of relevant metadata types is given in Section 5. In Section 6

we summarize our observations and point to several open problems.

2 Data Warehousing: Tasks and Architecture

The tasks of data warehousing comprise the processes of designing, building, using, and main-

taining a data warehouse. The data warehouse system is �rst designed at designtime, then

the warehouse is populated at buildtime, and �nally it is employed at usetime. Maintenance

partly reiterates the �rst two phases. After recalling the main di�erences between a data

warehouse and operational systems within an enterprise, we consider each of these phases.

2.1 Data Warehouses versus Operational Systems

A data warehouse typically incorporates data collected from a variety of heterogeneous data

sources (database systems,
at �les, indexed �les, so-called legacy systems2, Web pages, etc.)

including current operational enterprise-internal systems as well as external data sources.

Data has to be extracted, cleansed, transformed and stored in an integrated form in the data

warehouse.

Compared to traditional operational systems which focus on transaction processing, data

warehouses are designed for ad-hoc, complex queries with optimized response time. This

may not be achieved in operational systems where database schemas are normalized and

1A more comprehensive overview, in particular with a broader discussion on metadata in general, can be

found in [28].
2The term legacy systems is used for all those `old-fashioned' applications in enterprises which store and

manage data mostly in proprietary formats and which have grown over time often in a chaotic manner with

dubious e�ects on data quality and interoperability.

2

User access (possibly using

application programs)
additional browsers or

Applic.

Analysis

Metadata

Repository

Data Sources

Data flow

Applic.
OLAP

Data
Mart

Applic.

Analysis

Component
Aggregation / Selection

Data

ETL-Component

Warehouse

���
�
�
�

�
�
�
�

��

���
�
�
�

Figure 1: A data warehouse system at buildtime and usetime

a multitude of table joins would be required for complex queries inherently yielding weak

performance.

An operational system normally provides current data values for the daily business, while

a warehouse supplies a view of the business over a period of time by means of historical data,

necessary for business trend analysis. Data in a warehouse is typically updated only at certain

points in time (e.g., daily) and thus it does not necessarily contain the most recent data values.

This is justi�ed since on the one hand data warehouse systems serve for decision support and

(long-term) analysis applications, which do not need absolutely current information. On the

other hand there exists a tradeo� between the currentness of data and the substantial e�ort

required to bring the data into the warehouse and to organize it in the special shapes (e.g.,

aggregations) suitable for such applications.

2.2 Building the Data Warehouse

Figure 1 depicts a typical architecture of data warehouse systems with the interactions that

happen between the components at buildtime and runtime.

The warehouse is populated with the data extracted from the sources through two pro-

cesses: the initial loading phase performs data extraction, cleaning, transformation, and stor-

ing into the target source (the data warehouse), and the regular refreshment that propagates

(executing the same activities) changes into the warehouse. We consider the main components

that participate in the loading and refreshment process:

Data sources contain structured, unstructured or semi-structured data and follow dif-

ferent data models, e.g., traditional operational database systems supporting so-called online

transaction processing (OLTP) applications.

3

As the name suggests, the Extraction, Transformation and Loading (ETL) component

extracts data from the sources, transforms it, and stores it in the data warehouse. Data

transformation may take various forms: reconciliation of syntactic and semantic di�erences

between operational sources, consolidation, and mapping from local data models to the global

one. Examples of possible transformations include: elimination of duplicates, the calculation

of derived data (like the age inferred from the date of birth), enrichment of data (like com-

pletion of addresses based on the value of the postal zip code), and so on.

The data warehouse represents the kernel of the data warehouse system. It serves as an

(enterprise-wide) collection of integrated data, usually stored in a relational database system.

The aggregation and selection component performs further processing steps. For

example, it computes the views to be stored in the data marts or prepares data to be fed into

analysis applications.

Data marts are data stores that are subordinated to a data warehouse. This means they

render information views of the same single integrated pool of data. Data marts are built

with the aim to provide speci�c application requirements of a certain group of users, e.g., of

a department or a geographical region.

The metadata repository plays a key role in every phase of data warehousing. During

buildtime, metadata governs the extraction, transformation and loading of data into the data

warehouse.

2.3 Using the Data Warehouse

Data warehouses are built for analysis purposes. The analysis involves examining data and

possibly identifying relationships that may exist between di�erent elements.

The most popular analysis means are OLAP3-tools which enable users to examine data

within a multidimensional model allowing to instantaneously retrieve and summarize data.

The multidimensional model provides measures (i.e., business facts to be analyzed like sales

or shipments) and dimensions for these measures (i.e., the context in which the measures have

values assigned, e.g, products, customers, time, region). Usually, dimensions have associated

hierarchies that specify aggregation levels for viewing the data. Since the data is appropriately

organized, query performance is signi�cantly increased.

Data mining o�ers more powerful means for extracting information. It aims at the au-

tomatic detection of implicit, previously unknown and potentially useful patterns in data and

their translation into valuable information. Successful application domains include fraud de-

tection, loan approval, and portfolio trading. Data mining techniques comprise classi�cation,

clustering, association discovery, and deviation and change detection techniques [6]. Note

that for e�ective data mining, data quality has to be high (i.e., as few as possible missing,

incorrect and stale data).

Metadata helps the user to understand the content of the warehouse. Information about

the meaning of data elements, availability of reports etc. are indispensable to successfully use

the data warehouse.

2.4 Designing the Data Warehouse

The design phase comprises de�ning the structure of the warehouse (including source schema

integration) and developing software that carries out data extraction, cleaning, data integra-

tion, and loading into the warehouse. The process covers also the development of end-user

3Online Analytic Processing

4

applications for extracting information from the warehouse (e.g., browsing, OLAP, and other

analysis applications).

Data marts contain selected and aggregated portions of the main warehouse. In order to

serve OLAP-applications they often have multidimensional schemas and can then be imple-

mented either by special multidimensional databases or relational databases. In the latter

case, the data is organized as a star schema with separate tables for measures (including

aggregations) and dimensions.

The development of ETL-components is a rather complex task. There are three alter-

natives to design ETL-software. The �rst option uses hard-coded scripts, which however are

di�cult to maintain. The second option allows the speci�cation of transformation rules.

These rules are used to generate procedural code (code-generation systems), improving the

ability to quickly adapt to changing requirements. In contrast to the code-generation systems,

the engine-based systems (the third alternative) directly interpret the metadata, dynamically

executing the transformations.

The metadata repository plays a key role for data warehouse design and the development

of software components as well. Designers and application developers consult the repository

where, for example, results of CASE-tools, design experiences, and system documentation are

stored.

2.5 Maintaining the Data Warehouse

Warehouse administrators perform the maintenance of the data warehouse system. This

process concerns the periodic refreshment of the data warehouse, updating of software when

application requirements change. It may also require to specify further transformation rules

or to compute derived data or additional aggregation and summarization. The development

of new applications that access the data warehouse may be seen as being part of maintenance

as well.

The maintenance process of data warehouse systems also leads to updates of the metadata

repository, which may happen either automatically or manually, depending on the metadata

type and use. Manual updates can fall under the responsibility of di�erent people. For

example, metadata that refers to the terminology of business users is not necessarily the

concern of warehouse administrators but of people responsible for knowledge management in

an enterprise.

3 Metadata for Data Warehousing

Because of the complexity and extensive use of metadata, a compact, precise de�nition of the

notion may hardly be provided. Therefore, we explain metadata by discussing its purposes

and the role played during the execution of the data warehouse processes. Metadata may be

used in three di�erent ways:

- passively, by providing a consistent documentation about the structure, the development

process and the use of a data warehouse system. The availability of documentation

supports all \actors" (i.e., end-users, system administrators, and application developers)

in achieving their tasks.

- actively, by storing certain semantic aspects (i.e., transformation rules) as metadata

which is interpreted and executed at runtime. In this case, the data warehouse processes

are metadata driven. As a consequence, code (i.e., the active metadata) and additional

5

documentation are uniformly and consistently managed in the same repository and the

currentness of the documentation is possibly improved.

- semi-actively, by storing static information (e.g., structure de�nitions, con�guration

speci�cations) to be read by other software components during their execution. For

example, query parsers need metadata in order to verify the existence of an attribute.

In contrast to the active use, metadata is only read, not executed at runtime.

The generation and management of metadata serves two purposes: (1) to minimize the

e�orts for development and administration of a data warehouse and (2) to improve the ex-

traction of information from it. The �rst objective mainly concerns

- supporting system integration. Schema and data integration rely on metadata about

the structure and the meaning of the individual data sources and of the target system.

Transformation rules to be applied to the original data are stored as metadata as well.

Furthermore, the integration of di�erent tools is only possible if they share their \data"

which actually is, in this case, the metadata of the data warehouse system.

- supporting analysis and design of new applications. Metadata increases control and

reliability of the application development process by providing information about the

meaning of the data, its structure, and origin. Furthermore, metadata regarding design

decisions adopted for existing applications may be reused.

- improving the
exibility of the system and the reuse of existing software modules. This

objective is valid only for the active and semi-active use of metadata. Semantic aspects

likely to change frequently are explicitly stored as metadata outside the application pro-

grams. Maintenance is therefore substantially easier, and the system may be extended

and adapted without di�culty. This approach also enables the reuse of these \code

fragments".

- automating of various administration processes. Metadata also drives the execution of

the diverse warehouse processes (like loading and refreshing). Information about their

execution (access logs, number of records added to the warehouse etc.) is also stored in

the repository for easy access by the administrator.

- enforcing security mechanisms. Metadata should provide the access rules and user

rights for the whole data warehouse system. Access control in a data warehouse system

may require sophisticated methods. For example, the operational sources may contain

harmless information about single �gures of an enterprise but the summarization of the

values stored in the data warehouse may be top secret. On the other hand, individual

incomes of the employees on the source site are secret, but the total volume stored in

the data warehouse may not be a critical information.

The second objective refers to the e�ective extraction of information from data:

- improving data quality. Data quality includes dimensions like consistency (whether

the representation of data is uniform and no duplicates, no data with overlapping and

confusing de�nitions exist), completeness (whether data is missing), accuracy (the con-

formity of the stored with the actual value, including precision and con�dence of the

data), timeliness (whether the recorded value is up-to-date). Quality assurance rules

have to be de�ned, stored as metadata and checked each time the data warehouse is re-

freshed. In addition, high data quality requires the support of data tracking. Metadata

6

provides information about the creation time and the author of the data, the source

of the data (data provenance), the meaning of data at the time it was captured (data

heritage), and the path followed from source to the current site (data lineage) [8]. In

this way, users may reconstruct the path followed by data during the transformation

process and verify the accuracy of returned information.

- improving interaction with the data warehouse system. Interaction may be performed

either by means of simple queries and reporting applications or by using complex anal-

ysis applications. Metadata provides information about the meaning of the data, the

terminology and business concepts used within the enterprise and their relationship to

the data. Thus, metadata improves query, retrieval and answer quality. It allows to

pose precise, well-directed queries and reduces the costs for users accessing, evaluating

and using appropriate information.

- improving data analysis. Methods for data analysis cover a large spectrum, starting with

simple reporting applications that include summarizations, continuing with OLAP, and

ending with complex data mining applications. In this context, metadata is necessary

to understand the application domain and its representation in the data warehouse in

order to adequately apply and interpret results.

- enforcing a unique terminology and communication language within the enterprise. The

availability of a metadata management system as a unique documentation source for

users brings other bene�ts as well: it ensures a consistent means for people to commu-

nicate, understand, and interpret information provided by the data warehouse system,

eliminates ambiguity and guarantees consistency of information within the enterprise,

and it enables sharing of knowledge and experience.

4 Data Warehouse Metadata Management

Metadata is stored and maintained in a repository, which is a structured storage and retrieval

system, usually implemented on top of a database management system. Metadata needs for a

speci�c application domain (like data warehousing) actually impose the repository structure

(e.g., the metadata schema) and the semantics of metadata to be stored.

In order to ful�ll functional and architectural requirements for metadata repositories,

several standards have been de�ned which in
uence commercial products and research pro-

totypes in one or the other way. Based on the selected repository tool and/or architecture, a

speci�c metadata schema for data warehousing can be implemented (see Section 5).

4.1 Requirements for Metadata Repositories

The typical functional requirements for metadata repositories are presented in detail in [5].

We pick up the most important aspects and summarize possible architectural alternatives

in
uencing the position of a repository within a data warehouse environment.

4.1.1 User Access

The main purpose of a metadata repository is to provide the necessary information that may

help users to achieve their tasks. Thus, it has to o�er suitable mechanisms for querying,

navigating, �ltering and browsing the metadata it manages.

7

The structure (schema) of the repository has to support querying according to speci�c

conditions. For example, it should be possible to pose queries for selecting all activities which

make up the refreshment process, all logical metadata related to a speci�c business element,

or metadata that has a certain origin, a certain purpose, a certain production time, etc. This

require metadata to be \labeled" with attributes that contain the appropriate values.

Relationships/dependencies between individual metadata elements are important for un-

derstanding the system. Ideally, the repository provides not only explicit but also implicit

(hidden) relationships between aspects of managed metadata. An essential functionality re-

quirement is the navigation within the metadata collection. Starting with a certain element,

the user may navigate to other elements along existing relationships. Navigation is \driven"

by the underlying schema which is speci�ed on a conceptual level by the metamodel of the

repository.

Filtering refers to the selection of relevant information when search criteria are not nec-

essarily provided by the structure of the repository. This means, besides querying of �xed

attributes, �ltering presumes the search of keywords within textual descriptions. In this way,

all information related to a certain topic may be provided.

Browsing requires an appropriate, user-friendly (and thus highly graphical) interface for

interacting with the repository. User views play a central role for browsing, since they restrict

access to information according to user interests. Each user view has a de�ned starting

point for browsing and navigation which provides the elements the user may start with when

exploring the repository.

Manually editing and updating a metadata repository can be a very complex task, if, e.g.,

long sequences of operations should be recorded and many interrelated objects are touched.

This can be supported by adding to the metamodel additional models which formalize cer-

tain types of update processes and, e.g., allow the generation of suited forms and guidance

mechanisms for editing tools.

4.1.2 Interoperability and Tool Access

The interaction of software components and tools with the repository requires appropriate

mechanisms, in particular:

- a comprehensive application programming interface (API) for metadata read and write

access by other software components,

- interfaces ensuring the interoperability with other repositories. One way to make two

repositories interoperable is to adopt a common interchange representation format at

both sides and to use it when repository data has to be imported or exported, and

- a
exible core data model that allows to easily de�ne domain-speci�c metadata types

and to extend a given set of types concerning additional tools or new data sources.

4.1.3 Change Management

Change management deals with the handling of changes inside and outside of the repository.

A noti�cation mechanism is necessary to propagate changes to tools that registered their

interest in being noti�ed. Also users who previously \subscribed" are informed.

The repository has to provide version and con�guration management. Important changes

of metadata (e.g., due to schema updates of operational sources schemas) require the creation

of di�erent versions and their storage in the repository. Problems may arise with inconsistent

8

Analysis Tools

data flow

Data

Warehouse

Development ToolsAdministration ToolsUser Access Tools

Editor/Query Interface/ Browser

Repository

Metadata Manager

Metadata

Figure 2: Metadata Repository and the Tools using it

links, e.g., descriptions on the conceptual level which are not valid anymore when changes on

the implementational level (like changes of code) occur. This requires additional detection

and noti�cation mechanisms for discovering such errors in structure and actuality of the

metadata.

Impact analysis is a feature which enables administrators to evaluate the impact of poten-

tial changes in the data warehouse system before they are actually executed. For example,

changes in the schema of sources may have consequences for transformation rules: type mis-

matches, violations of referential integrity, etc.

4.1.4 Repository Architecture

In Figure 2 we show the tool classes involved in metadata management. The repository is

controlled by the metadata manager which provides the functionality of a database man-

agement system (including persistent data storage, concurrency control, recovery), change

management operations, and tool access interfaces. These interfaces have to cover also the

interaction of users with the repository which is performed by means of software as well. The

user access tools o�er, besides browsing, navigation and querying also editing facilities for

manually entering the metadata elements and the relationships between them.

Administration tools may use metadata for system integration, for improving data quality,

and enforcing security mechanisms. Development tools need metadata for the design of new

applications while analysis tools, e.g., improve their results by means of metadata or record

report structures, etc.

Figure 2 depicts also an interaction between the metadata manager and the data ware-

house since certain information for deriving metadata may be stored in the data warehouse

itself. Considering as example data quality parameters, some values needed to derive them

may belong to each record in the data warehouse (e.g., probabilities regarding the accuracy

of each birthdate) and are thus stored in the data warehouse.

Regarding the enterprise-wide architecture of repositories, a single repository for managing

all kinds of metadata would be the �rst choice. This corresponds to centralized metadata

management: metadata is uniformly and consistently managed, and accessed by all possible

consumers. However, centralization does not always work in reality. The reasons are multiple:

either the historical evolution of various departments may have implied an asynchronous

development of repositories, or political and organizational aspects do not allow to physically

manage a single repository within the enterprise. Furthermore, di�erent tools with divergent

9

data models, following diverse representation formats and standards have to be inevitably

used for achieving the numerous tasks of data warehousing. The consequence is a multitude of

proprietary metadata storage models, redundant storage of metadata in di�erent repositories

or, worst of all, no repository at all. In this case, there are two alternatives to handle metadata

management: to choose either a totally decentralized or a federated approach.

Decentralized metadata management tries to cope with this situation by simply mutually

importing metadata (based on certain interchange standards) wherever necessary.

Federated metadata management strikes a trade-o� between the advantages of central-

ization and those of local control. On the one hand, it provides a global conceptual view

of metadata existing in an enterprise. On the other hand, repositories may be further on

maintained individually, with di�erent access rights enforced on them and with di�erent tools

using them.

The content and structure of a repository is directly related to the modeling of the system it

belongs to. It is widely recognized that (at least) four levels are required for modeling complex

information systems. Each level contains the modeling constructs (or the modeling language)

used to de�ne the information on the level below. On level 0 are the actual data items

(e.g., the customer data). The levels above contain the metainformation: level 1 contains

metadata (e.g., the database schema), level 2 speci�es the schema used to store the metadata

(the so-called metadata schema). Usually, level 2 also includes common modeling languages

like UML. Level 3 contains the metametamodel that uni�es the di�erent modeling languages

speci�ed on level 2. The conceptual schema of the metadata repository is situated on level 2,

often called metamodel or information model. The application context data warehousing and

the three ways of organizing metadata management mentioned above strongly in
uence how

the metadata schema(s) look like (see Section 5).

4.2 Repository and Exchange Standards

Based on the functional and architectural requirements for data warehouse repositories stated

above, we now turn to relevant standards for repository systems and for metadata exchange.

4.2.1 Repository Standards

Standards for repositories try to establish reference architectures to be followed by repository

vendors and make these products uniformly usable in di�erent application contexts, e.g. by

incorporating the four level paradigm mentioned above.

IRDS The IRDS (Information Resource Dictionary System) standard, developed by ISO/IEC

[18] addresses the requirements and architecture of a dictionary system. An Information Re-

source Dictionary (IRD) is de�ned as a shareable repository for the de�nition of information

resources relevant for an enterprise [1]. This may include information about:

- data needed by the enterprise;

- the computerized and possibly non-computerized processes which are available for pre-

senting and maintaining such data;

- the available physical hardware environment on which such data can be represented;

- the organization of human and physical resourceswhich can make use of the information;

- the human resources responsible for generating that information.

10

PCTE The PCTE (Portable Common Tool Environment) standard from ECMA (European

Computer Manufacturer's Association) [9] and ISO/IEC describes the basis for a standard

software engineering environment, including a repository and communication between tools.

The most important aspect of PCTE with regard to the process of constructing and

integrating portable tools is the provision of an object base (the repository) and a set of

functions to manipulate the various objects in it. The basis for the Object Management

System is derived from the Entity Relationship (E/R) model and de�nes objects and links as

basic items of a PCTE object base. All entities in the object base are typed. Type rules are

de�ned for objects, links and for attributes.

The PCTE object base may be split according to a number of schema de�nition sets

(SDSs). Each SDS provides a consistent and self-contained view of the data in the object

base. A process at any time views the data in the object base through a working schema. A

working schema is obtained as a composition of SDSs in an ordered list.

4.2.2 Exchange Standards

Standardization of metadata exchange is one basic requirement for interoperability. The

following exchange standards partly rely on the representational standards XML, OIM, UML

and MOF which are described in Section 5.

CDIF The CDIF (Case Data Interchange Format) family of standards, standardized by

the EIA (Electronic Industries Association)4 and adopted by ISO, de�nes the structure and

content of a transfer to exchange metadata between two CASE tools. The CDIF standards

cover many of the important modeling techniques used by CASE tools today (e.g. data-

ow modeling, data modeling, physical relational data base design, etc.). An actual transfer

of metadata between two tools is usually via �les, an IDL (Interface De�nition Language)

binding compliant to the CORBA standard of OMG (Object Management Group) is also

available.

MDIS MDIS (Meta Data Interchange Speci�cation) [30] is an exchange standard from the

Meta Data Coalition (MDC). MDIS provides a metamodel that addresses the main types

of data models (relational, hierarchical, network), and a standard import/export mechanism

that enables the exchange of these metadata objects between tools. MDC plans to integrate

MDIS with OIM.

XMI The XMI (XML Metadata Interchange) is an OMG standard to exchange MOF based

metamodels. The standard consists of:

- a set of XML Document Type De�nition (DTD) production rules for transforming MOF

based metamodels into XML DTDs;

- a set of XML Document production rules for encoding/decoding MOF based metadata;

- design principles for XMI based DTDs and XML streams;

- concrete DTDs for UML and MOF.

Because XMI is based on XML, it can be used for metadata interchange with and between

non-CORBA based metadata repositories and tools.

4http://www.eigroup.org

11

XIF The XIF (XML Interchange Facility) is an MDC standard to exchange OIM models.

Like XMI, XIF is based on XML. There are no details available from MDC about XIF.

4.3 Commercial Metadata Management Solutions

For all components in the architecture of a data warehouse system, commercial tools exist

in abundance5. Each of these tools is a metadata consumer and/or producer. The creation,

maintenance, sharing and coordination resp. integration of their metadata requires a lot of

e�ort. Several commercial o�erings for metadata management are based on a centralized

strategy, dominating, however, are decentralized proposals.

4.3.1 General Purpose Repositories

The centralized approach to data warehouse metadata management can naturally be realized

by a general-purpose standalone repository. According to a recent Gartner Group survey [13],

there are two vendors (CA/Platinum, Viasoft) selling repository products which are classi�ed

as \leaders" in this market segment, and two vendors (Unisys, Microsoft) are classi�ed as

\visionaries". We will present the \stand-alone" repository solutions from Viasoft, Unisys

and the o�erings from Platinum/Microsoft, who recently joined forces in the repository area.

UREP The Universal Repository (UREP) from Unisys corporation6 is an object-oriented,

extensible repository.

The repository services provided by UREP are based on the service sets de�ned by the

PCTE standard. These services include:

- version control: maintaining a history of information;

- transactions: enabling users to de�ne and enact transactions (short and long transac-

tions);

- user and session management: identifying a repository user, de�ning access rights etc.;

- metadata service: extending the information model.

Two types of models exist within UREP: The Technology model describes repository types

and operations that represent generic software technologies (database paradigms, business

analysis, etc.). The repository types and operations that a particular tool uses, belong to

the Tool model. Both types of models are extensions of the UREP information model. The

metadata service provides mechanisms for:

- de�ning object modeling constructs such as types, relationships, integrity rules etc.;

- extending the UREP information model;

- reusing object types and operations that are de�ned in the repository, and

- extending repository functionality by de�ning subtypes and by overriding inherited op-

erations.

UREP has been licensed by di�erent companies to be included in their product palette,

e.g., by Sybase corporation and BEA systems.

5An excellent resource is Larry Green�eld's site at http://pwp.starnetinc.com/larryg/index.html.
6http://www.marketplace.unisys.com/urep/

12

Microsoft Repository The Microsoft repository7 is an object-oriented, extensible reposi-

tory, consisting of two major components:

� a set of APIs based on Microsoft's Component Object Model (COM) to describe infor-

mation models and

� a (relational) repository engine (either Microsoft SQL Server or Microsoft Jet, the

database system in Microsoft Access) which serves as storage component for these mod-

els.

The Microsoft repository is targeted towards software vendors and users wishing to support

the management of metadata in a variety of scenarios including software development and

data warehousing, using OIM (see 5.2.2) as the underlying model.

Microsoft Repository 2.0 ships with Visual Studio 6.0 and SQL Server 7.0. Microsoft has

a collaboration agreement with Platinum to port the repository to non-Microsoft platforms.

According to Microsoft, there are more than 75 third parties shipping tools that use the

repository for their metadata management.

Platinum Repository The CA/Platinum repository 8 currently exists in two versions:

� Repository/MVS is a mainframe-based repository, �rst released in 1988, using DB2 as

its storage platform.

� Repository/OEE (Open Enterprise Edition) is a client/server solution which stores its

data in Oracle, Sybase or Microsoft SQL Server.

Both versions provide models based on the E/R approach. The Platinum repository pro-

vides full bi-directional interfaces to many CASE tools, including ERwin, Bachman, Ster-

ling/Cayenne and Oracle Designer. Scanners (a specialized set of tools for parsing and im-

porting �le de�nitions, SQL statements etc.) are available for all popular languages.

Platinum and Microsoft have a collaboration agreement, giving Platinum the right to port

the Microsoft repository to non-Microsoft platforms and to leading RDBMSs (Oracle, DB2,

Sybase). According to Platinum, the next release of Repository/OEE, called the PLAT-

INUM Enterprise Repository V2.0, will contain all the functionality currently available in

Repository/OEE and will be based on the Microsoft-PLATINUM Repository V2.0 engine.

Rochade Viasoft's Rochade repository9 uses an object/network-based database structure

which handles objects and links between them. The following four basic building blocks are

maintained:

� item types describing groups into which similar items are categorized,

� attribute types describing aspects of an item,

� link types describing relationships between items, and

� rule types describing processes associated with an item/link/attribute or another rule.

7http://msdn.microsoft.com/repository/
8http://www.platinum.com
9http://www.viasoft.com

13

The heart of the Rochade repository is the repository information model (RIM). A RIM

provides a scoping mechanism for accessing the repository and de�nes the details necessary

for supporting Rochade subject areas, projects and external tools. The RIM of Rochade

provides unlimited extensibility. Its data architecture recognizes �ve data levels, each level

describing and de�ning the level beneath it. This is not congruent with repository standards

like PCTE or IRDS which both stipulate a four-level architecture.

As the competing Platinum repository product, Viasoft's Rochade o�ers rich interface

support to other tools, e.g., Bachman, System Architect, ERwin.

4.3.2 Decentralized Tool-speci�c Metadata Management

As strategies for decentralized management of metadata we can distinguish between metadata

exchange standards de�ned or adopted by vendor coalitions and \open" product APIs. The

exchange standards require that the coalition members agree on a common sub-model to

exchange metadata between their tools. Each vendor is free to specify additional metadata

for his own products usage. IBM is one example for a vendor pursuing this approach. In

the second case, a vendor o�ers an API that enables other parties to import and/or export

metadata from their products. Examples of vendor interfaces that enjoy wide support from

a variety of third-party tool vendors include Ardent Software and Informatica.

Ardent Software Ardent Software10 o�ers several products for data warehousing including

the product line of the former Prism Corporation (Prism Warehouse Executive and Prism

Warehouse Director), and also Ardent's DataStage product. Warehouse Executive is an ETL-

tool which generates code (Cobol, Java, ABAP/SAP). Warehouse Directory is the metadata

store. A key feature is the integrated metamodel that contains business, technical, operational

and quality data. Third-party tools can also access the repository metadata in order to

facilitate end-user queries and operational data management.

Ardent announced the MetaConnect initiative, allowing users to exchange metadata among

di�erent warehouse tools. The initiative is based on so-called MetaBrokers. The core of each

MetaBroker is built by a patented technique which enables the decomposition and recom-

position of metadata into simple units of meaning. This semantic translation facilitates the

exchange of metadata between extraction, transformation and loading, business intelligence

and data modeling tools. MetaBrokers use a tools standard import/export �le for meta-

data exchange. Metadata exchange between two tools does not rely on a central repository,

but only on a MetaBrokers transient storage. When an exchange has been completed, the

transient storage is deleted. Currently, MetaBrokers are available for Erwin, ER/Studio,

Impromptu, and Business Objects. Ardent also announced the MetaStage product as a ma-

terialized repository for their MetaBrokers. The Ardent activities can be seen as a �rst step

towards federated metadata management.

Informatica Informatica Corporation11 sells the ETL-tool PowerMart and its add-on Pow-

erCenter. PowerMart has its own metadata repository which coordinates and drives a variety

of core functions including data extraction, transformation, loading and management. The

PowerMart Repository Manager is used to create and maintain it. PowerCenter supports the

integration of di�erent PowerMart Repositories.

The Metadata Exchange (MX2) Architecture provides a set of application program in-

terfaces (APIs) which can be used by OLAP, query and access tool vendors to integrate

10http://www.ardentsoftware.com/
11http://www.informatica.com/

14

their products with Informatica's open metadata repository. MX2 is based on UML for in-

formation modeling, and COM for object interoperability. According to Informatica, the

MX2-Architecture is compatible with Microsoft's OIM. The MX2 APIs allow read and write

access to the underlying repository. Di�erent vendors announced their support for the MX2

architecture, e.g. Brio Technology, Cognos, Business Objects and others.

4.4 Research Contributions

The management and exchange of metadata is also in the focus of various research projects

and has led to tools which have been or might be applied in the data warehousing context.

We mention three example systems and discuss related approaches from the areas of ontology

management and general information integration concerning overlaps and similarities with

requirements in data warehousing.

4.4.1 ConceptBase

The ConceptBase12 deductive object base system [19] developed at Aachen University of

Technology is a client-server database system for conceptual information, i.e. metadata. The

foundation of its representation language Telos is a simple data structure which uniformly

represents objects, classes, meta classes, attributes, and class-instance as well as subclass-

superclass relationships. Telos also provides for a logical sublanguage based on many-sorted

�rst order logic. The main predicates available allow to express the basic object-oriented

structuring principles plus certain arithmetic and aggregation operators. Formulas in this

language are employed for specifying deduction rules and integrity constraints and constitute

the main building block of the query and view language of the system.

Since the class-instance relationship is stored explicitly in ConceptBase, an object is al-

lowed to have multiple classes. Moreover, classes may be instances of meta classes, meta

classes may be grouped into meta meta classes, and so on. There is virtually no limit in this

hierarchy though most applications do not go beyond 4 levels. Integrity constraints, deductive

rules and queries can be formulated at any of these levels. The view language of Concept-

Base forms the basis for view-speci�c C++ API's which allow automatic initialization and

incremental maintenance of view data derived from the object base contents and managed in

client applications.

In a number of di�erent application settings, ConceptBase was able to support various data

representation frameworks like the IRDS standard, but also showed the necessary
exibility

for dedicated and application-speci�c modeling schemas. [21] gives a comprehensive overview

on applications and experiences with the system ranging from software and requirements

engineering to business process modeling projects and terminology management. A concrete

application of ConceptBase in the data warehouse project DWQ is described in Section 5.

4.4.2 H-PCTE

H-PCTE13 is a PCTE implementation maintained at the University of Siegen. Versioning of

objects is supported explicitly and even schema level operations, i.e. the dynamic creation and

change of types, are allowed and complemented by appropriate object modi�cations. While

the PCTE standard is restricted to an API for navigational access to objects only, the H-

PCTE system o�ers both a set-oriented algebraic [14] as well as an SQL-like query language

named P-OQL.

12http://www-i5.informatik.rwth-aachen.de/CBdoc/
13http://pi.informatik.uni-siegen.de/pi/hpcte/

15

H-PCTE is, like ConceptBase, a main-memory based system. It is both possible to reserve

fragments of an object base for exclusive access and uploading in the address space of a single

application, or to work on a shared adress space with several applications. Java clients can

access H-PCTE via the Java-API which employs an additional server process for bridging

application and repository and in particular for providing a noti�cation mechanism: observer

tags are attached to objects inside the repository which are of interest to an application;

changes are then steadily reported back.

H-PCTE was mainly applied as a repository component for software engineering environ-

ments.

4.4.3 Lore

The Lore system14 being developed at Stanford University is a so-called light-weight repository

in the sense of a very simple basic data model and at least in the beginning of the project

with read-only and single-user functionality [25]. The �rst data model Lore supported was

OEM (Object exchange model) which basically consists of nodes and labeled links between

them. The increasing importance of XML led to a replacement of OEM in Lore. The main

di�erence between both languages in fact can be reduced to a missing analogue for DTD's in

OEM which however was consistent with the original idea of schemaless data. As soon as a

DTD exists, it imposes schema restriction on the respective data.

The query language Lorel is an OQL adaption and emphasizes the importance of path

expressions derived from the link labels between objects. All other objects reachable from one

object by traversing paths with the same label sequence are considered as solutions satisfying

such expressions. An important feature of Lore is the DataGuide which provides a facility for

schema reconstruction or data condensation.

4.4.4 Related Approaches

Ontology management [11] is a classic �eld of Arti�cial Intelligence where structural infor-

mation (including concepts, their de�nitions, relationships and properties) is collected and

maintained - often in domain-speci�c contexts - in order to support various applications like

natural language processing or machine learning. With regard to data warehousing, ontolo-

gies are in particular important as a means to organize business items and the descriptions of

their usage in the various applications. A variety of ontology management systems have been

developed, however they are used only in very general contexts. Most of them employ frame-

based languages for describing concepts and additional powerful assertion languages. Two

very prominent representatives are the Cyc Knowledge Server system [23] and the Ontolingua

Server15. The Cyc project's main goal is to establish a huge global collection of commonsense

knowledge which is made available through the Knowledge Server. Among various other ap-

plication areas, Ontolingua is currently employed to construct a World Fact Book, containing

a substantial collection on all aspects of knowledge about the world's nations.

While information integration actually is an old topic, it has received growing interest

with the explosion of Internet and Web technologies during the last years. Schema integration

becomes even more relevant if the data sources to be integrated have heterogenous formats

or are only weakly structured. Projects like TSIMMIS [12] and Garlic [32] propose a virtual

integration approach realized by source speci�c wrappers solving the format mismatch, and

mediator components responsible for central integration and query services. While data

14http://WWW-DB.Stanford.EDU/lore/
15http://ontolingua.stanford.edu

16

warehouses materialize the data to be integrated, the way of managing schema descriptions

and related information about the sources in respective system catalogs (Lore in the case of

TSIMMIS) is relevant for data warehousing, too. In a similar way, the Information Manifold

[24] serves as a bridge between several hundred information sources and end-users and employs

an overall ontology for accessing the available contents.

A step beyond storing schema and source information is made by advanced web-site man-

agement systems which o�er facilities for model-based generating of pages or even whole ap-

plications. This can be compared, e.g., to managing reports and their basic building blocks in

data warehousing. Existing proposals, e.g., as developed in the ARANEUS [3] and STRUDEL

[10] projects, usually di�er with regard to the formal data model (and its degree of structur-

ing). The descriptions to be stored in a repository comprise the skeletons of the �nal web

pages, its relationship to the data sources, and transformations between them. Advanced web

applications like hyperbooks [26] can give additional hints how to represent possible access

paths to metadata and data as metadata, too. In fact, for metadata based access to a data

warehouse, web technology is indispensable.

4.5 R�esum�e

The presented approaches to tackle metadata management in general and for data warehous-

ing as one special application show that standardization e�orts obviously neither led to a

unique proposal concerning architecture and exchange mechanisms nor in
uenced decisively

the various tool implementations.

On the repository-side, the Microsoft repository is of increasing importance due to the

dominating role of Microsoft in software development and standard application tools. Whether

the cooperation with Platinum will make their concepts available for the Unix and mainframe

world, will turn out in the future.

The research tools for metadata management feature speci�c bene�ts, which are even

relevant for their commercial counterparts. For example, ConceptBase with its powerful

logic-based language used for rules, integrity constraints and queries yields excellent analysis

and inference facilities for metadata. Its data model has a clean formal semantics and is still

the most
exible one concerning modeling layers and the de�nition of modeling constructs.

The Java-based noti�cation mechanism implemented in H-PCTE allows comfortable support

for collaborative metadata editing and browsing tools, and even is important for handling

federated metadata. Lore is one of the �rst XML-oriented repositories with its main intention

to solve integration problems on semistructured data. In this context, also classical database

problems like query optimization and view maintenance based on a declarative query language

were explored.

Two important problems with metadata management concern their maintenance and in-

tegration. Metadata (like data) lose their worth if they do not re
ect the actual state of

the system and enterprise world. The maintenance of metadata is only in part a question

of interoperability between software systems, in particular for generated metadata from, e.g.,

systems or process design. On the other hand the maintenance problem requires organiza-

tional concepts (responsibility, authorization, etc). This holds for manual documentation and

also non-IT metadata. The idea of one global metadata base managed by a central repos-

itory becomes unrealistic at the latest when one crosses enterprise or organization borders,

often even earlier. Proprietary metadata management solutions provided by tools involved

in the various data warehousing tasks will continue to exist. Therefore, federated and decen-

tralized metadata management naturally yields metadata integration and coordination tasks.

These tasks are not supported in a satisfactory way by the current data warehouse tools,

17

and even the general repository systems do not o�er access mechanisms general enough for

platform independent employment. Bi-directional toolspeci�c interfaces dominate. Open in-

terfaces allow at least a replication of tool-speci�c metadata in a global repository. The ideas

emerging from the various research projects on information integration are highly relevant for

developing concepts for federated metadata management.

The main barrier for integration, however, is a missing general metadata schema for data

warehousing as discussed in the next section.

5 A Data Warehouse Metadata Schema

While most of the repository requirements discussed above are more general by nature, the

repository metamodel or metadata schema is truly application speci�c, i.e., dedicated to data

warehousing in our case. It captures all metadata types and relationships between them

required by the involved tools and human users. How general the metamodel is within the

domain depends on the given enterprise-wide repository architecture. For the decentralized

approach we have a variety of tool-speci�c schemas, usually overlapping with regard to several

general aspects, like source schema descriptions, but without syntactic and semantic adaption.

Since the main goal in a company should be directed to the central or at least federated case of

metadata management where an overall global schema is necessary, we address in the following

general categories, formalisms, standardization e�orts and proposals for metadata schemas

which cover all aspects relevant for data warehousing.

5.1 Metadata Classi�cation

We present six dimensions for classifying metadata that give hints for the required main

elements of the metadata schema. The dimensions themselves can be understood as direct

part of this metamodel, orthogonal to or even re�ned by the domain-speci�c aspects. Their

general scope, however, makes them also suited as metametamodel.

5.1.1 Criterion \Type"

One �rst distinction regards metadata about primary data in the data warehouse system and

about data processing, that means, metadata for processes running within the data warehouse.

� Metadata for primary data. Primary data consists of all data managed by the data

sources, the data warehouse, the data marts, and the applications. Thus, the corre-

sponding metadata includes information related to the structure of data sources, data

warehouses, and data marts. In this context, we distinguish between metadata concern-

ing the entire schema (e.g., schema description, statistical values as, e.g., the number of

entries in the database) and metadata associated with parts of the schema. Examples

include quality attributes that specify the credibility of single attributes (e.g., birth-

date). Furthermore, the database schema may be extended with additional attributes

that associate various values to individual entries in the database, as e.g., the updating

date of records, or information regarding the data collection (what, where, who, when

and why). Both the attributes and the values provided for each entry can be understood

as metadata. Code tables are other classical examples where no clear distinction exists

between metadata and data. They relate codes used in everyday acquisition of data

with their textual descriptions (e.g., 0 stands for male and 1 for female).

18

� Metadata on data processing. This is information associated with data process-

ing: information regarding the loading and refreshment process, the analysis process,

and inherently the administration. Examples are rules speci�ed for data extraction,

transformation, and aggregation which are de�ned by means of executable speci�cation

languages. They have to be accompanied by a textual explanatory description, usually

in natural language. According to the operation type performed, rules may be further

classi�ed as �lter, joiner, aggregator, etc. Process metadata also includes log�les and

schedules for establishing the time and order of the execution of (parts of) processes.

A special category constitutes metadata concerning the organisation of the enterprise.

This category may be both considered as belonging to the �rst class (when organizational

information is simply handled as primary data) or as a stand-alone class. Organizational

metadata includes administrative data, information related to the sta� of the enterprise, as

e.g., user rights to access the data warehouse, data sources, and data marts.

5.1.2 Criterion \Level of Abstraction"

In analogy to database design steps, knowledge may be provided on three levels of abstraction:

conceptual, logical and physical. The conceptual perspective includes the entire description

of the business using natural language. For example, main business entities like \customer",

\partner" are de�ned and their features and relationships with other entities explained. Rules

that govern extraction/transformation are described by means of natural language in order

to be understandable for any system user. Also information related to the use of the system,

about prede�ned queries, views and existing analysis applications are provided at this level.

Logical metadata maps the conceptual perspective to a lower level that includes for ex-

ample the relational schema of the databases, the description of extraction/transformation

rules in pseudocode (or using a mathematical language), etc.

The physical perspective provides the implementation level. It contains the corresponding

SQL code realizing certain business rules, index �les of relations, and code of the analysis

applications. When the distinction between logical and physical metadata is not justi�ed

either for end-users or technical users, the two levels may be merged into a single one.

5.1.3 Criterion \User View"

An important classi�cation criterion is related to the informational objective of the metadata.

The same information and structure may be seen from di�erent perspectives, depending on

the users that need it. As a consequence, metadata may be divided into subclasses that

satisfy the interest of certain user groups. For example, some metadata may be relevant

for certain departments, for knowledge managers (needing additional information beyond

standard reports and OLAP results), for business users, or for more technical users (e.g.,

data warehouse administrators, analysis application programmers). In this context, a common

distinction is business (or application-driven) versus technical metadata.

Business metadata is needed by end-users to better understand the application and thus

better use the information system; it comprises application-speci�c documentation (user pro-

�les, access maps, usage tips, navigational aids), business concepts and terminology, details

about prede�ned queries and reports. Also, context information like measurement units spec-

i�cation (currency, length), date format (American or European convention) or dictionaries,

thesauri, and domain-speci�c ontological knowledge are considered as metadata.

In contrast, technical metadata is used by database administrators who develop and main-

tain the system and by analysis application developers. Classical examples are the data dic-

19

tionaries of the sources, data warehouse, data marts, and the code of data transformation

rules.

Metadata classes de�ned on the basis of user views (in particular business and technical

metadata) are not disjoint; they provide di�erent extracts of the same collection of metadata,

and may overlap as well.

5.1.4 Criterion \Origin"

Another dimension takes into consideration the origin of the metadata: the tool that produced

it (the ETL-component, a CASE-tool used during warehouse design), the source that provided

it (e.g, the data dictionary of the operational systems, of the data warehouse or data marts),

or the system the metadata has been imported from, etc. Metadata may also be produced by

certain users (business user, database administrator) which should be individually identi�able.

5.1.5 Criterion \Purpose"

As a counterpart to the previous criterion, a \purpose" or \use" criterion may be used to

classify metadata according to activities such as extraction or transformation, building a

multidimensional view, data mining, reporting, etc. However, the distinction between the

di�erent classes is vague since some metadata (e.g., schema description) may be used for

most purposes: administration and maintenance, refreshment and analysis.

We may coarsely identify (in an orthogonal dimension) metadata for informational and

for controlling purposes. Since all metadata may serve the informational purpose, the latter

category may possibly be a subset of the former. The controlling purpose class may be divided

into subclasses with regard to the operations applied to them: the metadata is either only

read (schedules for processes) or read and directly exploited (transformation rules used by

metadata-driven engines), or both read and also updated (log�les).

5.1.6 Criterion \Producing/Consuming Time"

With respect to the time metadata was captured or generated, we can distinguish between

three categories:

- designtime collected metadata (e.g., schema de�nition of sources and of the data ware-

house, access rights, transformation rules, etc.),

- buildtime generated metadata (e.g., log�les, data quality attributes, particularly data

tracking),

- usetime generated metadata (e.g., usage statistics).

In analogy, the classi�cation according to consumption time speci�es when the metadata

may be needed: at designtime, when the system is developed (dictionaries, CASE tools meta-

data, reverse engineering tools metadata, data mining metadata), at buildtime (schedules,

transformation rules, data quality rules), or at usetime (con�guration �les, OLAP meta-

data).

5.2 Standards and Reference Models

Representing the above criteria within a metadata schema requires a basic representation

language and, ideally, a given framework or schema kernel. We look at the most important

general standards and present the existing concrete data warehouse speci�c reference models

20

which are centered around the former. Two groups are in
uencing the scene: OMG (Object

Management Group) and MDC (Meta Data Coalition). The existing commercial approaches

are still undecided between adaption and proprietary solutions.

5.2.1 General Standards

UML The UML (Uni�ed Modeling Language) standard, adopted by OMG, is a language

for specifying, visualizing, constructing, and documenting artifacts of software systems, as

well as for business modeling and other non-software systems. UML �ts well into the four-

level architecture introduced in Section 4, constituting Level 2 (modeling languages). The

corresponding Level 3 of this architecture is occupied by the Meta Object Facility (MOF).

The MOF standard from OMG de�nes a metametamodel with su�cient semantics to describe

metamodels, UML being one of those. On the same level as UML is OMG's XMI-standard

to exchange any MOF-based model between tools.

The vocabulary of UML encompasses three kinds of building blocks [7]:

1. Things - comprising structural things (class, interface etc.), behavioral things (messages,

states), groupings (packages), and annotations (notes).

2. Relationships - comprising Dependency, Association, Generalization and Realization.

3. Diagrams - enabling the graphical presentations of things and their relationships. UML

includes nine types of diagrams, namely Class diagram, Object diagram, Use Case dia-

gram, Sequence diagram, Collaboration diagram, Statechart diagram, Activity diagram,

Component diagram and Deployment diagram.

XML The XML (Extensible Markup Language), accepted by the World Wide Web Con-

sortium (W3C) as a recommendation [33], is a standard for semistructured data and a subset

of SGML (Standard Generalized Markup Language (ISO 8879)). XML is about to become

the successor of HTML (Hypertext Markup Language), the current language for de�ning web

pages. Unlike HTML, an XML document does not include presentation information. Visual

presentation of XML documents is achieved with technologies such as XSL (Extensible Style

Language) or CSS (Cascading Style Sheet). XSL documents are themselves well-formed XML

documents.

XML is a metamarkup language allowing to de�ne the tags actually needed in a given

context, in contrast to HTML and similar markup languages which de�ne a �xed set of tags

describing a �xed number of elements. XML allows metadata markers to be embedded within

a document by matching start and end tags, such as <name> and </name>, for marking

up the information in between. Therefore, document designers can provide metadata that

will help people �nd information and help information producers and consumers communicate

with each other based on a common vocabulary. XML is a low-level syntax for representing

structured data. An XML document structure is de�ned with a DTD (Document Type

De�nition), which can be directly included into the document, or can be stored externally

through a reference to another one.

Others A number of other standards were proposed by prominent standardization bodies

but lack a broad practical acceptance. NIST (National Institute of Standards and Technol-

ogy), e.g., adopted the IDEF (Integration De�nition) pair of standards. IDEF0 is used to

model functions together with data and objects interrelating them. The purpose of IDEF1X

21

 Model

 Database and

 Warehousing Engineering

 Model

 Business

 Model

 Knowledge

 Management

 Analysis and

 Design Model

 Modeling

 Unified

 Language

 Model

 Object and

 Component

Figure 3: Open Information Model

is to model data, using as basic constructs entities, relationships and characteristics (of enti-

ties). Both standards have also been adopted by IEEE. Similarly, the ISO/IEC 11179 family

of standards gives concrete guidance on the formulation and maintenance of data element de-

scriptions and semantic content (metadata) in order to de�ne data elements in a consistent,

standardized manner.

5.2.2 Warehouse Related Standardization of Metadata Schemas

OIM for Data Warehousing The Open Information Model (OIM) is a Software Engi-

neering standard, initially developed by Microsoft and now managed by MDC16. MDC is \a

not-for-pro�t consortium of vendors and end-users whose goal is to provide a vendor-neutral

and technology-independent speci�cation of enterprise meta data". OIM is a specialization

of the abstract concepts of UML into domain speci�c sub-models that describe metadata.

Figure 3 shows the dependencies between the sub-models of OIM in UML notation17:

� The Analysis and Design Model covers the domain of object-oriented modeling and de-

sign of software centric systems. The core of the model is the UML package, describing

version 1.3 of the UML. Other packages are UML extensions (describing the presenta-

tional aspects of UML elements like fonts, coordinates etc., and other general-purpose

additions to the UML package), Common Data Types (Date, Time etc.) and Generic

Elements, describing a set of general-purpose classes that are relevant across diverse

information models.

� The Object and Component Model comprises the Component Description Model, cover-

ing the di�erent component development life-cycle deliverables. The model is divided

into three distinct layers: speci�cation, implementation (currently not de�ned), and ex-

ecutable. The package covers the various aspects of the implementation of a component

(de�ned as \a software package that o�ers services through interfaces"), but does not

respect the speci�cs of any particular programming language.

16http://www.mdcinfo.com
17The reader should not be confused by the fact that OIM uses the UML in three distinct roles: as modeling

language to design and visualize OIM itself, as main part of the Analysis and Design model subject-area to

express object-oriented models, and as core-model of OIM from which sub-models inherit concepts.

22

� The Business Engineering Model provides all the necessary metadata types to describe

the goals, organization, and infrastructure of a business as well as the processes and the

rules that govern the business.

� The Knowledge Management Model comprises the Information Directory Model, cur-

rently not de�ned, and the Semantic De�nitions. This package accommodates concep-

tual models of user information. Speci�cally, the package holds descriptions of semantic

models and their relationships to the underlying database schema. These connections

enable a user to query a database using English sentences. The Information Directory

Model will provide metadata types to de�ne a controlled vocabulary to classify business

information.

� The Database and Warehousing Model (DBDWM) comprises the following packages:

1. Database schema elements describe information maintained in relational database

systems. This package contains information about schema elements (tables, views,

queries etc.) and database speci�c data types. The concepts of this package are

modeled after the ANSI SQL-92 standard, with selected extensions supported by

popular relational database vendors.

2. OLAP schema elements describe multidimensional databases. The package allows

the description of cubes (the basic component in multidimensional data analysis),

dimension hierarchies (for roll-up and drill-down operations), and Aggregations

(precalculated roll-ups of data stored in a cube).

3. Data transformations elements cover relational-to-relational transformations. A

transformation maps from a set of source objects into a set of target objects, both

represented by a transformable object set. Transformations can be packaged into

groups. There are three levels of grouping: The �rst uses a transformation task,

which describes a set of transformations that must be executed together. The

second level is a transformation step, executing a single transformation task. Steps

are used to coordinate the
ow of control between tasks. The third level is a

transformation package, consisting of a set of transformation steps.

4. Record oriented legacy databases describe information about data maintained in

�les or non-relational (legacy) databases. The package does not cover detailed

logical-to-physical mapping or information about any of the concrete �le systems or

databases that may use record structures. These will be added later in subsequent

packages.

5. Report de�nitions will represent information necessary for data reporting tools and

their relationships to the systems they report on. This package is not speci�ed yet.

A Metadata Schema based on the Zachman Framework A very global view on the

architecture of information systems was proposed by John A. Zachman [34]. The units of his

framework can also be understood as organization scheme for all kinds of metadata involved

in building and using an information system and have therefore become widely recognized

during the last years.

The Zachman framework is organized as a matrix which describes the various ways the

stakeholders of an organization view the business and its systems. The rows of the matrix

represent the �ve di�erent basic roles that people play in the creation of a product:

1. The planner is concerned with positioning the product in the context of its environment,

including specifying its scope.

23

2. The owner is interested in the business deliverable and how it will be used.

3. The designer works with the speci�cations for the product to ensure that it will, in fact,

ful�ll the owner's expectations.

4. The builder manages the process of assembling and fabricating the components in pro-

duction of the product.

5. The subcontractor fabricates out-of-context (and hence reusable) components which

meet the builder's speci�cation.

The columns of the matrix represent the six important dimensions of the architecture of

an information system, namely data, function, network, people, time and motivation. The

Zachman framework supports commonly adopted techniques like entity relationship diagrams,

data
ow diagrams and the like - each of these techniques is placed in context with the others

to provide a complete picture of the information system to be modeled.

Based on the general Zachman Framework, [17] develops a framework for managing enter-

prise knowledge. It consists of four layers dealing with modeling of product aspects, modeling

of enterprise aspects, modeling the engineering of an enterprise, and �nally a repository layer

which re
ects the lower layers and their relationships to each other. Data warehousing is

understood as one central, �rst step from information resource management towards a com-

prehensive knowledge management environment. The Zachman view is demonstrated to be

useful for de�ning

- a data warehouse strategy in the form of principles to guide behavior (consisting of a

statement, a rationale for it, and its major implications), and

- a methodology for building and extending a data warehouse.

The methodology is complemented by a metadata schema which is organized along the

dimensions (columns) of the Zachman Framework. For each dimension it contains model-

ing constructs across all relevant perspectives: the data or entity dimension submodel, e.g.,

ranges from business entities (owner perspective) down to data warehouse tables (builder and

designer perspective); the motivation dimension constructs covers business goals as well as

data warehouse service level objectives.

The authors claim their model not to be complete concerning all aspects of data ware-

housing, but to serve as a launching point for designing a metaschema tailored to a speci�c

company's requirements and priorities.

OMG In September 1998, OMG has issued an RFP (Request for Proposal) for \Common

Warehouse Metadata Interchange" [27] with deadline September 1999. Its objectives are:

1. Establishing an industry standard speci�cation for common warehouse metadata inter-

change;

2. Providing a generic mechanism that can be used to transfer a wide variety of warehouse

metadata;

3. Leveraging existing vendor-neutral interchange mechanisms as much as possible.

Proposals are required to cover a complete speci�cation of the syntax and semantics needed to

export/import warehouse metadata (including APIs) and the common warehouse metamodel.

Proposals must be compatible with MOF/UML/XMI.

24

MDAPI The Multi-Dimensional API (MDAPI) version 2.0 [31] is a standard de�ned by

the OLAP Council in 1998.

The OLAP Council was established in January 1995 to serve as an industry guide and

customer advocacy group. Members of the council are IBM, Oracle, Sun, Platinum, Hyperion

Solutions, NCR, Cognos, Business Objects, and others.

The de�ned API, among other things, provides metadata functions for OLAP multidimen-

sional databases. MDAPI is principally a speci�cation only. The OLAP Council publishes

the speci�cation, the members of the OLAP Council provide platform dependent implemen-

tations of MDAPI. Version 2 is a read-only API and does not o�er a mechanism to modify

data in a connected schema or the structure of a metadata schema. The API is available for

COM and Java.

The API access to metadata requires an initialization by creating so-called connection

objects. The basic information units are members which can be understood as abstractions of

cells plus related additional features described by properties. A special subtype of members

are measures with prede�ned attributes like scale, precision etc. At runtime, members and

their properties receive concrete value assignments corresponding to their speci�ed data types.

Members are organized in dimensions consisting of one or more hierarchies with di�erent levels

of detail and aggregation. Special types of dimensions are available for time and measures.

MDAPI o�ers two basic kinds of queries, namely Cube for data access and MemberQuery

for metadata retrieval.

5.2.3 Vendor Speci�c Metadata Schemas

Vendors of repository products are in a di�cult position selecting the \right" metadata schema

to support; basically, they have the option to join OMG or MDC, they can push their own

\standard", or try a mix of the former strategies.

Platinum The strategy of CA/Platinum is very unclear: on the one hand, they have a

collaboration agreement with Microsoft, clearly indicating their support for OIM; on the

other hand, they stated their intent to submit a proposal to the OMG's warehouse standard.

Finally, Platinum's own repository model has been extended to allow de�nitions of source,

target and transformation rules used in building data warehouses and data marts. The model

has no constructs for metadata about business aspects of a data warehouse, e.g. dimensions,

business concepts, business key �gures.

Rochade The strategy of Viasoft is at little bit less vague. Rochade o�ers an elaborate

metadata schema for data warehousing, DW-RIM (Data Warehouse Repository Information

Model). On the other side, they will provide an implementation of OIM (Viasoft is member

of MDC).

DW-RIM covers both technical and business aspects of data warehousing. Speci�cally,

DW-RIM supports the de�nition of transformation rules as well as business aspects of data

warehousing. Transformation rules link source and target data elements and specify both the

implementation as well as the business aspect of a rule. Business elements comprise aspects

like available queries, reports, business terminology, dimensions and key �gures.

Oracle The strategy of Oracle is quite clear, they push their own model and try to promote

it as the OMG standard. They announced the Oracle Warehouse Builder18 (OWB), delivering

18http://www.oracle.com/datawarehouse

25

a complete data warehousing solution. The OWB logical warehouse model consists of four

sub-models:

1. The enterprise data model consists of information about tables, columns, foreign key

joins etc.

2. The warehouse data model comprises contains the de�nition of data tables, summary

tables, dimensions and hierarchies, extraction de�nitions and transformations.

3. The software library contains the list of sources that can be accessed by OWB. Addi-

tional sources for extraction can be de�ned using Oracle's Software Development Kit.

4. The transformation library stores the reusable formulas and expressions that perform

transformations between objects; the transformation library contains a set of pre-de�ned

PL/SQL functions and transformations.

Oracle announced the \common warehouse metadata standard" (CWM), which allows

third-party software to integrate with the metadata repository and will be submitted to

OMG.

IBM IBM is in a similar position as Oracle, o�ering their Visual Warehouse19 solution and

having stated their intent to submit a proposal to OMG. Metadata for both administrative

and business users is integrated in the Visual Warehouse Information Catalog and is made

available through an interface tailored to end-users, including the ability to navigate and

search using business terms. Metadata exchange is supported via MDIS and IBM's own Tag

Language format.

5.3 Research Contributions

Among the many research projects on Data Warehousing only a few actually concentrate on

metadata aspects. Implicitly, all proposed data warehouse architectures and advanced system

components for data warehouse tasks assume a repository component for storing necessary

metadata. Examples are projects like Whips [22], Squirrel [15] and System 4220.

5.3.1 DWQ

The ESPRIT Long Term Research Project DWQ21 explores foundations of quality aspects in

Data Warehousing. The project in particular proposes to link all data warehousing tasks to

be executed with explicit quality information and store them in a repository.

While many results are primarily technical contributions of new techniques for the various

data warehouse tasks, the most interesting e�orts of DWQ in the metadata context stem from

the data warehouse framework and quality-related activities [20]. One main decision consists

in the adoption of two orthogonal views on data warehousing:

1. With respect to the level of abstraction, conceptual, logical and physical aspects can

be distinguished: The conceptual perspective is directed towards the business model

of information systems, while logical and physical view specify two levels relevant for

realizing data warehouses.

19http://www.software.ibm.com/data/vw/
20http://www.forwiss.tu-muenchen.de/�system42/
21http://www.dbnet.ece.ntua.gr/�dwq/

26

2. With respect to the organizational focus, we have operational sources supporting certain

departments of an enterprise, the data warehouse based on the overall enterprisemodel,

and the analysis-oriented client side, mainly dispositive applications using data marts

derived from the data warehouse.

Based on the combination of both perspectives, a metamodel for data warehouses was

developed and re�ned to illustrate the relationship between quality requirements and data

warehousing tasks. Due to the nature of the project, components for the usage side remain on

the abstract level. In a detailed way the basic model was extended, e.g., to capture source and

data integration. Speci�c quality dimensions were assigned to each data warehousing task

and combined with an explicit quality model based on the Goal-Question-Metric approach.

5.3.2 Meta-FIS

The Information Systems Institute of the University of M�unster works on a metadata man-

agement repository with main emphasis on management information support. In fact, the

proposed ideas cover the usage aspects of data warehousing, in particular business reporting

based on generated documents and business key �gures [4].

As a general framework this project uses three views on management information systems.

The actor view speci�es the management personnel that has to execute certain controlling

and management tasks (task view) and need to be provided with suitable information objects.

One result of the current activities is a metamodel for the information object aspects using

a terminology that is rather application oriented than including the system or data source

perspective. The main components of this metamodel are reports and business key �gures,

queries which are used to �ll report elements and to compute key �gures, and information

objects represented as multidimensional structures.

5.3.3 MMDWE

Starting from the observation, that currently a comprehensive repository solution for all kinds

of metadata relevant in Data Warehousing is not existing, the MMDWE project (`Metadata

Management in Data Warehouse Environments') of the database research group at the Uni-

versity of Leipzig develops an UML-based schema both for technical and semantic metadata.

The latter comprises constructs for representing conceptual enterprise models and multidi-

mensional structures. Both main model components are glued together by a number of shared

classes like, e.g. Entity, Association, Attribute and Mapping. Mappings are used to describe

the relationships between sources and targets of transformations on the technical layer through

attached transformations which �lter data, aggregate data or apply general functions (e.g.

join operations), but also for linking business concepts with technical entities like tables or

derived relations.

A �rst version of the model including an insurance-domain speci�c sample instantiation

is described in [29]. Special emphasis is put on metadata driven query generation actually

exploiting the links between semantic and technical metadata. For this purpose an OQL-

like intermediate query language accessing business terms is assumed. A stepwise `unfolding'

of query expressions by inspecting the involved mappings leads to the �nal (SQL) query

executable on the data warehouse.

Future plans of the project are directed towards metadata support for data mining appli-

cations running on top of data warehouses. Metadata in this context can be used to constrain

hypothesis sets and provide hints for �ltering of mining results.

27

5.4 R�esum�e

Two aspects make the global schema design problem for a data warehouse repository a dis-

tinguished one, namely the active role metadata may have with regard to process execution

when building or using a data warehouse, and the diversity of tools for the various data

warehousing tasks.

As soon as metadata directly controls the behavior of tools, it is by nature more tool

speci�c than a general representation of the same aspects serving, e.g., for documentation

only. The emerging data warehouse business has many key players: not only the classic DB

vendors providing the target platform and consulting �rms giving advice for executing the

projects, but also many specialized (and at least in the beginning) comparatively small data

warehouse tool vendors, selling all kinds of ETL- and OLAP- tools. One system ought to be

built, maintained and used, but necessarily many tools are involved and have to work together.

Metadata should provide the overall view on how the system works, what it o�ers and how

it is used. The all-from-one-hand argumentation of certain vendors in this context was only

a dummy solution since missing competence in certain special areas yield only alliances and

takeovers, but up to now no integration results.

The standardization side is not yet stabilized. This is not surprising since standards for

speci�c applications require a much higher degree of detail and more precise regulations than

general purpose standards. MDAPI concentrates on OLAP aspects only. CWMI is still in

the call-for-proposal phase, and even which level of detail and coverage (only interfaces ?)

can be expected, has not been �xed yet. Only Microsoft seems to be ahead by o�ering its

data warehouse metamodel embedded in OIM and implemented by corresponding extensions

in SQL server. The Zachman Framework based proposal in [17] up to now does not seem to

have any direct commercial implications.

Data warehouse metadata management is also an attractive market for central repositories

like Rochade and Platinum. They o�er generic metamodels tailored to data warehousing

needs from their own perspective. In most cases these models and/or the corresponding

documentation are not publicly available which complicates a detailed comparison and in

particular the adoption of their proposals for other tools.

As long as tool vendors continue to manage their metadata in specialized local data

stores or even in a standard database with a proprietary schema which is made only in

part accessible to the outside world like the MX solution of Informatica, it remains unclear

whether the standalone repository vendors will reach their general goal, namely handling data

warehousing metadata like any other type of metadata in a central place, accessible for all

applications and users. In fact, the user side of data warehousing cannot be seen decoupled

from the general representation of business metadata of a company.

A virtual integration based on an integration metametamodel providing the mapping

of tool metadata to a reference metadata schema, is an ambitious goal pursued, e.g., by

Ardent with its metabroker technology. Unfortunately, the integration model which is used

for developing metabrokers remains implicit only and is not managed by an independent

control component. The announced MetaStage product may �ll this gap and in addition

provides a central materialization of metadata.

In contrast to a data warehouse speci�c standardization, a convergence can be observed

towards the general standards UML and XML, which are widely accepted as framework for

representing and exchanging domain speci�c metadata.

Research contributions with respect to metadata are directed towards speci�c aspects,

like introducing constructs for multidimensional representation, quality aspects or business

reports, instead of pursuing the establishment of a common global metadata schema for data

28

XMI

UML

MOF

XML

OIM

XIF

MDC/Microsoft

OMG

is
_i

ns
ta

nc
e_

of

is_instance_of

ex
ch

an
ge

_fo
r

application_of application_of

ex
ch

an
ge

_f
or

is_used_in

DBDWMCWMI

is
_i

ns
ta

nc
e_

of

part_of

Figure 4: Standardization results

warehousing projects. The most comprehensive steps in this direction are made by the DWQ

framework which is used for embedding the quality-speci�c metadata aspects, and by the

MMDWE project.

6 Conclusions

Metadata have in general a more heterogenous structure than pure data of certain applica-

tions: They describe data and system aspects on di�erent levels of abstraction and formal-

ization and for di�erent types of users. This yields speci�c requirements for the
exibility of

both, representation and exchange languages.

We summarized the requirements on management aspects for metadata in data warehouses

which do not di�er signi�cantly from those arising with general metadata and can therefore

be full�lled even by adopting the same tools. Interoperability and advanced user interaction

facilities could be identi�ed as crucial issues for successfully integrating metadata management

tools into data warehouse environments. This is caused by the high demand for metadata

integration and exchange due to the tendency of local and proprietary storage of metadata and

the broad application bandwidth involving very heterogenous groups of human users needing

di�erent kind of metadata access support. The existing research (repository) prototypes point

to various advanced techniques for handling, analyzing and reasoning with very complex and

heterogenously structured metadata, and also propose improved API's and declarative query

languages.

The e�ect of standardization e�orts for metadata management in general is still unclear.

Taking together the exchange standards mentioned in Section 4 and the general representation

standards in Section 5 we can observe two di�erent competing streams of standardization (cf.

Figure 4) with regard to metadata representation and exchange, namely Microsoft strongly in-

uencing MDC by OIM, and its rivals Oracle, IBM etc. who contribute to the OMG activities

around CORBA.

One common intersection is UML as a general purpose modeling language suited for

metadata and XML as a basis of exchange standards. Furthermore, XML might be suited as

a general (low-level) metadata representation language, using, e.g. speci�c DTD's for handling

UML models.

The main categories of metadata relevant for data warehousing were described in Section

5. These categories should be the basis of a universal metadata schema implemented in a

29

data warehouse repository. The design of such a schema is the most important step towards

integrated metadata management. It allows centralized as well as federated solutions. The

integration and mapping to the standard schema can be supported by metametamodels.

The main repository vendors made their own proposals for metadata schemas suitable

for data warehousing, most tool vendors follow proprietary decentralized solutions; the idea

of a standardized schema supported by all involved parties currently has not yet gained full

acceptance. The forthcoming CWMI standardization round of OMG will at least provide a

weighty alternative to Microsoft's OIM extensions (DBDWM). A number of research projects

try to �ll the gap by presenting own approaches, mostly emphasizing speci�c aspects.

With regard to the coverage of metadata types we can state that various aspects are

nowhere considered, e.g.,

- a security model attached to the representation of source systems, the target warehouse,

the client applications and their respective contents, but also to processes running at

build and execution time,

- metadata supporting online search, explanations, and interactive support for query

formulation,

- metadata-based tracing of observations in the data warehouse on the data level through

involved transformations back to the data sources.

Furthermore, data warehousing does not only consist of specifying complicated processes to be

executed on data, but is itself a complex process whose creation, maintenance and evolution

can be described by metadata. The handling of these aspects and their uniform embedding

in a global data warehouse metadata schema requires further research.

References

[1] Purpose of an IRDS. http://www.irds.org/purpose.html.

[2] Meta Data Europe 99: Implementing, Managing and Integration Meta Data, London UK,

March 1999. Technology Transfer Institute. http://www.ttiuk.co.uk/.

[3] P. Atzeni, G. Mecca, and P. Merialdo. To weave the Web. In Proceedings of 23rd

International Conference on Very Large Data Bases, pages 206{215, Athens, Greece,

August 1997. Morgan Kaufmann.

[4] J. Becker and R. Holten. Fachkonzeptuelle Spezi�kation von F�uhrungsinformations-

systemen. Wirtschaftsinformatik, 40(6):483{492, December 1998.

[5] P.A. Bernstein. Repositories and object oriented databases. SIGMOD Record, 27(1):88

{96, March 1998.

[6] A. Berson and S.J. Smith. Data Warehousing, Data Mining & OLAP. McGraw-Hill,

1997.

[7] G. Booch, J. Rumbaugh, and I. Jacobson. The Uni�ed Modeling Language User Guide.

Addison-Wesley, 1999.

[8] M.H. Brackett. The Data Warehouse Challenge. Wiley, 1996.

30

[9] European Computer Manufacturer's Association (ECMA). Portable Common Tool En-

vironment (PCTE) - Abstract Speci�cation, fourth edition, 1997. Standard ECMA-149:

http://www.ecma.ch/stand/Ecma-149.htm.

[10] M.F. Fernandez, D. Florescu, A.Y. Levy, and D. Suciu. Web-site management: The

Strudel approach. Data Engineering Bulletin, 21(2):14{20, 1998.

[11] N. Fridman Noy and C.D. Hafner. The state of the art in ontology design. AI Magazine,

18(3):53 { 74, Fall 1997.

[12] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman, Y. Sagiv, J.D. Ull-

man, V. Vassalos, and J. Widom. The TSIMMIS approach to mediation: Data models

and languages. Journal of Intelligent Information Systems, 8(2):117{132, 1997.

[13] Gartner Group. Repository Market Update 1999, 1999. Research Note 01 June 1999,

M-08-3721.

[14] O. Haase and A. Henrich. Query processing techniques for partly inaccessible distributed

databases. In Proceedings of the 15th British National Conference on Databases, pages

123{125, London, UK, July 1997. Springer, LNCS 1271.

[15] R. Hull and G. Zhou. A framework for supporting data integration using the material-

ized and virtual approaches. In Proceedings of the 1996 ACM SIGMOD International

Conference on Management of Data, pages 481{492, Montreal, Canada, June 1996. ACM

Press.

[16] W.H. Inmon. Building the Data Warehouse. John Wiley & Sons, 1993.

[17] W.H. Inmon, J.A. Zachman, and J.G. Geiger. Data Stores, Data Warehousing and the

Zachman Framework. McGraw-Hill, 1997.

[18] ISO/IEC. ISO/IEC 10027:1990 IRDS Framework, 1990.

[19] M. Jarke, R. Gallersd�orfer, M. Jeusfeld, M. Staudt, and S. Eherer. Conceptbase: A

deductive object base for meta data management. Journal of Intelligent Information

Systems, 4(2):167 {192, March 1995.

[20] M. Jarke, M.A. Jeusfeld, C. Quix, and P. Vassiliadis. Architecture and quality in data

warehouses. In Proc. of the 10th Conference on Advanced Information Systems Engi-

neering (CAiSE '98), Pisa, Italy, June 1998.

[21] M. Jeusfeld, M. Jarke, M. Staudt, C. Quix, and T. List. Application experience with a

repository system for information systems development. In Proc. GI-Symposium EMISA,

\Development Methods for Information Systems and their Application", Fischbachau,

Germany, September 1999. Teubner.

[22] W. Labio, Y. Zhuge, J.L. Wiener, H. Gupta, H.Garcia-Molina, and J. Widom. The

WHIPS prototype for data warehouse creation and maintenance. In Proceedings ACM

SIGMOD International Conference on Management of Data, pages 557{559, Tucson,

Arizona, May 1997. ACM Press.

[23] D. B. Lenat. Cyc: A large-scale investment in knowledge infrastructure. Communications

of the ACM, 38(11), November 1995.

31

[24] A. Levy, A. Rajaraman, and J.J. Ordille. Querying heterogeneous information sources

using source descriptions. In Proceedings of 22th International Conference on Very Large

Data Bases, pages 251{262, Mumbai (Bombay), India, September 1996. Morgan Kauf-

mann.

[25] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom. Lore: A database

management system for semistructured data. SIGMOD Record, 26(3):54{66, September

1997.

[26] W. Nejdl and M. Wolpers. KBS Hyperbook - a data-driven information system on the

web. Technical report, University of Hannover, KBS Institute, November 1998.

[27] Object Management Group (OMG). Common Warehouse Metadata Interchange - Re-

quest For Proposal, 1998. OMG Document ad/98-09-02.

[28] M. Staudt, A. Vaduva, and T. Vetterli. Metadata management and data warehousing.

Technical Report 21, Swiss Life, Information Systems Research, July 1999.

[29] T. St�ohr, R. M�uller, and E. Rahm. An integrative and uniform model for metadata

management in data warehousing environments. In Proceedings of the Intl. Workshop

on Design and Management of Data Warehouses (DMDW 99), pages 12.1{12.16, Hei-

delberg, Germany, June 1999.

[30] The Meta Data Coalition. Meta Data Interchange Speci�cation (MDIS Version 1.1),

1997. http://www.MDCinfo.com/MDIS/MDIS11.html.

[31] The OLAP Council. The MDAPI speci�cation, 1998. http://www.olapcouncil.org/

research/apily.htm.

[32] M. Tork Roth, M. Arya, L.M. Haas, M.J. Carey, W.F. Cody, R. Fagin, P.M. Schwarz,

J. Thomas, and E.L. Wimmers. The Garlic project. In Proceedings of the 1996 ACM

SIGMOD International Conference on Management of Data, Montreal, Quebec, Canada,

June 4-6, 1996, page 557. ACM Press, 1996.

[33] W3C. Extensible Markup Language (XML), 1.0 edition, 1998. Recommendation 10-

February-1998, http://www.w3.org/TR/1998/REC-xml-19980210.

[34] John A. Zachman. A framework for information systems architecture. IBM Systems

Journal, 26(3), 1987.

32

