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Abstract

Mammals live in a co-evolutionary association with the plethora of microorganisms that reside at

a variety of tissue microenvironments. The microbiome represents the collective genomes of these

co-existing microorganisms, which is shaped by host factors such as genetics and nutrients but in

turn is able to influence host biology in health and disease. Niche-specific microbiome,

prominently the gut microbiome, has the capacity to effect both local and distal sites within the

host. The gut microbiome has played a crucial role in the bidirectional gut-brain axis that

integrates the gut and central nervous system (CNS) activities, and thus the concept of

microbiome-gut-brain axis is emerging. Studies are revealing how diverse forms of neuro-immune

and neuro-psychiatric disorders are correlated with or modulated by variations of microbiome,

microbiota-derived products and exogenous antibiotics and probiotics. The microbiome poises the

peripheral immune homeostasis and predisposes host susceptibility to CNS autoimmune diseases

such as multiple sclerosis. Neural, endocrine and metabolic mechanisms are also critical mediators

of the microbiome-CNS signaling, which are more involved in neuro-psychiatric disorders such as

autism, depression, anxiety, stress. Research on the role of microbiome in CNS disorders deepens

our academic knowledge about host-microbiome commensalism in central regulation and in

practicality, holds conceivable promise for developing novel prognostic and therapeutic avenues

for CNS disorders.

1. Introduction to microbiome

Human beings, like other mammals, live in a co-evolutionary association with huge

quantities of commensal microorganisms resident on the exposed and internal surfaces of

our bodies. The entirety of microorganisms in a particular habitat is termed microbiota, or

microflora. The collective genomes of all the microorganisms in a microbiota are termed

microbiome(Cryan and Dinan, 2012; Round and Mazmanian, 2009). Commensal microbiota

and microbiome outnumber human somatic cells and genome, respectively by

approximately 10-100:1 (Belkaid and Naik, 2013). The microbiota composition is

influenced by temporal and spatial factors. Temporally, the human fetal gut is sterile but

colonization begins immediately after birth and is affected by route of delivery, maternal
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transfer, diet, environmental stimuli and antibiotic usage (Sekirov et al., 2010). However,

the presence of bacteria has been detected in the meconium from healthy neonates, which

might hint the existence of prenatal mother-to-child transfer of microbiota(Jimenez et al.,

2008; Valles et al., 2012). By 1 year of age, an idiosyncratic gut microbiome with adult-like

signature is stabilized in each infant(Palmer et al., 2007). While adult gut bacterial

communities vary, the concept of enterotype has been raised to classify individuals by their

gut microbiota composition. Three enterotypes were characterized in human adults with

relative abundance of Bacteroides, Prevotella or Ruminococcus genus(Arumugam et al.,

2011). Yet, discrete enterotypes are still arguable as a later study revealed gradients of key

bacterial genera(Koren et al., 2013). Whether human gut microbiota profiles fall into distinct

clusters or a continuum depends on sampling strategy and methods of analysis and entails

further comparison between healthy and diseased individuals.

Spatially, each body habitat is differentially dominated by specific phyla of microbiota: skin

by Actinobacteria, Firmicutes and Proteobacteria; oral cavity by Bacteroidetes, Firmicutes,

Fusobacteria and Proteobacteria; airway tract by Bacteroidetes, Firmicutes, and

Proteobacteria; GI tract by Bacteroidetes and Firmicutes; and urogenital tract by Firmicutes

(species under Lactobacillus genus)(Belkaid and Naik, 2013). Adding to the complexity,

there is an uneven spatial distribution of microbiota within each specific niche. In the human

GI tract, the quantity and diversity of microbiota increase from stomach to small intestine

and to colon(Brown et al., 2013; Sekirov et al., 2010). Interestingly, microbiota have been

identified within immune-privileged sites such as the CNS. α-proteobacteria class is

reported to be the major commensals persistent in the human brain regardless of immune

status(Branton et al., 2013).

While the host-microbiome interaction is not a novel concept, only recently has it been

revisited by a surge of studies. Co-evolution has pre-determined that microbiota form a

long-term symbiosis rather than short-term parasitism with human hosts. Yet, our prior and

expanding knowledge about the effects of microbiome on host biology indicates that

microbiota are not commensalistic bystanders that bring no benefit or detriment to hosts.

Instead, a significant proportion of microbiota can be defined as symbionts or pathobionts,

depending on whether they are mutualistic health-promoters or opportunistic pathology-

inducers for hosts(Round and Mazmanian, 2009). Host-microbiota mutualism is exemplary

in the gut, where gut microbiome as a joint unity can be viewed as an organ of the

host(O'Hara and Shanahan, 2006). Traditionally, gut microbiome is considered to have three

major categories of functions. First, it defends against pathogen colonization by nutrient

competition and production of anti-microbial substances. Second, it fortifies intestinal

epithelial barrier and induces secretory IgA (sIgA) to limit bacteria penetration into tissues.

Third, it facilitates nutrient absorption by metabolizing indigestible dietary compounds. In

line with these concepts, germ-free (GF) animals have higher susceptibility to infection but

reduced digestive enzyme activities and muscle wall thickness(O'Hara and Shanahan, 2006;

Round and Mazmanian, 2009). Functional metatranscriptomic analysis of human fecal

microbiota demonstrated a common pattern of overrepresented genes involved in

carbohydrate metabolism, energy production and synthesis of cellular components

(Hemarajata and Versalovic, 2013).

Wang and Kasper Page 2

Brain Behav Immun. Author manuscript; available in PMC 2015 May 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



The recent trend of research has focused on the fourth role of gut microbiome: guiding

maturation and functionality of the host immune system. Immune defects in GF mice are

evident at both structural levels, such as decreased peyer's patches, lamina propria and

isolated lymphoid follicles, and at cellular levels, such as decreased intestinal CD8+ T cells

and CD4+ T helper 17 (Th17) cells and reduced B cell production of secretory IgA (sIgA)

(Round and Mazmanian, 2009). Th17 cells are potent mediators of mucosal immunity that

produce signature cytokine IL-17, and sIgA is the principal immunoglobulin at mucosal sites

that maintains barrier functions(Corthesy, 2013; Dubin and Kolls, 2008). Other immune

subsets, such as Foxp3+ regulatory CD4+ T cells (Tregs), invariant natural killer T (iNKT)

cells and innate lymphoid cells (ILCs), are functionally affected by microbiota at

pathological conditions(Ochoa-Reparaz et al., 2009; Olszak et al., 2012; Sawa et al., 2011).

Re-colonization of GF mice with a model gut commensal, Bacteroides fragilis, restored

immune maturation at gut associated lymphoid tissues. Further, purified B. fragilis capsular

polysaccharide A (PSA) was sufficient to expand splenic total CD4+ T cells and intestinal

Foxp3+CD4 Tregs, which suggested that specific commensal antigens could drive immune

regulation(Mazmanian et al., 2005; Round and Mazmanian, 2010). Gut microbiome

provides diverse signals for tuning host immune status toward either effector or regulator

direction, and is thus critical to peripheral immune education and homeostasis.

Microbiome at a specific niche can cast local as well as systemic effects on host biology.

Disruption of a balanced composition of gut microbiome (termed dysbiosis) may cause

chronic low-grade intestinal inflammation as seen in the irritable bowel syndrome (IBS) or

intense intestinal autoimmunity as seen in the inflammatory bowel disease (IBD)(Collins et

al., 2009; Round and Mazmanian, 2009). Dietary change can bring symptomatic

improvement in IBS patients. Moreover, gut microbiome alteration was observed in IBS

patients, exemplified by the reduction of species under Lactobacillus genus and Clostridium

class(Kassinen et al., 2007; Malinen et al., 2005). Similarly, IBD patients showed elevated

antibody titers against indigenous bacteria, a drastic change of gut microbiome, and

favorable response to antibiotic intervention(Frank et al., 2007; Macpherson et al., 1996).

Importantly, while genetic factors such as polymorphisms in NOD2 (nucleotide-binding

oligomerization domain 2) influence susceptibility to IBD, animal studies show that

dysbiosis alone suffice to induce IBD. Antibiotic depletion of microbiota cured intestinal

inflammation in Tbx21-/-Rag-/- (TRUC) mice that lacked adaptive immunity and developed

spontaneous IBD. Further, wild-type mice co-housed with TRUC littermates developed

similar colitis symptoms(Garrett et al., 2007). Thus in the case of IBD, dysbiosis can

directly lead to aberrant mucosal immunity, which in turn might maintain or exacerbate

dysbiosis. On the other hand, beneficial gut bacteria can ameliorate IBD in both human

studies and mouse models. Bifidobacteria, Lactobacillus and Bacteroides genera are the

major components of beneficial probiotics(Round and Mazmanian, 2009). Gut microbiota-

derived products and metabolites, such as B. fragilis PSA and short-chain fatty acids

(SCFA), also exerted potent anti-inflammatory functions in mouse IBD models(Mazmanian

et al., 2008; Smith et al., 2013).

Systemically, gut microbiome contributes to the etiology of experimental disease models

affecting remote organ systems. This can be caused by the trafficking of immune cells

Wang and Kasper Page 3

Brain Behav Immun. Author manuscript; available in PMC 2015 May 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



stimulated at the intestinal site, including microbe-sensing APCs and adaptive immune cells,

to distal tissue sites, by systemic diffusion of commensal microbial products or metabolites,

or by bacterial translocation as a result of impaired barrier integrity. At the liver sites,

endotoxemia-induced inflammation is responsible for diseases such as cirrhosis(Sekirov et

al., 2010). At the airway mucosal sites, antibiotic modulation of gut commensals impaired

protective anti-viral immunity during intranasal infection with influenza and systemic

infection with lymphocytic choriomeningitis virus (LCMV)(Abt et al., 2012; Ichinohe et al.,

2011). Gut microbiome influences various extra-intestinal autoimmune conditions as

illustrated in murine models. Germ-free status confers a complete protection from

spontaneous experimental autoimmune encephalomyelitis (EAE) and ankylosing

spondylitis, a partial protection from spontaneous rheumatoid arthritis (RA) yet an enhanced

level of spontaneous type-1 diabetes (T1D). Further, both GF and antibiotics-treated mice

showed altered severity in inducible models of extra-intestinal autoimmune diseases(Berer

and Krishnamoorthy, 2012; Ochoa-Reparaz et al., 2009).

In this Review, we discuss the role of microbiome, especially gut microbiome, in relation to

central nervous system (CNS) disorders. We analyze how microbiome liaises the bi-

directional communication between gut and the critical distal site of CNS, and the

mechanisms that guide each direction of function. We summarize the range of CNS

disorders influenced by microbiome, which could be broadly classified into immune- and

non-immune-mediated types. We further categorize the underlying microbiome-related

factors implicated in CNS disorders. Our burgeoning knowledge about microbiome may

provide novel avenues for therapeutics against neurological diseases.

2. Communication between gut microbiome and the CNS

The gut receives regulatory signals from the CNS and vice versa. The term gut-brain-axis

thus describes an integrative physiology concept that incorporates all, including afferent and

efferent neural, endocrine, nutrient, and immunological signals between the CNS and the

gastrointestinal system(Romijn et al., 2008). As accumulating literatures underpin the

importance of the gut microbiome to intestinal functions, a novel concept of microbiome-

gut-brain axis has been evolved (Rhee et al., 2009). The core feature of this concept is

bidirectional interaction, with diverse mechanisms guiding each direction of effects.

2.1. How the CNS influences microbiome

A classical CNS-gut-microbiome signaling is operational via central regulation of satiety.

Changes of dietary pattern as a result of CNS control of food intake can impact nutrient

availability to gut microbiota and consequently their composition. Satiation-signaling

peptides are the key molecular intermediaries that enable this downward control. These

peptides, for example peptide YY (PYY), are transported through blood to the brain

postprandial to exert their impact on satiety (Romijn et al., 2008). Satiation-signaling

peptides arise primarily from the GI tract but most of them are also synthesized within the

brain (reviewed by (Cummings and Overduin, 2007)). Beyond that, CNS can influence gut

microbiome through neural and endocrine pathways in both direct and indirect manners. The

autonomic nervous system (ANS) and hypothalamus-pituitary-adrenal (HPA) axis that liaise

the CNS and viscera can modulate gut physiology such as motility, secretion and epithelial
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permeability as well as systemic hormones, which in turn affects the niche environment for

microbiota and also host-microbiome interaction at the mucosae(Cryan and Dinan, 2012).

Santos et al. found that stress caused epithelial barrier defects and subsequent mucosal mast

cell activation(Santos et al., 2001). O'Mahony et al. illustrated that an early life stress

(maternal separation) increased systemic corticosterone level and immune responses and

altered fecal microbiota in rats(O'Mahony et al., 2009). Bailey et al. indicated that a social

disruption (SDR) initiated by co-housing with aggressive male littermates altered murine gut

bacterial populations through immune-activation(Bailey et al., 2011). Further, release of

signaling molecules, cytokines, and anti-microbial peptides (AMPs) into the gut lumen by

neurons, enteroendocrine cells, immune cells and Paneth cells at the direct or indirect

command of the CNS is likely to have an immediate impact on gut microbiota(Rhee et al.,

2009). Clarke et al. discovered the QseC sensor kinase as a bacterial receptor for host-

derived epinephrine and norepinephrine, which might explain the biochemical basis for host

endocrine signaling to microbiota(Clarke et al., 2006).

2.2. How microbiome influences CNS functions

The influence of microbiome on CNS functions is manifested in both normal and disease

conditions. There is a crucial link between gut microbiome and CNS maturation under

physiological state. External cues derived from indigenous commensal microbiota affect

prenatal and postnatal developmental programming of the brain(Al-Asmakh et al., 2012;

Douglas-Escobar et al., 2013). On the other hand, co-morbidity with mood disorders such as

depression and anxiety is common in the intestinal pathological state of IBS. Chronic low-

grade inflammation or immune activation that underlies the etiology of IBS is also a driving

risk factor in mood disorders(O'Malley et al., 2011). In the more intense case of IBD, co-

morbidity with stress is caused by the concurrent intestinal inflammation and microbiome

alteration. Change in psychological activities is perceived in patients before and after IBD

diagnosis(Bonaz and Bernstein, 2013).

Upward regulation of the CNS by microbiome can be achieved through neural, endocrine,

metabolic and immunological mechanisms. The neural pathway is operational through the

enteric nervous system (ENS), a main division of the ANS that governs the GI functions,

and vagal afferent nerves (VAN) that convey sensory information from viscera to the CNS.

Probiotic modulation of gut microbiota has been shown to influence gut neuro-motor

functions(Verdu, 2009). Receptors expressed on VAN sense many of the regulatory gut

peptides and also information contained in dietary components, relaying the signals to the

CNS afterwards(de Lartigue et al., 2011). Indeed, vagal activation is necessary for a range of

effects of gut microbiome or probiotics on brain functions(Cryan and Dinan, 2012). Recent

studies suggest a direct interaction between gut microbiome and enteric neurons. TLR-3, 7

(recognizing viral RNA) and TLR-2, 4 (recognizing peptidoglycan and lipopolysaccharide)

are expressed by the ENS in both mice and human(Barajon et al., 2009; Brun et al., 2013).

Kunze et al. observed that Lactobacillus reuteri enhanced excitability of colonic neurons in

naïve rats by inhibiting calcium-dependent potassium channel(Kunze et al., 2009). Mao et

al. found that ex vivo, both Lactobacillus rhamnosus (strain JB-1) and B. fragilis could

activate intestinal afferent neurons, while PSA completely mimicked the neuronal effects of

its parent organism B. fragilis(Mao et al., 2013). Chiu et al. indicated that Staphylococcus
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aureus activation of sensory neurons could transduce nociception(Chiu et al., 2013). It is

still unclear, in homeostatic periods, whether and how luminal microbial antigens reach into

muscularis mucosa and sub-mucosa, where the ENS resides and the physical contact with

sensory neurons occurs.

In the endocrinal pathway, the gut microbiome plays a major role in the development and

regulation of the HPA axis that is critical to stress responses. Studies in gnotobiotic mice

showed that postnatal exposure to gut microbiome affected the set point of the HPA

axis(Sudo, 2012). Enteroendocrine cells interspersed among gut epithelium, particularly

enterochromaffin cells, can secrete neurotransmitters and other signaling peptides in

response to luminal stimuli, and thus act as transducers for the gut-endocrine-CNS

route(Rhee et al., 2009). Besides, the vasoactive intestinal peptide (VIP), a peptide hormone

synthesized in the gut but also brain, could mediate immune-modulation during CNS

inflammation(Gonzalez-Rey et al., 2006). While the direct impact of microbiome on VIP

expression has not been identified, dietary intervention is able to increase intestinal VIP,

which might hint the role of microbiome(Velickovic et al., 2013).

Since a main function of microbiome is to facilitate host metabolism, a metabolic pathway is

naturally implicit in the microbiome-gut-CNS signaling. Examples of metabolites associated

with microbial metabolism or microbial–host co-metabolism have been reviewed(Holmes et

al., 2011). Dysregulation of serotonergic and kynurenine routes of tryptophan metabolism

influences the CNS pathological conditions of dementia, Huntington's disease and

Alzheimer's disease(Ruddick et al., 2006). Probiotic treatment could alter kynurenine levels

and ameliorate CNS pathologies(Desbonnet et al., 2008). In addition, the metabolic pathway

represents an important inter-kingdom communication as host signaling molecules can be

fully synthesized or mimicked by microbiota-derived metabolites. Commensal organisms

can produce a range of neuroactive molecules such as serotonin, melatonin, gamma-

aminobutyric acid (GABA), catecholamines, histamine and acetylcholine(Barrett et al.,

2012; Forsythe et al., 2010; Lyte, 2011).

The immunological pathway seems to be an independent mechanism in the microbiome-gut-

CNS signaling. The CNS, though viewed as an immune-privileged site, is not devoid of

immune cells. There is a regular presence of macrophages and dendritic cells (DCs) in the

choroid plexus and meninges, microglial cells in the brain parenchyma, and leukocytes in

the cerebrospinal fluid (CSF). Aberrant CNS autoimmunity arises as a consequence of direct

immune disruption of neural tissues. Commensal microbiome, known to shape the host

immune system, affects the auto-reactivity of peripheral immune cells to the CNS(Berer and

Krishnamoorthy, 2012; Rook et al., 2011). Secondly, immune-to-CNS communication is

also mediated by systemic circulation of immune factors, which is implicated in neuro-

psychiatric disorders such as depression. Indeed, factors that increase peripheral

inflammation markers such as C-reactive protein (CRP), IL-1, IL-6 and tumor necrosis

factor (TNF-a), are also risk factors for depression(Dantzer et al., 2008; Rook et al., 2011).

In both routes of the pathway, there are anti-inflammatory mechanisms that can counter-act

immune-mediated CNS disease symptoms.
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3. The role of microbiome in CNS disorders

As multiple mechanisms guide the impact of microbiome on the CNS, it is therefore of

particular interest to explore the role of microbiome in the regulation of CNS disorders.

While there is still a lack of epidemiological evidence to connect microbiome with CNS

pathologies, accumulating studies have underscored the importance of microbiome in a

range of CNS disorders (Ochoa-Reparaz et al., 2011). CNS disorders can be classified as

immune-mediated (exemplified by CNS autoimmune diseases such as multiple sclerosis)

and non-immune-mediated (exemplified by neuro-psychiatric disorders such as autism,

depression, anxiety and stress) according to main etiologies. This dichotomy, however, is

not arbitrary since there often exists a crosstalk of etiologies. We herein summarize how

microbiome can affect both categories of CNS disorders.

3.1. How microbiome affects immune-mediated CNS disorders

3.1.1. Multiple sclerosis—Multiple sclerosis (MS) is a chronic CNS demyelinating

disease mediated by auto-reactive immune attack against central neural tissues. EAE is a

widely used animal model of MS induced by CNS-restrictive antigens. Although EAE might

not recapitulate all the features of human MS, it simulates its core neuro-inflammation

process(Baxter, 2007). Historically, viral infection, such as Epstein-Barr virus (EBV) or

human herpes virus 6, has been suggested as the trigger for human MS(Brahic, 2010).

Recent studies, however, have begun to elucidate the contribution of microbiome and its

relevant factors to MS pathogenesis, with much of the work investigated in EAE

models(Ochoa-Reparaz et al., 2011). It has been shown in MOG92-106 TCR transgenic (RR)

mice that commensal microbiota are essential for the development of spontaneous EAE.

Germ-free RR mice were prevented from sEAE as a result of attenuated Th17 and auto-

reactive B cell responses(Berer et al., 2011). Commensal microbiota are also required for

induced EAE model, as GF B6 mice developed less severe EAE accompanied with

decreased IFN-γ and IL-17 responses and increased Foxp3+Tregs. Segmented filamentous

bacteria (SFB) colonization restored EAE susceptibility in GF mice(Lee et al., 2011).

Antibiotic modulation of gut microbiota controls EAE progression via diverse cellular

mechanisms. Ochoa-Reparaz et al. demonstrated that IL-10-producing

CD4+CD25+Foxp3+Tregs were required for oral antibiotic attenuation of EAE

progression(Ochoa-Reparaz et al., 2009). In a following study, Ochoa-Reparaz et al. showed

that oral antibiotic treatment of EAE mice systemically induced a regulatory CD5+B cell

subset(Ochoa-Reparaz et al., 2010b). Yokote et al. found that iNKT cells, a CD1d-restricted

T cell subset that shared properties of both T and NK cells, were necessary for oral

antibiotics amelioration of murine EAE (Yokote et al., 2008). While it is unknown whether

enteric microbiota affect human MS, a higher percentage of MS patients exhibited antibody

responses against gastrointestinal antigens in contrast to healthy control, which could

indicate altered gut microbiome and immune status(Banati et al., 2013).

Oral treatment with a single bacterium or bacteria mixture can modulate EAE as observed in

a range of studies. Probiotic Bifidobacterium animalis reduced the duration of symptoms in

a rat EAE model(Ezendam et al., 2008). Conversely, probiotic strain Lactobacillus casei

Shirota (LcS) exacerbated EAE symptoms in rats(Ezendam and van Loveren, 2008).
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However, later studies indicated that probiotic Lactobacilli, inclusive of LcS, did not

enhance but rather suppressed rat EAE(Maassen and Claassen, 2008). This has been

corroborated by other studies using probiotic mixtures of strains under the Lactobacillus

genus. Indeed, Lactobacilli (including LcS), either administrated alone or in combination

with other strains of Bifidobacterium genus, tend to alleviate murine EAE symptoms via

reciprocal regulation of pro- and anti-inflammatory cytokine responses(Kobayashi et al.,

2010; Kobayashi et al., 2012; Kwon et al., 2013; Lavasani et al., 2010). Probiotic treatment

with B. fragilis and Pediococcus acidilactici (strain R037) also significantly reduced mice

susceptibility to EAE(Ochoa-Reparaz et al., 2010a; Takata et al., 2011). In the case of the

human commensal B. fragilis, capsular PSA expression was critical for its immune-

regulatory functions(Ochoa-Reparaz et al., 2010a). Further, engineered strains such as

Salmonella-CFA/I and Hsp65-producing Lactococcus lactis can prevent EAE in mice via

Tregs-associated TGFβ and IL-13 signals(Ochoa-Reparaz et al., 2007; Ochoa-Reparaz et al.,

2008; Rezende et al., 2013).

Isolated commensal microbial products can often recapitulate the biological effects of their

parent organisms on hosts. Some of these products have been found as potent therapeutics

against EAE. Purified B. fragilis PSA, referred to as a symbiosis factor in other studies,

conferred prophylactic as well as therapeutic protection against EAE via induction of

tolerogenic CD103+DCs at CNS-draining lymph nodes, similar to the effects conferred by

probiotic B. fragilis(Ochoa-Reparaz et al., 2010c). While PSA is a TLR2 ligand, its

immune-regulatory functions against EAE are not seen as putative in other commensal-

derived TLR2 ligands. Nichols, et al. reported that a unique lipid TLR2 ligand,

phosphorylated dihydroceramide (PE DHC), derived from human oral commensal

Porphyromonas gingivalis but also gut commensals, was able to exacerbate murine EAE via

TLR2-dependent mechanisms(Nichols et al., 2009). Commensal-derived extracellular ATP

can be viewed as a danger-associated molecular pattern (DAMP) by hosts and has been

related to Th17 development. Accordingly, Entpd7-/- mice that are deficient of ATP

hydrolyzing enzymes have displayed a more severe level of EAE(Kusu et al., 2013).

Finally, diet patterns have been reported to influence the development of EAE. Piccio et al.

found that high-fat diet increased murine EAE severity. In contrast, calorie restriction diet

attenuated EAE symptoms, which was associated with hormonal, metabolic and cytokine

changes rather than immune suppression(Piccio et al., 2008). Kleinewietfeld et al. illustrated

that mice fed with a high-salt diet developed a more severe form of EAE, in line with the

ability of sodium chloride to activate Th17 cells(Kleinewietfeld et al., 2013). Recent

developments may insinuate a central role of gut microbiome in linking diet with MS and

EAE.

3.1.2. Neuromyelitis optica—Neuromyelitis optica (NMO), also known as Devic's

disease, is a CNS autoimmune disease featured by immune-mediated demyelination of the

optic nerve and spinal cord. It resembles multiple aspects of MS. Auto-reactive humoral and

T cell-mediated immunity against aquaporin 4 (AQP4), a predominant CNS water channel

protein, drives the NMO pathogenesis(Lennon et al., 2005; Varrin-Doyer et al., 2012). Like

MS, no research so far has established a direct link between gut microbiome and NMO.

Banati et al. found that patients of AQP4-seropositive NMO and NMO spectrum diseases
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showed much higher serum level of antibodies against gastrointestinal antigens (most

frequently dietary proteins) than did healthy controls, insinuating the alteration of

microbiota composition and consequent immune status in NMO patients(Banati et al.,

2013). Varrin-Doyer et al. found that AQP4-specific T-cells in NMO patients showed cross-

reactivity to a protein of the indigenous gut commensal species, Clostridium perfringens,

supporting a microbiota-related molecular mimicry process in NMO pathogenesis(Varrin-

Doyer et al., 2012).

3.1.3. Guillain–Barré syndrome—Guillain–Barré syndrome (GBS) is an autoimmune

disease of the peripheral nervous system. Similar to MS, auto-reactive immune attack of

myelin acts as the cause of neuro-degeneration in GBS(Nachamkin et al., 1998). Preceding

infection with bacteria or virus, such as Haemophilus pneumoniae, Mycoplasma

pneumoniae, influenza, and EBV, has been suggested as environmental triggers for GBS.

Indeed, cross-reaction of pathogen-induced antibodies against neural surface antigens in a

molecular mimicry process constitutes an important mechanism for GBS neuronal damage

that leads to acute flaccid paralysis(Ochoa-Reparaz et al., 2011). Campylobacter jejuni, a

gut commensal species found in poultry, is a major cause of human enteritis induced by food

contamination. Tam et al. indicated a far greater risk of GBS among Campylobacter enteritis

patients than previously reported by retrospective serological studies(Tam et al., 2007).

Further, Campylobacter is associated with several pathologic forms of GBS. Different

strains of Campylobacter, along with host factors, play an important role in shaping auto-

reactive immune reactions during GBS development(Nachamkin et al., 1998). Therefore, C.

jejuni represents a gut-associated pathogen that mediates neural autoimmunity.

3.1.4. Other immune-mediated conditions—The role of microbiome has been

implicated in other immune-involved CNS diseases. Meningitis is inflammation of the

protective membranes of the CNS. Viral or bacterial infection may lead to meningitis.

Zelmer et al. reported that the adult gut commensal Escherichia coli K1 were able to cause

meningitis via maternal transfer to newborn infants. The polysialic acid (polySia) capsule

synthesized by E. coli K1 guided the critical process of blood-to-brain transit of this neuro-

pathogenic strain(Zelmer et al., 2008). Chronic fatigue syndrome (CFS), also referred to as

myalgic encephalomyelitis (ME), is so far of unknown etiology. Immune factors, such as

chronic lymphocyte over-activation and cytokine abnormalities, contribute to its

pathogenesis(Patarca-Montero et al., 2001). Maes et al found that increased IgA responses to

commensal bacteria in CFS patients were associated with inflammation, cellular immune

activation, and symptomatic severity. It was postulated that elevated translocation of

commensal bacteria could be responsible for the disease activities in some CFS

patients(Maes et al., 2012).

3.2. How microbiome affects non-immune-mediated CNS disorders

3.2.1. Autism and depression—Autism spectrum disorder (ASD) is a range of

developmental neuro-behavioral disorders characterized by impaired social interaction and

communication. Autism represents the primary type of ASD. Emerging data have indicated

a link between gut microbiome and ASD, either as direct causality or as indirect

consequences of atypical patterns of feeding and nutrition(Mulle et al., 2013). Disruption of
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gut microbiota might promote the over-colonization of neurotoxin-producing bacteria and

thus contribute to autistic symptoms. It has been reported, however, that oral vancomycin

treatment brings short-term benefit to regressive-onset autism children(Sandler et al., 2000).

General gut microbiota alteration or specific gut commensal strains have been implicated in

ASD. Bolte et al. postulated that Clostridium tetani could induce autism(Bolte, 1998).

Indeed, two ensuing human gut microbiome studies illustrated a greater number of species

under the Clostridium genus present in fecal samples of autistic children(Finegold et al.,

2002; Parracho et al., 2005). An imbalance of Bacteroidetes and Firmicutes phyla also

manifests in autistic children. Finegold et al. reported increased presence of Bacteroidetes in

severe autistic group and predominant presence of Firmicutes in healthy controls(Finegold et

al., 2010). Williams et al. revealed a reverse trend in comparing autism and GI disease co-

morbid (AUT-GI) children and GI disease alone controls(Williams et al., 2011). In addition,

altered levels of other gut commensals, including those of Bifidobacterium, Lactobacillus,

Sutterella, Prevotella and Ruminococcus genera and of the Alcaligenaceae family, were

correlated with autism(Adams et al., 2011; Kang et al., 2013; Wang et al., 2013; Williams et

al., 2012). Nonetheless, there are studies refuting the microbiota alteration between autistic

and healthy subjects(Gondalia et al., 2012). Variance in sampling strategies and techniques

applied to microbiome assays may account for these differences. Further, gut microbiome-

mediated metabolism also impacts autism. Metabolites profile gathered from both urinary

and fecal samples differed in autistic patients and healthy control, potentially consequent of

microbiota changes(Ming et al., 2012; Wang et al., 2012; Yap et al., 2010).

Depression is a major form of mood disorder that results from neuro-psychiatric disturbance

or immunological deregulation(Dantzer et al., 2008). Probiotic treatment has shown efficacy

in suppression of animal depression models. Species under Lactobacillus genus are

particularly characterized as anti-depressant. Probiotic mixture comprising L. rhamnosus

and L. helveticus strains ameliorated maternal separation-induced depression via

normalizing corticosterone level(Gareau et al., 2007). Similarly, L. rhamnosus strain JB-1

reduced depression-related behavior through regulating corticosterone and GABA receptor

in a vagal-dependent manner(Bravo et al., 2011). Species of Bifidobacterium are also potent

anti-depressants. Bifidobacterium infantis alleviated depression as indicated by rat forced

swim test (FST) and maternal separation models. Mechanisms involved include attenuation

of pro-inflammatory cytokines, regulation of tryptophan metabolism and CNS

neurotransmitters(Desbonnet et al., 2008; Desbonnet et al., 2010). Probiotics combining

Lactobacilli and Bifidobacteria were tested in post-myocardial infarction depression models.

L. helveticus and Bifidobacterium longum together ameliorated post-MI depression through

reduction of pro-inflammatory cytokines and restoration of barrier integrity at GI

tract(Arseneault-Breard et al., 2012; Gilbert et al., 2013). In addition, gut microbial

products, such as sodium butyrate (salt formed from butyrate acid, a type of SCFA) have

been explored in animal depression model, without showing anti-depressant

effects(Gundersen and Blendy, 2009). Further, a diet formulation containing high levels of

polyunsaturated fatty acids (PUFAs) n-3 attenuated rat post-MI depression via similar

mechanisms as did L. helveticus and B. longum(Gilbert et al., 2013).
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3.2.2. Anxiety and stress—Anxiety and stress are common forms of mood disorders

with nervous, endocrinal and immunological basis. Exposure to stressors such as chemical,

biological or environmental stimuli can trigger stress and anxiety responses, which involves

activation of the HPA axis. As aforementioned, co-morbidity with anxiety and stress has

been perceived in drastic and mild types of intestinal dysfunctions, underscoring the role of

gut-brain signals such as neurotransmitters and immune factors(Diamond et al., 2011; Dinan

and Cryan, 2012; Fukudo and Kanazawa, 2011; Konturek et al., 2011; O'Malley et al., 2011;

Reber, 2012).

GF mice showed increased motor activity and reduced anxiety, compared to SPF mice with

normal gut microbiota. This behavioral phenotype was associated with higher levels of

neurotransmitters and reduced synaptic long-term potentiation in the CNS of GF mice(Diaz

Heijtz et al., 2011). Reduced anxiety-like behavior in GF condition has been confirmed by

later studies, which are explained by other neurochemical changes such as decreased

neurotransmitter receptors and increased tryptophan metabolism. It is therefore postulated

that gut microbiome regulates the set point for HPA axis(Clarke et al., 2013; Neufeld et al.,

2011). Gut-associated pathogens can exacerbate anxiety. Infection with C. jejuni elevated

anxiety-like behavior through induction of the c-Fos protein, a neuronal activation marker,

in the CNS as well as ANS(Gaykema et al., 2004; Goehler et al., 2008). C-Fos protein

induction was also indicated in Citrobacter rodentium exacerbation of anxiety, whereas

Trichuris muris elevated anxiety via immunological and metabolic mechanisms(Bercik et

al., 2010; Lyte et al., 2006). In contrast, beneficial probiotics can ameliorate anxiety.

Specific species of Lactobacillus and Bifidobacterium genera have anxiolytic effects.

Probiotic treatment with certain strains of B. longum, B. infantis, L. helveticus, or L.

rhamnosus, either alone or in combination, normalized behavioral phenotypes in animal

anxiety models(Bercik et al., 2010; Bravo et al., 2011; McKernan et al., 2010; Messaoudi et

al., 2011; Ohland et al., 2013).

Programming of HPA axis by gut microbiome is also observed in stress condition. GF mice

showed exaggerated HPA stress response, accompanied by increased circulatory

neurotransmitters and decreased brain-derived neurotrophic factor (BDNF) expression in the

CNS(Sudo et al., 2004). Altered gut microbiota composition has been associated with stress.

O'Mahony, et al. reported changes in fecal microbiota in early life stress induced by

maternal separation(O'Mahony et al., 2009). Murine exposure to the SDR stressor led to

decreased abundance of Bacteroides, increased abundance of Clostridium, and changes of

other bacteria genera, which were concurrent with enhanced circulatory pro-inflammatory

cytokines(Bailey et al., 2011). The anxiolytic strains of Lactobacillus and Bifidobacterium

genera that have anti-anxiety effects often display anti-stress effects as well. Ingestion with

L. helveticus and L. rhamnosus reduced rat chronic psychological stress indicated by water

avoidance test and improved intestinal barrier integrity(Zareie et al., 2006). Lactobacillus

farciminis also suppressed stress-induced gut leakiness and attenuated HPA axis stress

response(Ait-Belgnaoui et al., 2012). B. longum normalized anxiety-like behavior and CNS

BDNF levels in mice co-morbid with infectious colitis through a vagal-dependent

mechanism(Bercik et al., 2011b). A probiotic formulation consisting of L. helveticus and B.
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longum showed anxiolytic-like activities in rats and beneficial psychological effects in

healthy human subjects(Messaoudi et al., 2011).

3.2.3. Pain—Nociceptive pain that is caused by peripheral nervous response to stimuli and

signaling transduction to the CNS can be alleviated by probiotic modulation of microbiome.

Antinociceptive effects are seen in species of Lactobacillus genus. L. farciminis ameliorated

stress-induced hypersensitivity to colorectal distension (CRD), mediated by inhibition of

colonic epithelial contraction and nitric oxide (NO)-related mechanisms(Ait-Belgnaoui et

al., 2006). L. reuteri also attenuated visceral pain induced by CRD in normal rats(Kamiya et

al., 2006). L. paracasei normalized visceral hypersensitivity to CRD in antibiotics-perturbed

mice (Verdu et al., 2006). Lactobacillus acidophilus delivered analgesic effects in intestinal

pain via induction of opioid and cannabinoid receptors(Rousseaux et al., 2007). Besides, two

studies supported the anti-nociceptive effects of a specific B. infantis strain in the context of

IBS. Probiotic B. infantis reduced CRD-induced pain in both visceral normal-sensitive and

visceral hypersensitive rat strains, and also in a rat model of post-inflammatory colonic

hypersensitivity(Johnson et al., 2011; McKernan et al., 2010). Recently, Chiu et al. reported

that S. aureus triggered pain in mice through direct induction of calcium flux and action

potentials in nociceptor neurons(Chiu et al., 2013).

3.2.4. Other neuro-psychiatric symptoms—Microbiome has been connected with

other neuro-psychiatric disorders, where a mixture of immune- and non-immune-based

etiologies often occurs. GF animals exhibit defective memory and cognitive abilities. Gareau

et al. found that memory dysfunction occurred in GF mice regardless of exposure to

stress(Gareau et al., 2011). Bercik et al. showed that re-colonization of GF mice with murine

microbiota could either enhance or reduce exploratory behavior, depending on the strains of

donor and recipient mice. Further, antibiotic treatment of SPF mice increased exploratory

behaviors. Hippocampal levels of BDNF were positively correlated with exploratory

behaviors, and regulated in both cases(Bercik et al., 2011a). Probiotics were able to improve

infection-induced memory dysfunction and diabetes-induced cognitive defects(Davari et al.,

2013; Gareau et al., 2011). Propionic acid, a type of SCFA, reduced murine social and

cognitive abilities(MacFabe et al., 2011). Dietary alteration of gut microbiome also

modulated murine cognitive and learning behaviors(Li et al., 2009). Microbiota alteration

has been indicated in hepatic encephalopathy (HE). Different fecal and mucosal microbiota

were found in HE patients as compared to healthy controls. In cirrhotic HE specifically,

good cognition and decreased inflammation were linked with autochthonous and Prevotella

genera as well as Alcaligenaceae and Porphyromonadaceae families, whereas poor cognition

and increased inflammation were linked with over-represented Enterococcus, Megasphaera

and Burkholderia genera(Bajaj et al., 2012a; Bajaj et al., 2012b; Bajaj et al., 2012c).

Alteration of serum antibodies to oral microbiota and sub-gingival bacterial species was

observed in Down's syndrome(Khocht et al., 2012; Morinushi et al., 1997). Oral microbiota

changes were also observed in comatose patients(Cecon et al., 2010). A positive correlation

between schizophrenia and serological surrogate markers of bacterial translocation was

indicated(Severance et al., 2013).
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4. Factors linking microbiome and the CNS

As microbiome refers to the collective genomes of total microbiota, microbiome research is

broad in its scope, which incorporates general microbiota composition or specific bacterium,

microbiota-generated products, external alteration of microbiota, and barrier integrity status

that affects host-microbiota contact. It is thus worthy summarizing the factors that mediate

the influence of microbiome on CNS disorders.

4.1. Hygiene

The hygiene hypothesis states that a lack of childhood exposure to infectious agents,

parasites and commensals increases susceptibility to T helper 2 (Th2)-mediated allergic

diseases. However, there also exists a correlation between improved sanitary conditions and

increased incidences of T helper 1 (Th1)-mediated autoimmune diseases such as T1 diabetes

and multiple sclerosis(Berer and Krishnamoorthy, 2012). Th1 response targets intracellular

microbes, mediated by signature cytokine IFNγ; while Th2 response targets helminthes and

allergens, characterized by signature cytokines IL-4 and IL-13. Aberrant immune

development is therefore a potential mechanism that links hygiene and immune-mediated

CNS disorders. GF mice displayed reduced EAE symptoms, concurrent with attenuated Th1,

Th17 and B cell responses, which related to the hygiene hypothesis yet contradicted findings

in human MS(Berer et al., 2011; Lee et al., 2011). This discrepancy might be explained by

intricate etiologies underlying human MS and intrinsic differences between murine GF

condition and human hygienic state. In murine models, GF condition is also linked to neuro-

behavioral disorders. Total sterility results in reduction of BDNF levels and enhancement of

HPA axis responses, correlated by elevated neurotransmitters in the plasma. GF animals

displayed increased stress and impaired cognition(Gareau et al., 2011; Sudo et al., 2004).

However, GF condition in other studies is identified as anxiolytic and can resolve anxiety,

correlated by decreased neurotransmitter receptors levels(Kuss et al., 2011; Neufeld et al.,

2011). Hence, hygiene exerts case-specific rather than universal influences on neuro-

chemistry and neuro-behavioral manifestations.

4.2. Antibiotics usage

Antibiotics confer selective alteration of gut microbiota. Mice pre-conditioned with oral

antibiotics are less susceptible to autoimmune models such as EAE. In studies conducted by

Ochoa-Reparaz et al., amelioration of EAE was associated with reduced IFNγ and IL-17,

increased IL-13 and IL-10, and systemic stimulation of Tregs and Bregs(Ochoa-Reparaz et

al., 2009; Ochoa-Reparaz et al., 2010b). That antibiotics poise the Th1/Th2 equilibrium

towards Th2 direction is consistent with hygiene hypothesis. An earlier study conducted by

Yokote et al. also observed reduced pro-inflammatory cytokines, including IFNγ and IL-17,

in antibiotic treatment of EAE. While iNKT cells were not induced by antibiotics, they were

essential for protection against EAE(Yokote et al., 2008). Different antibiotic agents were

utilized in these EAE studies, which could result in different gut microbiome profiles and

explain the variability of immune mechanisms. Current studies support a beneficial role of

antibiotic treatment of neuro-behavioral disorders. Antibiotic treatment reduced stress

response and increased exploratory behavior in mice and offered short-term benefit to

regressive-onset autism children. Underlying mechanisms may involve the reduction of
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luminal LPS concentration (and thus potentially reduced chronic inflammation) and changes

of CNS signals, such as hippocampal expression of BDNF(Ait-Belgnaoui et al., 2012;

Bercik et al., 2011a; Sandler et al., 2000). In sum, antibiotics might reset the default immune

and neuro-hormonal status shaped by commensal microbiome and therefore alter

predisposition to CNS disorders.

4.3. Microbiota composition

How microbiota composition impacts CNS disorders can be indicated by a variety of

methodologies, including infection-induced microbiome perturbation, studies using SPF and

gnotobiotic mice, mono-colonization of GF mice, and metagenomic approaches such as

microbial microarray and 16S rRNA profiling. Further, compositional changes of microbiota

can be indirectly reflected by profiling the metabolites and co-metabolites of microbiota and

serum titers of antibodies against microbiota and diet components. As the study of

enterotypes is still in its infancy, efforts to find disease-specific enterotypes are limited.

Hildebrand et al. defined two murine enterotypes, ET1 and ET2 that bore striking similarity

to Ruminococcus and Bacteroides enterotype in human, respectively. ET2 mice showed

higher levels of fecal calprotectin, a biochemical marker for IBD(Hildebrand et al., 2013).

For CNS disorders, a concrete link with enterotypes has yet to be established. While it is

tempting to infer enterotypes from the scattered studies of certain disease type, opposing

data often obstruct consensus. For instance, there are favorable and unfavorable results for

the link between Bacteroides enterotype and autism(Finegold et al., 2010; Williams et al.,

2011). Further, heed must be taken to clarify the cause and effect as CNS disorders could

impact diet patterns or be concurrent with gut epithelial impairment, both scenarios affecting

microbiota composition.

4.4. Probiotics

Ingestion of beneficial live bacteria, also know as probiotics, is a therapeutic way of using

microbiota components for treatment. Probiotics can regulate immune subsets, especially in

the case of CNS autoimmunity. B. fragilis is a prominent probiotic strain that promotes

Foxp3+Treg quantity and functional maturation in both EAE and IBD(Mazmanian et al.,

2008; Ochoa-Reparaz et al., 2010a). Lactobacilli and Bifidobacteria are key components of

anti-inflammatory probiotic mixtures that can also function through stimulation of

IL-10+Foxp3+Tregs(Kwon et al., 2013; Takata et al., 2011). Moreover, genetic modification

of natural strains represents another potent probiotic approach. Fusing tolerogenic antigen

into attenuated or innocuous strains has yielded oral therapeutics against EAE(Ochoa-

Reparaz et al., 2007; Ochoa-Reparaz et al., 2008; Rezende et al., 2013). Probiotics can

alleviate neuro-psychiatric disorders via hormonal and neuro-chemical mechanisms. For

example, B. longum NCC3001 can normalize murine hippocampal BDNF expression and L.

rhamnosus (JB-1) can exert differential regulation of GABA transcription in different CNS

regions(Bercik et al., 2011b; Bravo et al., 2011). Particular probiotics may convey anxiolytic

effects in multiple types of neuro-behavioral disorders, which indicates shared neural and

endocrinal etiologies of these disorders. For example, L. helveticus R0052 and B. longum

R0175 can ameliorate both anxiety and depression in rats(Gilbert et al., 2013; Messaoudi et

al., 2011). Neural mechanisms that involve direct bacterial activation or inhibition of

neurons may account for anti-nociceptive effects of probiotics.
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4.5. Microbiota-derived products

Microbiota-derived products are often effective components responsible for microbiota-gut-

CNS signaling. This is especially evident in the case of B. fragilis capsular PSA, where PSA

can recapitulate the functions of its parent organism B. fragilis in regard to anti-

inflammatory effects in EAE and activation of intestinal sensory neurons. PSA is a unique

zwitterion and referred to as a symbiosis factor for commensalism(Mao et al., 2013; Ochoa-

Reparaz et al., 2010c). Commensal-produced luminal extracellular ATP and LPS drive the

chronic inflammation that contributes to the pathogenesis of neuro-immune and neuro-

psychiatric disorders. Microbiota-derived metabolites and co-metabolites are critical

intermediaries for microbiota-gut-CNS signaling. Commensals spawn a range of neuro-

active substances. For example, Lactobacillus and Bifidobacterium species can produce the

inhibitory neurotransmitter GABA(Barrett et al., 2012). The involvement of neuro-active

metabolites in probiotic effects on neuro-psychiatric disorders remains unexplored. SCFAs,

a group of fatty acids with aliphatic tails of 2 to 6 carbons, are fermentation products of

dietary fibers by microbiota. While SCFAs have been found to be important immune

regulators, there is a scarcity of studies that target at their impacts on CNS

disorders(MacFabe et al., 2011; Thomas et al., 2012).

4.6. Diet

Diet patterns may modulate gut microbiome via alteration of nutrient availability. Recent

developments have suggested that dietary intervention can impact gut microbial gene

richness. Lower microbiome richness was identified as less healthy and associated with

metabolic dysfunction and low-grade inflammation. Dietary formula with higher fiber

contents can improve microbiome richness(Cotillard et al., 2013; Le Chatelier et al., 2013).

Unhealthy diet patterns containing high levels of fat or salt could accelerate neuro-

inflammation during EAE(Kleinewietfeld et al., 2013; Piccio et al., 2008). Western-style

diet could negatively affect anxiety-like behavior and memory, depending on immune

status(Ohland et al., 2013). Supplementation with high levels of PUPAs could alleviate

depression(Gilbert et al., 2013). These experimental findings could indicate saturated fat as a

risk factor for both neuro-immune and neuro-psychiatric disorders. Collectively,

microbiome modulation is an integral mechanism underlying diet-based treatment.

4.7. Gut permeability

Gut permeability has been directly and indirectly associated with the role of microbiome in

CNS disorders. Humoral and cellular immune reaction to microbiota in the circulation,

persistent low-grade inflammation and neuro-psychiatric co-morbidity with IBD may hint

the breach of mucosal epithelial barrier(Banati et al., 2013; Bercik et al., 2011b; Lyte et al.,

2006; Maes et al., 2012; Severance et al., 2013; Varrin-Doyer et al., 2012). Probiotic

treatment with several species of Lactobacillus genus restored the barrier integrity(Ait-

Belgnaoui et al., 2012; Zareie et al., 2006). Dysbiosis and breakdown of mucosal barrier are

interrelated phenomena. Microbiota and their ligands maintain the cell-cell junctions critical

to barrier integrity(Hooper et al., 2001; Rakoff-Nahoum et al., 2004). Abnormal gut

microbial composition is seen in IBD(Fava and Danese, 2011). In return, the cascade of

inflammatory process during IBD may amplify intestinal dysbiosis. Although it is hard to
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determine the initial cause, dysbiosis and gut hyper-permeability orchestrate in driving CNS

pathogenesis.

5. Conclusions and perspectives

Accumulating information of animal and human research strengthen the concept of

microbiome-gut-brain axis. Microbiome controls canonical aspects of the CNS, immunity

and behavior in health and disease. Still, unknowns abound regarding the detailed role of

microbiome in CNS disorders. First, the relative contributions of immune, neural, and

endocrine pathways in microbiome-CNS communications at pathological states need to be

clarified. Second, it is crucial to elucidate the factors at play in microbiome-based

therapeutics and further refine the effective components. Third, caution should be applied to

the translation of animal data to human clinics using existing microbiome studies.

Microbiome research holds conceivable promise for the CNS disorder-relevant prognosis

and therapeutics. Correlational studies that associate microbiota compositional patterns with

specific disorders such as autism types contain prognostic value. Multitudes of commensal

bacteria co-exist with hosts without incurring harmful immune responses. Symbiotic strains

and their products are thus a precious mining pool that contains useful drug candidates with

host-tolerated immune-modulatory functions. Innocuous commensal strains could also act as

carriers for therapeutic substances when engineered. Finally, to restore the richness and

functionality of gut microbial ecosystem by fecal transplantation has been proposed long

time ago yet methodological and ethical obstacles remain.
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Figure 1. Microbiome-gut-brain axis in relation to CNS disorders

Multiple pathways guide the downward and upward directions of the microbiome-gut-brain

axis in the contexts of health and disease. (A) Downwardly, CNS controls gut microbiome

composition through satiation signaling peptides that affect nutrient availability, endocrines

that affect gut functions and neural pathways. HPA axis release of cortisol regulates gut

movement and integrity. Immune (cells, cytokines and sIgAs) pathways can be turned on in

response to altered gut functions. Endocrine and neural pathways can also regulate the

secretion from specialized gut epithelial cells, including paneth cells, enteroendocrine cells

Wang and Kasper Page 27

Brain Behav Immun. Author manuscript; available in PMC 2015 May 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



(ECC) and goblet cells. Their secretory products affect the survival and resident

environment of microbiota. (B) Upwardly, gut microbiome controls CNS activities through

neural (direct activation of neurons by microbiome), endocrine (e.g. ECC release of 5-HT),

metabolic (microbiota synthesis of neuroactive molecules), and immune (CNS infiltrating

immune cells and systemic inflammation) pathways. Microbiome influences CNS at healthy

(neuro-development) and disease (a range of neuro-immune and neuro-psychiatric disorders)

states. Gut luminal microbiota, their products sampled by APCs and epithelium-attaching

SFBs mediate peripheral immune education. Gut microbiome composition, specific strains

within microbiota, probiotic treatment, microbiota-derived products and other factors

constitute the scope of microbiome studies.
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