
http://www.diva-portal.org

Postprint

This is the accepted version of a paper published in IEEE Transactions on Software Engineering. This
paper has been peer-reviewed but does not include the final publisher proof-corrections or journal
pagination.

Citation for the original published paper (version of record):

Börstler, J. (2016)

The Role of Method Chains and Comments in Software Readability and Comprehension – An

Experiment.

IEEE Transactions on Software Engineering

http://dx.doi.org/10.1109/TSE.2016.2527791

Access to the published version may require subscription.

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:bth-11730

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. V, NO. N, MONTH 20YY 1

The Role of Method Chains and Comments in
Software Readability and Comprehension – An

Experiment
Jürgen Börstler, Member, IEEE, and Barbara Paech, Member, IEEE

Abstract—Software readability and comprehension are important factors in software maintenance. There is a large body of research

on software measurement, but the actual factors that make software easier to read or easier to comprehend are not well understood.

In the present study, we investigate the role of method chains and code comments in software readability and comprehension. Our

analysis comprises data from 104 students with varying programming experience. Readability and comprehension were measured by

perceived readability, reading time and performance on a simple cloze test.

Regarding perceived readability, our results show statistically significant differences between comment variants, but not between

method chain variants. Regarding comprehension, there are no significant differences between method chain or comment variants.

Student groups with low and high experience, respectively, show significant differences in perceived readability and performance on the

cloze tests.

Our results do not show any significant relationships between perceived readability and the other measures taken in the present study.

Perceived readability might therefore be insufficient as the sole measure of software readability or comprehension. We also did not find

any statistically significant relationships between size and perceived readability, reading time and comprehension.

Index Terms—Software readability, software comprehension, software measurement, comments, method chains, experiment.

✦

1 INTRODUCTION

SOFTWARE readability and comprehension are major soft-
ware cost factors. Software maintenance accounts for

66%–90% of the total costs of software during its lifetime
[15] and around half of those costs are spent on code
comprehension [16, 39, 57]. Furthermore, more than 40%
of the comprehension time is spent on plain code reading
[33]. Readability is therefore a key cost-driver for software
development and maintenance.

Chen and Huang [9] claim that inadequate documenta-
tion and lack of adherence to common guidelines or best
practices are the most important problem factors for main-
tenance. Extensive documentation can significantly support
software maintenance, but the extra effort needed to pro-
duce the necessary documents pays off only long-term and
only for complex maintenance tasks [2]. In practice, docu-
mentation therefore rapidly deteriorates [35]. Writing self-
documenting code, instead of documenting ill-structured
code, is proposed as a partial solution to this problem
[26, 48]. This emphasizes the importance of readable and
comprehensible code, in particular in the context of Ag-
ile/Lean development practices where extraneous docu-
mentation might be considered as waste [43].

There is a large body of literature on general coding
guidelines or practices to improve code readability and
comprehension [42, 50, 53] as well as specific rules, heuris-

• J. Börstler is with the Department of Software Engineering, Blekinge
Institute of Technology, Karlskrona, Sweden.
E-mail: jurgen.borstler@bth.se

• B. Paech is with the Department of Computer Science, Heidelberg Uni-
versity, Heidelberg, Germany.
paech@informatik.uni-heidelberg.de

tics and guidelines to obtain “good” or “better” (object-
oriented) design or code, e.g., design patterns [6, 19], design
heuristics [36, 45], code smells and refactoring [17, 25, 29].
The actual factors that make software easier to comprehend
are, however, not well understood. Furthermore, the factors
can also have complex interactions.

We distinguish people, project, cognitive and software
factors, where people factors comprise properties of people
and software factors comprise properties of software, cogni-
tive factors are derived from cognitive theories and project
factors describe elements of the project environment which
can ease comprehension (see Fig. 1). In this classification
readability is a software factor. Examples of interactions can
be found between complexity, size and readability. Reduc-
ing the complexity of a program will likely also affect its
size. More comments or more white-space might increase a
programs readability and comprehensibility, but also make
it longer. Longer programs are, however, less readable and
more difficult to comprehend [44].

In the present study, we investigate the role of source
code comments and method chains in software readability
and comprehension. Method chaining has been advocated
as a programming style that leads to more compact and
more readable code [18, 28]. Careless use of method chain-
ing can lead to violations of the Law of Demeter [36] though,
which can lead to more defects [21]. In coding guidelines
source code comments are advocated as “absolutely vital to
keeping ... code readable”1, but also that focus should be on
code that clearly communicates intent and functionality to

1. http://google-styleguide.googlecode.com/svn/trunk/cppguide.
html#Comments, last visited 2014-09-12.

jub
Text Box
DOI: 10.1109/TSE.2016.2527791

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. V, NO. N, MONTH 20YY 2

Ease of

program

comprehension

Programming language fluency:
Degree of knowledge/experience of
the syntax and semantics of the PL.

Domain knowledge: Degree of
knowledge and/or experience in the
application domain.

Stress/motivation: Degree of
engagement/interest in the task.

Size: The plain volume of
data/text/information.

Readability: The properties that
make some programs more easy to
read than others.

Complexity (spatial and structu-
ral): The complexity of the compo-
nents and their interactions.

Cognitive Factors
E.g., cognitive load theory,

program comprehension

theories

Coherence: Adherence to and
application of standards, practices
and idioms.

Project Factors
E.g., tools

Software FactorsPeople Factors

Programming skills/experience:
Degree of knowledge/skills/experi-
ence in the domain of programming.

Fig. 1. Factors affecting the ease of program comprehension.

reduce the need for comments [20].

The remainder of the paper is roughly organized as pro-
posed in common guidelines for empirical studies [24, 55],
but has been slightly adapted for clarity of presentation. In
the next section, we briefly review related work. In Section 3,
we outline our research questions. The details of experiment
planning and execution are described in Section 4 and Sec-
tion 5, respectively. Before a detailed analysis and discussion
in Section 7, we give a brief overview over the raw data
in Section 6. Threats to validity are discussed in Section 8.
Lessons learned, conclusions and future work are presented
in Section 9 and Section 10, respectively.

2 RELATED WORK

There is a large body of knowledge on methods, languages
and tools to support program comprehension [49]. Although
readability and comprehensibility are related, they are con-
ceptually quite different. Readability is required for compre-
hensibility, but readability does not necessarily imply com-
prehensibility. That makes it difficult to measure readability
objectively and independently of comprehensibility.

Smith and Taffler point out that in text readability studies
comprehension is frequently used erroneously as a proxy
for readability and that comprehension also is related to
factors like context, education and experience [47]. In our
work, we consider readability as a property of the code and
comprehension as a characteristic of the reader. Klare points
out though, that there is a strong relationship between
text readability (as measured by readability formulas) and
comprehension as well as reading speed [31]. Since reading
speed can vary significantly between individuals, it needs
to be calibrated carefully.

DuBay [13] defines readability as “what makes some
texts easier to read than others. It is often confused with
legibility, which concerns typeface and layout”. Hargis [23]
emphasizes that “[r]eadability depends on things that affect
the readers’ eyes and minds. Type size, type style, and lead-
ing affect the eye. Sentence structure and length, vocabulary,
and organization affect the mind.”

The focus of the present study is on the latter, inherent
properties of the code, and we ignore legibility issues.
Although, for example code coloring, can make code easier
to read or understand, there are differences in readability
and comprehensibility that cannot be alleviated by “things
that affect the readers’ eyes”. While most editors have
support for the handling of legibility issues like fonts and
indentation, inherent code properties that affect readability
and comprehension cannot be easily resolved using editors.

In the following subsections, we give a brief overview
over the research that is related to the present study. Sub-
section 2.1 primarily focuses on recent studies on software
readability. Subsections 2.2 and 2.3 discuss related research
on method chains and source code comments, respectively.

2.1 Software Readability and Comprehension

Readability has long been recognized as an important factor
in software development [11, 14, 32]. A recent study at Mi-
crosoft showed that poor readability was ranked as the most
important reason for initiating refactorings and improved
readability the highest ranked benefit from refactoring [29].

There is only little research on measuring software read-
ability [4, 5, 7]. Buse and Weimer proposed a measure for
software readability based on the ratings of perceived read-
ability of 120 students on 100 small code snippets in Java
[7]. The code snippets were taken, as is, from 5 Open Source
projects and are 4–11 lines in length, including comments.
Indentation and white-space was not adjusted and snippets
could comprise incomplete conditionals. A predictor was
built using 25 features of those snippets, where the fol-
lowing features per line of code had the highest predictive
power for readability (in decreasing order): average num-
ber of identifiers, average line length, average number of
parentheses, maximum line length, and average number of
‘.’. The readability measure shows strong correlations with
quality indicators like bugs indicated by FindBugs on 15
Open Source Java projects.

Posnett et al. [44] found several weaknesses in Buse and
Weimer’s model, most importantly that it does not scale
well and that most of the variation could be explained by

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. V, NO. N, MONTH 20YY 3

snippet size. They proposed a simpler readability model
for Buse and Weimer’s dataset using 3 variables only; Hal-
stead’s Volume, lines of code, and token entropy.

Several studies have investigated identifier naming is-
sues, e.g., [3, 8, 34]. We acknowledge that naming is an
important factor for software readability and comprehen-
sion. In the present study, we focus on two additional
important factors; comments and method chains. It should
be noted that we do not aim at a general readability model
like Posnett et al. or Buse and Weimer. A good overview
over program comprehension models and early program
comprehension experiments can be found in [12, 54].

2.2 Method Chains

Method chaining is an object-oriented programming style
[18, Ch. 35]. A method that returns an object can be used as
the source for another method call, as in the general example
below.

o b j e c t . method1 (. . .) . method2 (. . .) . method3 () ;

Method chaining has been advocated as a good pro-
gramming style [18, 28] and is used frequently to support
more compact code as in the following examples.

/∗ (1) Method c h a i n with i d e n t i c a l method c a l l s . ∗ /
S t r i n g B u f f e r sb = new S t r i n g B u f f e r (. . .) ;
sb . append (’ ’ Hello ’ ’) . append (aNameString) . append (’ ’ ! ’ ’) ;

/∗ (2) A l l method c a l l s r e t u r n t h e same t y p e . ∗ /
Scanner reader = new Scanner (. . .) ;
S t r i n g inputLine = reader . nextLine () . tr im () . toLowerCase () ;

/∗ (3) Unc l ear r e t u r n t y p e s . ∗ /
/∗ Might v i o l a t e t h e Law o f Demeter . ∗ /
i f (scanner . recordLineSeparator) {

compilat ionUnit . compi la t ionResul t . l i n e S e p a r a t o r P o s i t i o n s
= scanner . getLineEnds () ;

}

This can be intuitive when methods are chained in a
systematic and predictable way, as in examples (1) and
(2) above or so-called fluent interfaces [28]. If methods are
chained ad hoc, as in example (3), method chaining might
lead to less intuitive code and also to violations of the Law of
Demeter (LoD) [36]. In short, the LoD requires that a client
object must only send messages to objects that are in its
immediate scope, which enforces information hiding and
makes all coupling explicit.

Guo et al. show that violations of the LoD lead to more
defects [21]2. Guo et al.’s study also shows that violations
of the LoD are very common in the Eclipse plugins they
evaluated. Marinescu and Marinescu show that clients of
classes that exhibit design flaws are more fault-prone [37].
Thus, some forms of method chaining are more fault-prone
and might be more difficult to understand.

2.3 Comments

Source code comments are highlighted in many coding
guidelines as an important tool for program comprehension
[1, 38]. There are, however, few empirical studies on the ef-
fects of source code comments on program comprehension.
Furthermore, most of these studies are more than 20 years
old.

2. Example code (3) is a simplified version of a violation of LoD in
the JDT core presented in [21].

Experimental studies from the 1980s show that the effect
of source code comments on comprehension interacts with
program decomposition and program indentation. Higher
degrees of decomposition decreased the effects of com-
menting on program comprehension [52, 56]. Experiments
by Norcio, revealed the best comprehension results for in-
dented programs with single lines of comments interspersed
with the code [40].

In a more recent experiment, Takang et al. showed that
comments significantly improved program comprehension
independently of the identifier naming style used (full
vs. abbreviated names) [51]. This experiment also showed
that full name identifiers were perceived as significantly
more meaningful. There were no significant differences,
though, in the comprehension of the programs with full
and abbreviated names, respectively. The authors surmise
that the programs used in the experiment might have been
too familiar and the time given too long to give significant
results in the test scores.

In another study, Nurvitadhi et al. investigated the utility
of class and method comments in Java [41]. Compared to
a program without any comments, method comments im-
proved comprehension significantly, but class comments did
not. Thus, as for method chains, some forms of comments
might be more helpful for code comprehension than others.

3 RESEARCH QUESTIONS

In the present study we investigate in which ways com-
menting and method chaining affect software readability
and comprehension.

RQ1: How does the amount and quality of source code
comments affect software readability and comprehension?

RQ2: How does method chaining affect software read-
ability and comprehension?

4 EXPERIMENT PLANNING

In the following, we describe the subjects, materials, tasks,
dependent and independent variables, as well as the exper-
iment design. We deliberately did not only measure code
comprehension through readability scores by the subjects.
We wanted to get an understanding of what the subjects
have understood from the code. Therefore, we also used
open questions where subjects had to summarize their code
understanding as well as cloze questions where students
had to recall the code to fill in gaps (see Section 4.2.2 and
Section 4.3.).

4.1 Subjects

The subjects were first and second year Computer Science
students from Heidelberg University. The first year students
participated in a course (with tutorials) covering a general
introduction to programming and C++ in particular. The
second year students participated in a course (with tutorials)
covering a general introduction to software engineering
which included a crash course in Java at the beginning. At
the end of their courses, both groups got as a homework
exercise to participate in the experiment and to reflect on
the experiences with it. The students had to successfully
complete 50% of all homework exercises. As this was at

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. V, NO. N, MONTH 20YY 4

the end of the course, only very few students really needed
to complete this homework to reach this threshold. Thus,
they were encouraged by specific emails to participate.
Participation was therefore mainly voluntarily.

It should be noted that 42.3% of the students declared
that they have high or very high practical experience from
other languages than Java or C++. Furthermore, 19.2% of the
students declared practical experience (medium–very high)
as a professional programmer (see Fig. 13 in Appendix C).

4.2 Materials

The following subsections describe the code snippets, com-
prehension questions, and other questions used in the
present experiment. The full set of experiment materials can
be downloaded from http://www.bth.se/com/jub.nsf. The
key characteristics of the used code snippets are summa-
rized in Table 1.

4.2.1 Code Snippets

The code snippets used in the experiment should be as real-
istic as possible, but still sufficiently general, representative
and simple. The subjects should not need specific domain
or application knowledge to understand them. To increase
generalizability, we strived for code snippets that differ in
their expression of comments and method chains, as well as
in overall length and complexity. The code snippets should
also vary in terms of existing readability measures (e.g.,
[44]). We therefore mined public Java projects for actual
examples that we then adapted in the following way to suit
the experiment context:

• Delete complex syntactical structures that are irrelevant
for those parts of the code that are studied, e.g., inner
classes or try/catch blocks.

• Replace unnecessarily cryptic identifiers by more in-
tuitive and shorter ones. However, we tried to retain
even lengthy names to avoid the breaking of naming
patterns.

• Use camelCase-style for all identifiers.
• Remove all comments, except strategic comments3.
• Introduce line breaks to keep line lengths below 80.
• Format all code according to the same style (K&R-style

[27]).

Thus, we tried to minimize the influence of factors dif-
ferent from method chains and comments, such as naming
style, line length or indentation. In contrast to the study
of Buse and Weimer [7], we strived for self-contained code
snippets (complete methods) with consistent formatting
and indentation. We wanted to ensure that the snippets
are readable as such to be able to isolate the influence
of method chains and comments. Table 1 summarizes the
key characteristics of code snippets S1–S5. An example of
a code snippet and some of its variants can be found in
Appendix A. As can be seen, the snippets vary in length
and complexity as well as in the number of method chains
and comments.

Each of the code snippets was then modified in a system-
atic way according to our experiment factors; method chains

3. A strategic comment describes the purpose of a piece of code and
is placed before this code.

and comments. Regarding method chains, we developed
following variants:

1) MC (method chains): An original (adapted) method con-
taining at least one method chain with 3 or more
elements.

2) NoMC (no method chains): A variant of the original as
above, but with all method chains resolved. Method
chains with more than 2 elements were broken up into
several statements. If necessary, temporary variables
were introduced. Existing variables were used where
possible.

Regarding comments, we developed the following variants:

1) GC (good comments): An original (adapted) method with
useful strategic comments that give additional informa-
tion beyond the actual code it explains.

/∗ Add a l l a v a i l a b l e a n a l y s i s d a t a (s u b l i n e s) . ∗ /
for (SublineNode subl ine : move . ge t Subl ines ()) { . . . }

2) BC (bad comments): A variant of the original as above,
but with all source code comments replaced by com-
ments that just repeat what the code does without
explaining its purpose.

/∗ Add s u b l i n e s . ∗ /
for (SublineNode subl ine : move . ge t Subl ines ()) { . . . }

3) NC (no comments): A variant of the original as above,
but with all source code comments removed.

In all variants we retained the comments preceding the
method header to convey the general purpose of the code
of a snippet in the same way. Considering all combina-
tions, we had 6 variants per snippet and thus 30 different
snippets altogether. A comprehensive summary of measures
and properties for all variants can be found in Table 6 in
Appendix B.

4.2.2 Comprehension Questions

For each code snippet, we developed cloze tests to measure
comprehension. In a cloze test certain parts of the text (code
in our case) are blanked out and the subject has to fill
in the blanks with suitable code, but not necessarily the
original code. In contrast to free-form descriptions of the
code content (which we also asked from the subjects), cloze
tests allow a more standardized way of testing compre-
hension. If a subject has understood the overall purpose,
behavior and flow of the code, it will be easier to provide an
answer that is syntactically and semantically correct. This
is, of course, easier than recalling the code or its structure
verbatim. Such tests have long been used successfully in text
comprehension tests and have also been shown applicable
in tests of program comprehension [10, 22, 40].

In each code snippet, we blanked out the code that
dealt with method chains (in the MC versions) and the
code replacing the method chains (in the NoMC version),
respectively. To make it difficult for the subjects to identify
patterns in the blanked out parts of the code, we also
blanked out unrelated code in some snippets. This resulted
in 2–6 “gaps” for our snippets, depending on the complexity
and number of method chains that were present in the
particular snippet. An example of the gap placement for S1
is shown in Appendix A.

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. V, NO. N, MONTH 20YY 5

TABLE 1
Key characteristics of the code snippets used in the experiment (variant with MCs and good comments).

Snippet Source* LOC MC-un CD ExtCC PHD Description

S1 Web4J 22 1 0.405 1 2.19 Shortest method. 1 MC with 4 elements; get- and set-methods only. No conditionals
(ExtCC=1). High PHD-readability.

S2 UniCase 54 1 0.694 7 4.81 Longest method. Most heavily commented. Nested conditionals (4 levels). 3 almost
identical MCs with 3 elements each. Complex according to ExtCC, but highest
PHD-readability.

S3 UniCase 46 4 0.338 7 -8.50 Long method. Nested conditionals (3 levels) inside a loop. 11 partly similar method
chains with 3–4 elements each; many get-methods, most often empty parameter
lists, but 1 nested MC. Complex according to ExtCC and lowest PHD-readability.

S4 RaptorChess 36 4 0.341 4 -5.65 Medium size method. 3 loops, no nesting. 4 MCs with 4 elements each that all
are comprised of append-calls, often with complex parameter lists. 1 nested MC.
Average complexity. Low PHD-readability.

S5 Eclipse.jface 36 2 0.564 4 -5.87 Medium size method. 1 loop with nested conditional. 3 largely similar MCs with
3 elements each; last MC-element is an attribute. Average complexity. Low PHD-
readability.

*Fully qualified method names and links to the original source code can be found on the supplementary web page.

LOC: Total lines of code, incl. empty lines and comments.

MC-un: Number of unique MCs.

CD: Comment density; comment character per non-comment character inside method body.

ExtCC: Extended cyclomatic complexity. ExtCC extends cyclomatic complexity by taking into account the complexity of the boolean expression in each branch.

PHD: Posnett et al.’s readability score as described in [44, Sect. 4.5]. Higher scores indicate higher readability.

4.2.3 Background/Experience Questions

As recommended by Siegmund et al., we used self-
estimation to judge subjects’ overall programming expe-
rience and task-specific experience [46]. Furthermore, we
asked subjects for their gender, whether they have a reading
disorder, and for their identifier naming-style preference.

The actual questions used in the survey regarding
task-specific experience and task-specific experience can be
found in Figure 14 in Appendix C.

4.3 Tasks

Subjects were shown a series of code snippets where each
code snippet was shown twice. First, subjects were asked to
carefully read through a snippet and assess its readability
(reading task). Furthermore, subjects were asked to justify
their assessment and summarize the main steps of the
shown code (initial assessment). Second, we administered
a simple cloze test (see Section 4.2.2). The subjects were
shown the same snippet again, but with some parts left
blank, which they had to fill in with the correct code (com-
pletion task). After the completion task they were (again)
asked to assess the snippet’s readability and to justify their
assessment. They could also provide additional comments
(follow-up assessment).

4.4 Dependent and Independent Variables

The independent variable of this experiment is the variant
of the code snippet under investigation.

To capture code readability and comprehension, we mea-
sured the following dependent variables: Perceived read-
ability on a scale of 1..5 (similar to [7]) after the reading task
and after the completion task (R1 and R2, respectively); time
in seconds to read the code and to complete the code (Tr and
Ta, respectively); and accuracy of the completion task (Acc).
According to Kintsch and Vipond, “reading time, recall and
question answering are probably the most useful measures
available” for readability and comprehension [30].

R1 captures the first impression of perceived readability
for the subjects, while R2 captures the adjustment made to

this impression based on the experience with the cloze-test.
Ta and Acc indicate the “quality” (accuracy and speed) of
the recall during the cloze-test, and thus the comprehension.
We recorded Tr and Ta, respectively as the time taken from
beginning a task to its end. However, we could not control
whether the subjects actually spent their time on the tasks
or not. For this reason, we excluded obvious outliers from
the data.

Acc was measured in terms of how accurately the gaps
of a snippet variant were completed. The researchers devel-
oped a scoring scheme for assessing correctness (0–3 points
per gap) and assessed all gaps independently of each other.
Conflicts were resolved by discussion. Acc was then defined
as the ratio of scored points and total possible points, i.e. a
number in the range [0..1].

The free-form answers from the initial and follow-up
assessment (see Section 4.3) were not used in the present
analysis.

Furthermore, we collected personal data from the sub-
jects (gender, reading disorders), as well as data about their
general programming experience, task related experience,
and identifier naming-style preference. These data might
affect how subjects perceive readability as well as their task
performance.

An overview of all variables is shown in Fig. 2.

Experiment
Subject background
Subject experience

Snippet characteristics

Perceived readability (R1, R2)
Reading time/speed (Tr, Sr)
Comprehension (Acc)
Answer time/speed (Ta, Sa)

Treatments:

• Methods chains
• Comments

Snippet measures:

• Size
• Volume (Halstead’s Volume V)
• Readability (PHD)
• Complexity (ExtCCc)
• Comment density (CD)

Fig. 2. Overview over all variables considered in the experiment.

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. V, NO. N, MONTH 20YY 6

4.5 Design

Our experiment investigates 2 factors (method chains and
source code comments), with 2 and 3 treatments, respec-
tively.

Variants of code snippets were developed as outlined in
Section 4.2.1.

We used a 2x3 factorial design with blocking. To mitigate
ordering effects subjects were randomly assigned to one of
six predefined snippet sequences. In each sequence, all snip-
pets S1–S5 were shown in the same order, but in different
variants. No variant was shown twice in any sequence. The
sequences are shown in Table 2. The variants for method
chains and comments are numbered from 1 to 2 and 1 to 3,
respectively. Thus, Si_m:c describes the variant from snippet
Si using method chain variant m and comment variant c (see
also Section 4.2.1).

Subjects were randomly assigned to one of six prede-
fined snippet sequences to ensure that all subjects see each
snippet and each variant exactly once.

TABLE 2
Snippet sequences used in the experiment.

Snippet

Sequence S1 S2 S3 S4 S5

Seq 1 S1_1:1 S2_2:2 S3_1:3 S4_1:2 S5_2:3

Seq 2 S1_1:2 S2_2:3 S3_1:1 S4_1:3 S5_2:1

Seq 3 S1_1:3 S2_2:1 S3_1:2 S4_1:1 S5_2:2

Seq 4 S1_2:1 S2_1:2 S3_2:3 S4_2:2 S5_1:3

Seq 5 S1_2:2 S2_1:3 S3_2:1 S4_2:3 S5_1:1

Seq 6 S1_2:3 S2_1:1 S3_2:2 S4_2:1 S5_1:2

Si_m:c – i:snippet no; m:1=MC,2=NoMC; c:1=GC,2=BC,3=NC.

See Sect. 4.2.1 for an explanation of the acronyms.

4.6 Piloting

Initially, we used six snippets with 36 variants in total. After
a pilot study, we removed one snippet to cut down the
expected total time for the experiment to at most 45 minutes,
so that the experiment could be run within a traditional
lecture.

5 EXPERIMENT EXECUTION

The experiment was administered as an on-line question-
naire and instrumented using LimeService4, see Fig. 3 for an
overview. The questions regarding task-related experience
and identifier naming-style preference were placed after the
experimental tasks, since they might have influenced the
subjects’ answers.

LimeSurvey was also used for time-logging. For each
subject we logged the time for each reading task and each
completion task. The students were informed about the
time-logging and that their answers and timing data “will
only be used to study the readability and comprehensibility
of code and not to assess your performance.”

To mitigate fatigue effects and to make the time mea-
surements more reliable, students were instructed to pause
only at pre-defined breakpoints. They were also instructed
that they cannot go back in the questionnaire and that they

4. http://www.limeservice.com.

Welcome

screen

Personal

background

and overall

programming

experience

Task-related

experience

Thank you/

feedback

Reading task

Completion task
(cloze test)

Initial
assessment (R1)

Follow-up
assessment (R2)

Pause

For each snippet S1–S5

Fig. 3. Overview over the on-line questionnaire. Timing data was taken
for each of the “boxes”.

should “not take notes or copy the code snippets (manually
or electronically), otherwise your answers would be useless
for the study”.

The instructions and full set of questions can be down-
loaded from http://www.bth.se/com/jub.nsf.

6 RESULTS

Overall, 255 subjects started the survey and 110 (43.1%)
successfully completed it. Of those, we deleted 6 outliers,
i.e. subjects with extremely short times for code reading and
questions answering. The remaining 104 subjects provided
520 datapoints in total; 104 per snippet and between 14 and
23 for each individual snippet variant5. The median time
for these 104 subjects for completing the survey was 48.5
minutes (including pauses). For the present analysis, we
only included the data from those 104 subjects.

87

17

0

20

40

60

80

100

Gender

male female 36 37

16

9

6

0

10

20

30

40

Naming style pref

cC strong
cC

neutral

u_s

u_s strong
28

56

29
27

47

21

0

10

20

30

40

50

60

Overall progr
exp

Overall task‐
specific exp

low

medium

high

Fig. 4. Gender, naming preference (cC=camelCase style,
u_s=under_score style) and overall experience levels (programming
and task-specific) for the subjects (in absolute numbers for all 104
subjects).

Fig. 4 gives an overview over the subjects’ demograph-
ics. The data shows that the majority of subjects is male
(83.7%) and that the majority of subjects have a preference
for camelCase-style format (70.2%). In general, subjects have
a high overall programming experience (43.3%), but a low
overall task-specific experience (53.8%).6 Only 3 subjects
(2.9%) declared a reading disorder. Since their data were
no outliers, we included them in the analysis.

5. The imbalance of datapoints per snippet variant is due to an over-
representation of a specific snippet series among the excluded subjects.

6. Overall programming experience is aggregated from the subjects’
responses regarding experience levels in Java, C++, and Other program-
ming languages. Overall task-specific experience is aggregated from
the subjects’ responses regarding knowledge/experience in OOD, LoD,
refactoring and plug-in programming in Eclipse, see Appendix C for
details.

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. V, NO. N, MONTH 20YY 7

TABLE 3
Perceived readability (R1, R2), timing data (Tr, Ta, Sr, Sa) and answer

accuracy (Acc) for all snippets.

Snippet N R1 R2 Tr Ta Acc Sr Sa

S1_1:1 16 2.81 2.38 79.11 135.25 0.40 8.30 4.86

S1_1:2 23 2.74 2.70 70.73 101.92 0.38 8.75 6.07

S1_1:3 14 2.71 2.57 82.21 81.02 0.38 6.35 6.44

S1_2:1 15 2.60 2.27 88.14 92.13 0.27 8.10 7.75

S1_2:2 21 3.00 2.71 101.62 108.17 0.41 6.65 6.25

S1_2:3 15 2.47 2.20 84.41 104.28 0.33 6.86 5.55

S2_1:1 15 2.60 2.53 183.55 113.67 0.50 7.77 12.55

S2_1:2 15 2.60 2.47 153.24 89.51 0.61 8.14 13.93

S2_1:3 21 2.29 2.24 113.28 80.97 0.65 8.08 11.30

S2_2:1 14 2.43 2.57 187.26 140.11 0.52 7.99 10.68

S2_2:2 16 2.00 1.94 120.97 206.93 0.51 10.89 6.36

S2_2:3 23 2.35 2.26 153.01 104.24 0.53 6.44 9.45

S3_1:1 23 3.35 3.00 136.66 87.09 0.48 8.56 13.43

S3_1:2 14 2.64 2.29 124.64 104.80 0.41 9.47 11.26

S3_1:3 16 2.25 2.25 153.84 91.50 0.46 5.86 9.85

S3_2:1 21 3.00 2.86 179.61 106.91 0.40 6.32 10.62

S3_2:2 15 2.33 1.87 79.05 141.04 0.37 14.48 8.12

S3_2:3 15 2.73 2.33 54.63 85.83 0.28 15.85 10.09

S4_1:1 14 2.79 2.29 143.10 67.07 0.37 6.32 13.48

S4_1:2 16 2.94 2.69 119.32 60.22 0.49 6.65 13.17

S4_1:3 23 2.30 2.09 98.62 55.68 0.43 7.31 12.95

S4_2:1 15 2.93 2.87 145.29 84.36 0.37 6.86 11.81

S4_2:2 15 3.00 2.80 72.49 50.74 0.44 12.21 17.44

S4_2:3 21 2.67 2.48 140.08 62.29 0.52 5.80 13.05

S5_1:1 21 3.38 3.38 114.36 71.54 0.47 8.00 12.79

S5_1:2 15 2.40 2.60 113.77 73.08 0.37 7.62 11.86

S5_1:3 15 2.93 3.00 74.18 45.27 0.28 9.32 15.26

S5_2:1 23 3.13 3.00 130.16 75.75 0.53 7.44 12.79

S5_2:2 14 2.93 2.57 118.97 92.26 0.39 7.74 9.98

S5_2:3 16 2.75 2.56 116.50 79.42 0.46 6.40 9.38

ALL 520 2.72 2.54 108.32 88.76 0.44 8.22 10.62

N: Number of datapoints (subjects).

R1,R2: Average perceived readability after the reading and completion task.

Tr, Ta: Median snippet reading and answering time in seconds.

Acc: Average answer accuracy in %.

Sr, Sa: Median reading and answering speed in characters per second.

Table 3 summarizes the data for perceived readability
(R1, R2), timing data (Tr, Ta, Sr, Sa) and answer accuracy
(Acc) for all 30 code snippet variants. The raw data for all
completed answers can be downloaded from http://www.
bth.se/com/jub.nsf.

7 ANALYSIS AND DISCUSSION

In the following, we first describe some preliminaries on
how we analyzed the results. Then we discuss the major
results with respect to the overall influence of method chains
and code comments, of subject characteristics and of the
snippets on perceived readability and comprehension. We
also discuss the relationships between different experiment
variables and go into detail on different subject groups and
snippet variants in subsections. A summary of all relation-
ships found in the present experiment is shown in Fig. 5.

Perceived readability (R1, R2) was measured on a scale
from very difficult to very easy, i.e. these data are ordinal.
Subjects were asked to rate snippet readability based on
their own programming experience. Absolute individual
scores are therefore less relevant than relative differences.
Differences in perceived readability between groups of sub-
jects or snippets/snippet variants were tested using Chi-
Square tests (χ2).

R1

Size Acc

Tr

PHD V

Legend:

significant correlation at α < 0.01

significant correlation at α < 0.001

Neg negative correlation

ExtCCc

CD

NegComment variant

Legend:

significant differences at α < 0.01

significant differences at α < 0.001

Overall programming
experience

Task-specific
experience

Naming preference

Fig. 5. Summary of relationships between experiment variables.

Stacked bar charts as in Figures 6 and 7 are used to
visualize the distribution of actual scores of R1. Each bar
represents a total (100%) and each part shows the proportion
of scores in a category. Each bar is centered at 0% which
makes it easier to compare the relative perceived readability
of a total.

Since R1 and R2 are strongly and significantly related
according to Spearman’s rank correlation (ρ = 0.848;α <

0.0001), we ignore R2 in our further analysis

Method chains and comments. Regarding RQ2, our data
does not show any significant differences in the perceived
readability (R1) for the MC variants. Regarding RQ1, there
are significant differences between the comment variants
(χ2 = 16.1;α = 0.003). Code snippets with good comments
(GC) are perceived as the most readable and the variants
without comments (NC) are perceived as the least readable.
The Acc means for the MC and comment variants are all
between 0.43 and 0.45. All differences are insignificant (see
Fig. 6).

Fig. 6. Distribution of scores for perceived readability (R1) for method
chain variants (MC/NoMC) and comment variants (GC/BC/NC). The
numbers in the middle show the number of datapoints for each variant.
The numbers in the two columns to the right show the average perceived
readability (R1, left column) and the average answer accuracy (Acc,
rightmost column).

Subject characteristics. When looking at different sub-
ject groups (see Fig. 7), we can identify differences in per-
ceived readability for several subject groups. For example,
there is a significant relationship between overall program-
ming experience and R1 (χ2 = 19.7;α = 0.001) as well as
between task-specific experience and R1 (χ2 = 29.7;α <

0.0001). ANOVA tests show that also the means for Acc
are significantly higher for the groups with high overall
programming and high task-specific experience (α < 0.01).

Regarding naming preferences, our data shows a sig-
nificant difference in R1 between the subject group that
has a naming preference and the groups that have none
(χ2 = 9.55;α = 0.008). The difference between the two pref-
erence groups (camelCase-style versus under_score-style) is

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. V, NO. N, MONTH 20YY 8

Fig. 7. Distribution of scores for perceived readability (R1) for different
subject groups (from top to bottom): Overall programming experience,
overall task-specific experience, identifier naming preference and gen-
der.

20

8

25

4

42

5

0

10

20

30

40

Male Female

low

medium

high

Overall programming experience

45

11

23

4

19

2

0

10

20

30

40

Male Female

low

medium

high

Overall task‐specific experience

Fig. 8. Self-assigned experience levels for male and female subjects (in
absolute numbers for all 104 subjects).

also significant (χ2 = 12.7;α = 0.013). Overall, the student
group without a naming preference finds the snippet vari-
ants more difficult to read than the other groups and also has
the lowest answer accuracy (Acc). The differences between
groups with respect to Acc are, however, insignificant.

Fig. 7 shows that, overall, male subjects give higher
readability scores than females and have a higher answer
accuracy. Both difference are not statistically significant,
though.

The self-assigned experience levels for men and women
do not differ much, except for experience in programming
languages other than Java and C++ (“Other lang exp”
in Fig. 13). The aggregated overall experience levels are
slightly lower for women than for men. None of these dif-
ferences in experience (see Fig. 8) are statistically significant
though, according to a Fisher’s exact test.

Fig. 9. Distribution of scores for perceived readability (R1) for snippet
S1–S5.

Code snippets. For snippets S1–S5, our data shows

significant differences in the overall perceived readability
(R1) (χ2 = 22.8;α = 0.004) as well as in their mean answer
accuracy (Acc) (ANOVA p = 0.0013 at α < 0.01) (see
Fig. 9). I.e. our snippets were sufficiently different to lead
to significant differences in the independent variables.

Table 7 in Appendix D shows the Spearman rank cor-
relations (ρ) for the scores and timing data (Table 3) and
measurements for all snippet variants (Table 6). It does
not shows any significant relationships at the α < 0.01-
level between R1 and timing data (Tr, Ta, Sr, Sa) or Acc.
I.e. perceived readability does not correlate with traditional
measures of text readability or comprehension. Studies on
software readability might therefore be improved by using
measures in addition to perceived readability (see also the
discussion on bias in Section 8.1).

R1 also does not show any significant relationships with
size, volume (Halstead’s Volume V), complexity (ExtCCc),
or comment density (CD). Regarding Posnet et al.’s read-
ability measure (PHD), our dataset does not show any sig-
nificant relationship between PHD and any other measure,
except V (ρ = 0.898;α < 0.001). One should note though,
that V is a factor in the formula to compute the PHD
measure.

For our dataset, neither perceived readability (R1) nor
PHD are good predictors for other measures of readability
or comprehension. In particular, there is no significant rela-
tionship between size and R1, as for example for the Buse
and Weimer dataset (as shown in [44]).

However, our data shows that snippet size correlates
strongly and highly significantly with reading time (Tr)
(ρ = 0.689;α < 0.001) and moderately and significantly
with Acc (ρ = 0.512;α < 0.01). Furthermore, there is a
moderate and highly significant positive relation between
Tr and Acc (ρ = 0.555;α < 0.001). I.e., for our dataset,
we can see that larger snippets tend to have longer reading
times, but also higher answer accuracies. Neither of those
have a significant relationship with perceived readability,
though. Since our subjects had unlimited time for reading
and answering, potentially negative impacts of size on read-
ability and comprehension could be compensated by spend-
ing more time on larger code snippets. This might have
affected their performance on the cloze test. On the other
hand, our data shows negative correlations between times
and speeds for reading (Tr, Sr; ρ = −0.491, α < 0.05) and
answering (Ta, Sa; ρ = −0.694, α < 0.001), respectively. I.e.
on larger snippets, the subjects were still faster in terms of
snippet characters per second.

Taken together, we can conclude that there are statisti-
cally significant differences in the perceived readability of
the tested code snippets with respect to different comment
variants (RQ1). There are no differences in answer accuracy
for method chain or comment variants (RQ2). However,
there are statistically significant differences between subject
groups with low and high experience, respectively.

In the following subsections, we look at the different
subject groups and snippet variants in some more detail.

7.1 Method Chains: All snippets

As already shown in Fig. 7, there is a notable difference be-
tween the subject groups with high and low programming

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. V, NO. N, MONTH 20YY 9

TABLE 4
Differences in R1 and Acc between subject groups with low and high experience for the snippets’ MC variants.

Snippet All subjects High exp groups* Low exp groups* Comment

S1 Similar R1 for MC and
NoMC. Slightly higher
Acc for MC.

Inconsistent, but less
readable variant has
higher Acc.

NoMC more readable
and slightly higher
Acc.

Most groups consider NoMC more readable. Slightly
higher Acc for NoMC for most groups.

S2 MC more readable and
higher Acc.

MC more readable. In-
consistent for Acc.

MC more readable and
higher Acc.

All groups consider MC more readable. Higher Acc for
MC for all but the smallest group (high task-spec exp).

S3 MC more readable and
higher Acc.

Inconsistent. MC more readable and
higher Acc.

All but one group consider MC more readable. Higher
or same Acc for MC for all groups.

S4 NoMC more readable
and slightly higher
Acc.

NoMC more readable,
but lower Acc.

NoMC more readable
and higher Acc.

All groups consider NoMC more readable. High and
low exp groups contradictory regarding Acc, but over-
all slightly higher Acc for NoMC.

S5 Similar R1 for MC and
NoMC. Higher Acc for
NoMC.

NoMC more readable
and higher Acc.

Inconsistent All groups, except the low task-specific exp group
consider NoMC more readable. All but the low progr
exp group have higher Acc for NoMC.

*There are two such groups: High/low programming experience and high/low task-specific experience, respectively.

Fig. 10. Distribution of scores for perceived readability (R1) for all snip-
pets by MC variant, grouped by subject group experience level.

and task-specific experience, respectively. Subjects with high
experience rate the code snippets, overall, as more readable
than subjects with low experience and have higher Acc-
values. Within an experience group the differences in R1
and Acc are marginal. An ANCOVA analysis for Acc with
overall general and task-specific experience levels7, respec-
tively, as covariates shows that the observed means for Acc
are almost identical to the adjusted means.

7.2 Method Chains: Individual snippets

When we break down Fig. 10 to the level of individual
snippets, we get larger differences for R1 and Acc within
subject groups. These differences do not follow a consis-
tent pattern for all snippets, though. Furthermore, none of
the differences within an experience group is statistically
significant. This observation also holds when looking at
the method chain variants independently of the comment
variants.

A summary of the observations from breaking down
the analysis to snippet level and experience groups can be
found in Table 4. As already indicated in Fig. 9, there are
considerable differences between the snippets. For snippets
S2 and S3, the experiment results show an advantage for
the MC variants for R1 as well as for Acc. For snippets S1,
S4 and S5, the results are almost the opposite. In large, the
snippet variants with higher R1 also have higher Acc.

From the available data it is not clear whether these
differences are related to specific properties of the actual

7. For the ANCOVA analysis, we used the weighted sums of the
first six experience indicators in Fig. 13 for general experience and the
remaining four for task-specific experience.

method chains in S2 and S3 on the one hand and in S1,
S4 and S5 on the other. We can note though, that S3 is the
snippet with the most method chains and the only snippet
where the NoMC variant is smaller than the MC variant.

The role of such properties should be studied in more
detail.

7.3 Comments: All snippets

Fig. 11. Distribution of scores for perceived readability (R1) for all snip-
pets by comments variant grouped by subject group experience level.

For the comment variants, as for the MC variants, there
are notable difference between the groups with high and
low programming and task-specific experience, respectively
(see Fig. 11). Contrary to the MC variants, we can see con-
siderable differences within different experience groups. Ex-
cept for the low programming experience group, all groups
perceive GC as most readable and NC as least readable.
This challenges some earlier work on comments discussed
in Section 2.3 and suggests that the role and quality of
comments should be investigated in more detail.

For the low task-specific experience group, the differ-
ences are significant (χ2 = 19.4;α = 0.0007). The differ-
ences in Acc between experience groups as well as within
experience groups are small.

An ANCOVA analysis (as for the method chains in Sec-
tion 7.1) shows no significant differences in the Acc means
for the different comment variants.

7.4 Comments: Individual snippets

When breaking down Fig. 11 to the level of individual
snippets, we get a more inconsistent picture. Table 5 on

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. V, NO. N, MONTH 20YY 10

TABLE 5
Differences in R1 and Acc between subject groups with low and high experience for the snippets’ comment variants.

Snippet All subjects High exp groups* Low exp groups* Comment

S1 BC easiest to read; NC
most difficult. Acc highest
for BC; almost the same
for GC and NC

BC easiest to read; NC most
difficult. Inconsistent regard-
ing Acc.

BC easiest to read; GC
most difficult with many
“very difficult” scores. Acc
follows same pattern, i.e.
BC>NC>GC.

BC has highest R1 and highest Acc in all
groups. Inconsistent results for R1 and
Acc regarding GC and NC.

S2 GC easiest to read; Small
differences between BC
and NC. Small differences
in Acc (NC>BC>GC).

Inconsistent regarding R1.
Lowest Acc for BC.

BC most difficult to read
with very many “very dif-
ficult” scores. GC slightly
higher Acc as NC.

BC most difficult to read in 4 of the 5
groups. Inconsistent regarding Acc but
overall high.

S3 GC much easier to read
than BC and NC, which
are about the same. Simi-
lar for Acc, but differences
are smaller.

GC easiest to read, many
“very easy” scores; BC most
difficult. Inconsistent regard-
ing Acc but overall high.

GC much easier to read
than BC and NC; NC most
difficult with many “very
difficult” scores. Lowest
Acc for BC; Acc on an
overall low level.

GC consistently rated as easiest to read;
R1 inconsistent for BC and NC, but NC
has the most“very difficult” scores in all
groups. Inconsistent and large variations
in Acc.

S4 BC easiest to read; NC
most difficult. Acc almost
the same for GC, BC and
NC.

BC easiest to read, despite
many “very difficult” scores.
Inconsistent regarding DC
and NC. Acc highest for NC
and lowest for BC.

Inconsistent regarding R1,
but differences are small.
Very low Acc for GC;
highest Acc for NC.

Large inconsistencies regarding R1 and
Acc, but consistently highest Acc for NC.

S5 GC easiest to read; BC
most difficult. Highest Acc
for GC; almost the same
for BC and NC.

GC easiest to read; inconsis-
tent regarding BC and NC.
Highest Acc for GC; lowest
for NC. Comparatively small
differences in R1, but large
differences in Acc.

GC much easier to read
than BC and NC; BC most
difficult. Highest Acc for
GC.

GC consistently rated easiest to read; BC
most difficult in 4 of the 5 groups. Acc
consistently highest for GC in all groups;
lowest Acc for NC in 4 of the 5 groups.

*There are two such groups: High/low programming experience and high/low task-specific experience, respectively.

the next page provides a summary of the observations for
individual snippets. Overall, we can see that either GC or BC
were rated as the most readable snippet variants. Regarding
the Acc-values all variants were rated best or worst for some
snippets. Unlike for the MCs, there does not exist a tendency
that variants with a high R1 also have a high Acc. This raises
the question whether the subjects actually considered the
quality of the comments or just their presence or amount
when rating the readability of the code.

8 THREATS TO VALIDITY

8.1 Internal Validity

Internal validity is concerned with the observed relation-
ships between the independent and dependent variables,
i.e. to which extent the treatment and independent vari-
able actually caused the observed effects. Unknown factors
(confounding variables, bias, etc.) might have affected the
results and limit (internal) validity of the study. As dis-
cussed in Section 4.2.2, we tried to minimize learning effects
concerned with the cloze questions by varying the places of
the gaps. We also reduced the number of snippets to 6 after
piloting to bring down the expected total task time to under
45 minutes. Furthermore, we minimized fatigue effects by
allowing pausing. The snippets were always shown in the
same order (S1–S5), so that the results for the last snippets
could be affected by fatigue. However, we placed the largest
and most complex snippets in positions 2 and 3, respectively
to mitigate this problem.

As shown in the discussion of the results, programming
experience is a confounding factor for comprehension which
we controlled for explicitly. We could not control cheating
by our students. As the students participated voluntarily
we see no reason for validity issues here.

A problem, that might have affected our results is bias.
Since our subjects are undergraduate students, their percep-
tion of what is readable or not might be biased by personal

beliefs or beliefs imposed on them (e.g., in their program-
ming education). This should, however, only affect our mea-
sures of perceived readability. Since perceived readability
and other measures of readability and comprehension do
not show any significant relationships in our study, this
threat might be real. Therefore perceived readability might
not be sufficient as the sole measure of readability (see also
the discussion in Section 7).

8.2 External Validity

External validity is concerned with the generalizability of
the results to other contexts. Our study is restricted by
the fact that the subjects were undergraduate students and
only few rated themselves with high experience. Results
might be different for professionals. The snippets used in
the study do not contain complex programming language
features. This limits generalizability to code with common
data structures and control logic. However, we believe that
our snippets are representative for professional code with
these constraints as we took them from known code bases
and only made slight adaptations. The limited number of
base snippets could also be seen as a threat to generaliz-
ability. However, the goal of the study was not to develop
a general readability formula. We investigated the effect
of specific code variations only. The code variations were
carefully developed (see Section 4.2.1) and, as shown by the
data, the snippets differ in their readability. Limiting the
number of snippets allowed us to gather enough data points
for the variants for statistical analysis.

As mentioned in Section 7, unlimited time might be an
issue. In our experiment, reading and answer time were
not restricted. For professional programmers, time on task
is usually restricted. However, this allowed us to study
the influence of the reading and answering times on the
accuracy of the results.

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. V, NO. N, MONTH 20YY 11

8.3 Construct Validity

Construct validity is concerned with the operationalization
of the study and to which extent the factors, measures,
and materials actually represent the intended real world
constructs. As the good and bad comments were partly
defined by the researchers, it could be that they do not
represent realistic code comments. However, we preserved
existing comments as far as possible and used common
commenting guidelines. We believe that the differences as
described in Section 4 were quite typical.

Regarding measures, we deliberately used measures
other than perceived software readability to also include
other factors of comprehension. As the researchers devised
the gaps for the cloze questions and rated the accuracy, it
could be that by chance the gaps were too artificial. How-
ever, as mentioned in Section 4, we placed the gaps at very
different places. Furthermore, we evaluated accuracy indi-
vidually, based on assessment criteria defined and agreed
upon in advance. This process led to a high agreement and
only few answers required a discussion.

8.4 Conclusion Validity

Conclusion validity is concerned with the correctness of
the conclusions drawn in this study. We used standard
statistical algorithms as recommended in text books on
experimentation in software engineering such as [55]. The
online questionnaire made sure that the questions were
administered uniformly. Ordering and learning effects were
countered by grouping.

9 LESSONS LEARNED

We want to group the lessons learned from this study into
two groups: Lessons learned from the actual experiment
process and lessons learned from the actual results. Both
gave valuable insight into considerations for future experi-
ments in software readability and comprehension.

• It is very difficult to isolate and study a single com-
prehension factor, since there are so many factors that
interact with each other in ways that are not well
understood. The experimental code must show as much
variation as possible to be able to generalize, but as
little as possible variation to be able to get statistically
significant results.

• Timing is important. Giving subjects unlimited time for
the experimental tasks makes measuring of comprehen-
sion very difficult. This cannot be made up for easily by
taking into account the time on task.

• Perceived readability (as R1) might be insufficient as
the only measure of readability and/or comprehension,
since it can be affected by bias that is difficult to control.
In the present study, it seems that the subjects were
biased towards the existence of comments.

• Controlling for experience is very important even for
single cohorts of students, since experience is a signifi-
cant factor for comprehension.

10 CONCLUSIONS AND FUTURE WORK

In the present study, we have shown that code comments on
statement level affect the perceived readability of software,
but not comprehension measured in terms of accuracy of
answers to cloze questions. Regarding the former, our study
shows that code with bad comments was rated as more
readable than expected. In several cases the variants with
bad comments were actually rated as the most readable
variants. This suggests that the role of comments for code
quality should be studied in more detail.

In our study, the absence or presence of method chains
is not significantly related to perceived readability or com-
prehension. Method chaining is often claimed to lead to
more compact and more readable code. This could not
be corroborated by our study. In fact, it is interesting to
note that even experienced subjects favored code without
method chains in several cases (see Table 4). The ambiguous
results of our study could be an artefact of differences in
the code snippets used in the experiment. Further studies
are necessary to provide empirical evidence for or against
method chaining as an object-oriented programming style.

The result that perceived readability and comprehension
(measured by answer accuracy – Acc) are not related is
somewhat disturbing. It shows that it is difficult to mea-
sure readability and comprehension and to investigate their
relationship. It could also mean that perceived readability
might not be sufficient as a sole indicator or predictor of
software quality. This should be studied in more detail.

REFERENCES

[1] Scott W. Ambler, Alan Vermeulen, and Greg Bumgard-
ner. The Elements of Java Style. Cambridge University
Press, New York, NY, USA, 1999.

[2] Erik Arisholm, Lionel C. Briand, Siw Elisabeth Hove,
and Yvan Labiche. The impact of UML documentation
on software maintenance: An experimental evaluation.
IEEE Transactions on Software Engineering, 32(6):365–381,
2006.

[3] Dave Binkley, Marcia Davis, Dawn Lawrie, Jonathan I.
Maletic, Christopher Morrell, and Bonita Sharif. The
impact of identifier style on effort and comprehension.
Empirical Software Engineering, 18(2):219–276, 2013.

[4] Jürgen Börstler, Michael E. Caspersen, and Marie Nord-
ström. Beauty and the beast—toward a measurement
framework for example program quality. Technical Re-
port UMINF-07.23, Dept. of Computing Science, Umeå
University, Umeå, Sweden, 2007.

[5] Jürgen Börstler, Michael E. Caspersen, and Marie Nord-
ström. Beauty and the beast: on the readability of
object-oriented example programs. Software Quality
Journal, 2015. in press, available online.

[6] Frank Buschmann, Regine Meunier, Hans Rohnert,
Peter Sommerlad, and Michael Stal. Pattern-Oriented
Software Architecture: A System of Patterns. Wiley, 1996.

[7] Raymond P.L. Buse and Westley R. Weimer. Learning
a metric for code readability. IEEE Transactions on
Software Engineering, 36(4):546–558, 2010.

[8] Simon Butler, Michel Wermelinger, Yijun Yu, and Helen
Sharp. Exploring the influence of identifier names on
code quality: an empirical study. In Proceedings of the

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. V, NO. N, MONTH 20YY 12

14th European Conference on Software Maintenance and
Reengineering, pages 156–165, 2010.

[9] Jie-Cherng Chen and Sun-Jen Huang. An empirical
analysis of the impact of software development prob-
lem factors on software maintainability. Journal of
Systems and Software, 82(6):981–992, 2009.

[10] Curtis Cook, William Bregar, and David Foote. A pre-
liminary investigation of the use of the cloze procedure
as a measure of program understanding. Information
Processing & Management, 20(1):199–208, 1984.

[11] Lionel E. Deimel and J. Fernando Naveda. Reading
computer programs: Instructor’s guide and exercises.
Technical Report CMU/SEI-90-EM-3, Software Engi-
neering Institute, Pittsburgh, PA, USA, 1990.

[12] Françoise Détienne. Software Design–Cognitive Aspects.
Springer, 2002.

[13] William H. DuBay. The Principles of Readability. Impact
Information, Costa Mesa, CA, USA, 2004.

[14] James L. Elshoff and Michael Marcotty. Improving
computer program readability to aid modification.
Communications of the ACM, 25(8):512–521, 1982.

[15] Len Erlikh. Leveraging legacy system dollars for e-
business. IT professional, 2(3):17–23, 2000.

[16] John R. Foster. Cost factors in software maintenance. PhD
thesis, School of Engineering and Computer Science,
University of Durham, UK, 1993.

[17] Martin Fowler. Refactoring: Improving the design of exist-
ing code. Addison-Wesley, 1999.

[18] Martin Fowler. Domain-specific languages. Addison-
Wesley, 2010.

[19] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design patterns: Elements of reusable object-
oriented software. Addison-Wesley Professional, 1995.

[20] Robert Green and Henry Ledgard. Coding guidelines:
Finding the art in the science. Communications of the
ACM, 54(12):57–63, 2011.

[21] Yi Guo, Michael Würsch, Emanuel Giger, and Harald C
Gall. An empirical validation of the benefits of adher-
ing to the law of demeter. In Proceedings of the 18th
Working Conference on Reverse Engineering, pages 239–
243, 2011.

[22] William E. Hall and Stuart H. Zweben. The cloze pro-
cedure and software comprehensibility measurement.
IEEE Transactions on Software Engineering, 12(5):608–623,
1986.

[23] Gretchen Hargis. Readability and computer documen-
tation. Journal of Computer Documentation, 24(3):122–
131, 2000.

[24] Andreas Jedlitschka, Marcus Ciolkowski, and Dietmar
Pfahl. Reporting experiments in software engineering.
In Guide to advanced empirical software engineering, pages
201–228. Springer, 2008.

[25] Joshua Kerievsky. Refactoring to patterns. Addison-
Wesley, 2005.

[26] Brian W. Kernighan and Phillip James Plauger. The
elements of programming style. McGraw-Hill, New York,
USA, 1978.

[27] Brian W. Kernighan and Dennis M. Ritchie. The C
programming language, volume 2. Prentice-Hall, Engle-
wood Cliffs, USA, 1988.

[28] Yunus Emre Keskin. Fluent interface for more

readable code. http://java.dzone.com/articles/
fluent-interface-more-readable-0, March 2014. Last vis-
ited: 2014-08-19.

[29] Miryung Kim, Thomas Zimmermann, and Nachiappan
Nagappan. An empirical study of refactoring chal-
lenges and benefits at microsoft. IEEE Transactions on
Software Engineering, 40(7):633–649, 2014.

[30] Walter Kintsch and Douglas Vipond. Reading com-
prehension and readability in educational practice and
psychological theory. In Lars-Göran Nilss, editor, Per-
spectives on Memory Research. Lawrence Erlbaum Asso-
ciates, Inc., 1979.

[31] George R. Klare. Readable computer documentation.
Journal of Computer Documentation, 24(3):148–168, 2000.

[32] Donald E. Knuth. Literate programming. The Computer
Journal, 27(2):97–111, 1984.

[33] Thomas D. LaToza, Gina Venolia, and Robert DeLine.
Maintaining mental models: a study of developer work
habits. In Proceedings of the 28th International Conference
on Software Engineering, pages 492–501, 2006.

[34] Dawn Lawrie, Henry Feild, and David Binkley. Quanti-
fying identifier quality: an analysis of trends. Empirical
Software Engineering, 12(4):359–388, 2007.

[35] Timothy C. Lethbridge, Janice Singer, and Andrew
Forward. How software engineers use documentation:
The state of the practice. IEEE Software, 20(6):35–39,
2003.

[36] Karl J. Lieberherr and Ian M. Holland. Assuring
good style for object-oriented programs. IEEE Software,
6(5):38–48, 1989.

[37] Radu Marinescu and Cristina Marinescu. Are the
clients of flawed classes (also) defect prone? In Pro-
ceedings of the 11th IEEE International Working Conference
on Source Code Analysis and Manipulation, pages 65–74,
2011.

[38] Robert C. Martin. Clean code: A Handbook of Agile Soft-
ware Craftsmanship. Prentice Hall, Boston, MA, USA,
2008.

[39] Vu Nguyen. Improved size and effort estimation mod-
els for software maintenance. In Proceedings of the 26th
International Conference on Software Maintenance, pages
1–2, 2010.

[40] A.F. Norcio. Indentation, documentation and program-
mer comprehension. In Proceedings of the 1982 Confer-
ence on Human Factors in Computing Systems, pages 118–
120, 1982.

[41] Eriko Nurvitadhi, Wing Wah Leung, and Curtis Cook.
Do class comments aid java program understanding?
In Proceedings of the 33rd Annual Frontiers in Education,
volume 1, pages T3C–13, 2003.

[42] Paul W. Oman and Curtis R. Cook. A program-
ming style taxonomy. Journal of Systems and Software,
15(3):287–301, 1991.

[43] Kai Petersen. Implementing Lean and Agile software devel-
opment in industry. PhD thesis, School of Computing,
Blekinge Institute of Technology, Karlskrona, Sweden,
2010.

[44] Daryl Posnett, Abram Hindle, and Premkumar De-
vanbu. A simpler model of software readability. In
Proceedings of the 8th Working Conference on Mining
Software Repositories, pages 73–82, 2011.

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. V, NO. N, MONTH 20YY 13

[45] Arthur J. Riel. Object-Oriented Design Heuristics.
Addison-Wesley, 1996.

[46] Janet Siegmund, Christian Kästner, Jörg Liebig, Sven
Apel, and Stefan Hanenberg. Measuring and modeling
programming experience. Empirical Software Engineer-
ing, 2013. Online first.

[47] Malcolm Smith and Richard Taffler. Readability and
understandability: different measures of the textual
complexity of accounting narrative. Accounting, Audit-
ing & Accountability Journal, 5(4):84–98, 1992.

[48] Diomidis Spinellis. Code documentation. IEEE Soft-
ware, 27(4):18–19, 2010.

[49] Margaret-Anne Storey. Theories, tools and research
methods in program comprehension: past, present and
future. Software Quality Journal, 14(3):187–208, 2006.

[50] Herb Sutter and Andrei Alexandrescu. C++ coding
standards: 101 rules, guidelines, and best practices. Pearson
Education, 2004.

[51] Armstrong A. Takang, Penny A. Grubb, and Robert D.
Macredie. The effects of comments and identifier
names on program comprehensibility: an experimen-
tal investigation. Journal of Programming Languages,
4(3):143–167, 1996.

[52] Ted Tenny. Program readability: Procedures versus
comments. IEEE Transactions on Software Engineering,
14(9):1271–1279, 1988.

[53] Al Vermeulen, Scott W. Ambler, Greg Bumgardner,
Eldon Metz, Trevor Misfeldt, Jim Shur, and Patrick
Thompson. The Elements of Java (TM) Style. Cambridge
University Press, 2000.

[54] Anneliese von Mayrhauser and A. Marie Vans. Pro-
gram comprehension during software maintenance
and evolution. IEEE Computer, 28(8):44–55, 1995.

[55] Claes Wohlin, Per Runeson, Martin Höst, Magnus C
Ohlsson, Björn Regnell, and Anders Wesslén. Experi-
mentation in software engineering. Springer, 2012.

[56] Scott N. Woodfield, Hubert E. Dunsmore, and Vin-
cent Yun Shen. The effect of modularization and
comments on program comprehension. In Proceedings
of the 5th International Conference on Software Engineering,
pages 215–223, 1981.

[57] Stephen W.L. Yip and Tom Lam. A software main-
tenance survey. In Proceedings of the 1st Asia-Pacific
Software Engineering Conference, pages 70–79, 1994.

PLACE
PHOTO
HERE

Jürgen Börstler is a professor of software
engineering at Blekinge Institute of Technol-
ogy (BTH), Sweden. He holds a PhD in com-
puter science from Aachen University of Tech-
nology (RWTH), Germany. He is a member of
SERL-Sweden, the Software Engineering Re-
search Lab at BTH. His main research inter-
ests are in empirical software engineering and
cover requirements engineering, object-oriented
methods, software process improvement, soft-
ware measurement, software comprehension,

and computer science education. He is a founding member of the
Scandinavian Pedagogy of Programming Network (SPoP) and a senior
member of the Swedish Requirements Engineering Network.

PLACE
PHOTO
HERE

Barbara Paech holds the chair “Software En-
gineering” at Heidelberg University, Germany.
She holds a PhD in Computer Science from the
Ludwig Maximilians University Munich, Germany
(1990) and a Habilitation in Computer Science
from the Technical University Munich (1998). Her
teaching and research focuses on methods and
processes to ensure quality of software with ade-
quate effort. Since many years she is particularly
active in the area of requirements and rational
engineering. Based on her experiences as de-

partment head at the Fraunhofer Institute for Experimental Software En-
gineering, her research is often empirical and in close cooperation with
industry. She was spokeswoman of the section “Software Engineering”
in the German Computer Science Society for 6 years and is founding
member of the International Requirements Engineering Board (IREB).
Since 2016 she heads the advisory board of study affairs of the repre-
sentation of German Computer Science study programs “Fakultätentag
Informatik”.

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. V, NO. N, MONTH 20YY 14

APPENDIX A

EXAMPLE VARIANTS OF SNIPPET S1

S1 is the smallest snippet used in this experiment. The original version of S1 can be found at http://www.
javapractices.com/topic/TopicAction.do;jsessionid=7BCA24D4FC5504EC8EA5D83DDE0F8645?Id=107. Complete descrip-
tions of all variants of all snippets can be downloaded from http://www.bth.se/com/jub.nsf.

Fig. 12. Snippets S1_1:1 (top) and S1_2:3 (bottom). The gaps for the completion tasks are marked by boxes.

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. V, NO. N, MONTH 20YY 15

APPENDIX B

SUMMARY OF SNIPPET MEASURES AND PROPERTIES

TABLE 6
Measures and properties for all snippet variants.

Snippet MC-tot MC-un MC-size LOC Q Char-tot Char-c Comm PHD V ExtCC CD

S1_1:1 1 1 4 22 2 657 135 4 2.191 241.5 1 0.4054

S1_1:2 1 1 4 22 2 619 97 4 2.115 241.5 1 0.2913

S1_1:3 1 1 4 18 2 522 0 0 0.436 241.5 1 0.0000

S1_2:1 0 0 0 23 3 714 135 4 0.625 301.2 1 0.3462

S1_2:2 0 0 0 23 3 676 97 4 0.559 301.2 1 0.2487

S1_2:3 0 0 0 19 3 579 0 0 -1.049 301.2 1 0.0000

S2_1:1 3 1 3 54 2 1427 512 4 4.814 585.4 7 0.6938

S2_1:2 3 1 3 52 2 1247 332 4 4.074 585.4 7 0.4499

S2_1:3 3 1 3 42 2 915 0 0 0.122 585.4 7 0.0000

S2_2:1 0 0 0 53 4 1497 512 4 2.510 641.7 7 0.6337

S2_2:2 0 0 0 52 4 1317 332 4 2.088 641.7 7 0.4109

S2_2:3 0 0 0 41 4 985 0 0 -2.342 641.7 7 0.0000

S3_1:1 11 4 4 46 3 1170 269 5 -8.498 882.1 7 0.3384

S3_1:2 11 4 4 47 3 1180 279 5 -8.066 882.1 7 0.3509

S3_1:3 11 4 4 40 3 901 0 0 -10.831 882.1 7 0.0000

S3_2:1 0 0 0 50 6 1135 269 5 -9.780 974.3 7 0.3544

S3_2:2 0 0 0 51 6 1145 279 5 -9.344 974.3 7 0.3676

S3_2:3 0 0 0 44 6 866 0 0 -12.080 974.3 7 0.0000

S4_1:1 4 4 4 36 2 904 183 5 -5.649 664.5 4 0.3414

S4_1:2 4 4 4 36 2 793 72 5 -5.688 664.5 4 0.1343

S4_1:3 4 4 4 31 2 721 0 0 -7.640 664.5 4 0.0000

S4_2:1 0 0 0 43 2 996 183 5 -6.538 777.6 4 0.2914

S4_2:2 0 0 0 43 2 885 72 5 -6.526 777.6 4 0.1146

S4_2:3 0 0 0 38 2 813 0 0 -8.517 777.6 4 0.0000

S5_1:1 3 2 3 36 2 915 224 3 -5.869 684.9 4 0.5642

S5_1:2 3 2 3 36 2 867 176 4 -6.059 684.9 4 0.4433

S5_1:3 3 2 3 31 2 691 0 0 -8.073 684.9 4 0.0000

S5_2:1 0 0 0 39 4 969 224 3 -7.743 778.9 4 0.4967

S5_2:2 0 0 0 40 4 921 176 4 -7.511 778.9 4 0.3902

S5_2:3 0 0 0 34 4 745 0 0 -9.919 778.9 4 0.0000

Si_m:c – i:snippet no; m:1=MC,2=NoMC; c:1=GC,2=BC,3=NC (see Sect. 4.2.1 for an explanation of the acronyms).

MC-tot: Total number of method chains.

MC-un: Number of unique method chains.

MC-size: Maximum number of elements in a method chain.

LOC: Total lines of code including comments and empty lines.

Q: Number of questions in the completion task.

Char-tot: Total number of non-space characters including all comments.

Char-c: Total number of non-space comment characters inside method body.

Comm: Number of comments inside method body.

PHD: Posnett et al.’s readability measure as described in [44, Sect. 4.5].

V: Halstead’s Volume.

ExtCC: Extended cyclomatic complexity.

CD: Comment density = Char-c / non-comment characters inside method body.

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. V, NO. N, MONTH 20YY 16

APPENDIX C

DEMOGRAPHICS: EXPERIENCE LEVELS

Figure 13 summarizes the data about the subjects’ experience. From left to right, the blocks in the histogram show the
frequency data for the corresponding question in Figure 14 (top down). For example, 50 subjects did “Strongly disagree”
with the statement “I am an experienced Java programmer” (leftmost block “Java” in Figure 13; 1st question in Figure 14)
and 0 subjects rated their level of competence as “Expert level competence” regarding element “Law of Demeter” (8th
block “LoD” in Figure 13; 8th question in Figure 14).

Fig. 13. Self-assigned experience levels for all subjects (in absolute numbers for all 104 subjects). Each block on the x-axis shows the frequency
data for a question in Figure 14. The y-axis shows the corresponding frequencies.

Fig. 14. Questions regarding overall experience (top) and task-related-experience (bottom).

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. V, NO. N, MONTH 20YY 17

APPENDIX D

SPEARMAN RANK CORRELATIONS

TABLE 7
Spearman rank correlations for the snippet measures from Table 3 and Table 6. Values in italics style indicate a moderate correlation. Values in

boldface indicate a strong to very strong correlation.

Size PHD V ExtCCc CD R1 Tr Ta Acc Sr Sa

Size 1.000 0.009 0.377* 0.519** 0.602*** -0.131 0.689*** 0.354* 0.512** 0.207 0.314*

PHD 1.000 -0.898*** -0.303 0.390* -0.175 0.057 0.349* 0.195 0.118 -0.224

V 1.000 0.484** -0.043 0.188 0.156 -0.193 -0.047 0.052 0.354*

ExtCCc 1.000 0.382* -0.043 0.222 -0.119 0.220 0.230 0.418*

CD 1.000 0.062 0.385* 0.408* 0.224 0.255 0.061

R1 1.000 -0.077 -0.308* -0.113 -0.029 0.309*

Tr 1.000 0.198 0.555*** -0.491* 0.273

Ta 1.000 0.041 0.215 -0.694***

Acc 1.000 -0.131 0.266

Sr 1.000 0.004

Sa 1.000

Size: Snippet size in characters (excluding blanks). * Significant at α < 0.05

PHD: Posnett et al.’s readability measure as described in [44, Sect. 4.5]. ** Significant at α < 0.01

V: Halstead’s Volume. *** Significant at α < 0.001

ExtCCc: Extended cyclomatic complexity per character.

CD: Comment density; comment character per non-comment character inside method body.

R1: Readability score.

Tr, Ta: Median snippet reading and answering time in seconds.

Acc: Accuracy in % for all answers to a snippet.

Sr, Sa: Median reading and answering speed in characters per second.

