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SUMMARY
MicroRNAs (miRNAs) have emerged as a class of regulatory RNAs in host–pathogen interactions. Aberrant miRNA
expression seems to play a central role in the pathology of several respiratory viruses, promoting development and
progression of infection. miRNAs may thus serve as therapeutic and prognostic factors for respiratory viral infectious
disease caused by a variety of agents. We present a comprehensive review of recent findings related to the role of
miRNAs in different respiratory viral infections and discuss possible therapeutic opportunities aiming to attenuate
the burden of viral infections. Our review supports the emerging concept that cellular and viral-encoded miRNAs
might be broadly implicated in human respiratory viral infections, with either positive or negative effects on virus life
cycle. Copyright © 2016 John Wiley & Sons, Ltd.
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INTRODUCTION
MicroRNAs (miRNAs) are small endogenous, non-
coding RNAs, approximately 20–25nt long. They
are RNA-sequence-specific post-transcriptional
regulators of gene expression [1]. miRNAs are
expressed in a wide variety of organisms and orig-
inate in the nucleus as primary miRNA transcripts
(~1000nt), which are processed by the dsRNA-
specific endonuclease Drosha into precursor
miRNAs (pre-miRNA). The pre-miRNA (~70nt)
are transported to the cytoplasm, and further proc-
essed by Dicer into mature miRNAs. A single

strand of mature miRNA is incorporated into the
RNA-induced silencing complex (RISC), which
binds to the three prime untranslated region (3 -
UTR) of target mRNA, and exerts direct effects by
blocking the translational process or inducing
mRNA degradation, and indirect effects by
influencing methylation or targeting of transcrip-
tional factors [2,3]. Over 2000 human miRNAs are
currently recognized in the comprehensive miRNA
database miRBase [4], and the function of many of
these miRNAs in various biological processes in-
cluding differentiation, proliferation, metabolism,
and apoptosis is well established [1]. It is estimated
that about 60% of human genes may be subjected
to miRNA regulation. miRNA systems constitute
complex combinatorial networks, where one
miRNA may regulate many mRNA, and con-
versely, one mRNA may be regulated by several
miRNAs [5].

Given the breadth of miRNA-mediated regula-
tion of various biological process and immunity in
mammals, the role of miRNAs has recently been
highlighted in host–pathogen interactions [6–8].
Host–pathogen interaction is the most important
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dynamic system in nature, and epigenetic modifica-
tions and post-transcriptional regulation through
miRNA systems may provide an accessory source
of fast-acting and readily available phenotypic
variation that can be directly carried out by both
host and pathogen selection pressures [9]. Over
the past decade, our knowledge of miRNA pro-
cesses in various biological systems and host–
pathogen interactions has rapidly advanced, but
the precise role of miRNAs in the host–pathogen
interactions is still unclear [10]. A number of studies
in recent years report differential expression and
biological function of miRNAs in airway cells
[11,12]. miRNAs play an important role in physiolog-
ical and pathological aspects of airway cells including
pulmonary development, immune function, fibrosis,
and cancer [13,14]. In airway epithelial cells, miRNAs
have been shown to affect numerous processes
pertaining to respiratory pathogens, such as modula-
tion of innate and adaptive immune responses, cell
cycle progression, and apoptosis induction [7,15].

In this comprehensive review, we discuss recent
findings that indicate an important role for
miRNAs in various respiratory viral infections.
We also discuss the putative significance of these
effects on respiratory viral replication, viral cyto-
pathogenicity, and the immune response. Identify-
ing the role of miRNAs in respiratory viral
infections may enhance our understanding of the
mechanisms of infection and also indicate a poten-
tial future for miRNA-based therapies.

MICRORNA AND VIRUS INTERACTION
Viruses are obligate intracellular infectious agents
that use the host cellular machinery to ensure their
own fitness and survival. The success of viruses prin-
cipally depends on their capability to efficiently use
the host machinery to take advantage of basic bio-
logical processes [16–18]. miRNA systems have sev-
eral features that make them ideal tools for virus
propagation. They are potent post-transcriptional
gene expression regulators. They are both small
and non-antigenic and can modulate expression of
several critical cellular pathways [19–21]. miRNA
systemsmodulate viral replication and pathogenesis
in several ways: (i) Host cell miRNAs can positively
or negatively affect viral replication and pathogene-
sis as a result of their biological functions. (ii) Some
viruses also encode miRNAs. Current evidence indi-
cates that viral-encoded miRNAs target several cel-
lular genes involved in cell proliferation and

survival, stress responses, and anti-viral response.
(iii) Virus-encoded miRNAs may also regulate viral
gene expression [21–27]. Thus, host-encoded
miRNAs, virus-encoded miRNAs, and miRNA tar-
gets together form a novel regulatory system
(miRNA system) between the host and the virus,
which contributes to the outcome of infection [19,28].
Host cellular miRNA expression is profoundly

altered following viral infection (Figure 1), which
affects the viral life cycle including viral replication,
immune responses, and infection outcome [22]. On
the one hand, these changes could represent a host
defense against infection and might therefore act to
inhibit virus replication. On the other hand,
changes in cellular miRNA may be induced by
viruses to prepare a suitable environment for
productive viral infection and/or latency [21]. Host
cellular miRNAs may have direct effects on viral
replication, through positive or negative interac-
tions with viral genomes or other viral factors
[29]. An miRNA system may also contribute to
anti-viral host defense [30]. Evidence suggests that
miRNA can positively or negatively regulate innate
and adaptive immune responses [7]. Furthermore,
host cell miRNAs have potential to regulate virus
tissue tropisms [22]. Thus, miRNAs are utilized by
viruses to invade host cells, replicate in host cell,
evade host immune response, and establish and
maintain virus latency [19,24].
There are several reports demonstrating that

some viruses take advantage of cellular miRNAs
by enhancing the expression of specific cellular
miRNAs. This can enhance virus replication,
apparently by down-regulating specific cellular
mRNA targets with anti-viral potential [31–33].
Alternatively, viruses may use the miRNA system
to limit their own replication in infected cells,
allowing evasion of the host immune response, sur-
vival of infected cells, establishment of viral
latency, and increased spread to other individuals
in a population [34]. Furthermore, other studies
indicate that viral gene products inhibit cellular
miRNA expression [35]. Thus, viruses can induce
certain cellular miRNAs that affect the virus life
cycle positively and inhibit those that affect the
virus life cycle negatively [29]. Interestingly, some
viruses can propagate despite the presence of host
cell-encoded inhibitory miRNA. Viruses may avoid
inhibition by cellular miRNAs by several methods
including: (i) blocking cellular miRNA biogenesis;
(ii) inhibiting cellular miRNA function; or (iii)
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evolving 3 -UTR sequences that miRNAs are un-
able to bind to because they are not complementary
to miRNA, are too short, or have complex second-
ary structures that could restrict binding by RISCs
[36]. However, some reports demonstrated that
specific cellular miRNAs can negatively inhibit vi-
rus replication [37–39].
There are several ways in which the association of

cellular and viral-encoded miRNAs with pathology
and their targets can be identified [35]. Computa-
tional analyses (in silico) for predicting miRNAs and
their targets are applied by most studies as the first
step of a survey. However, computer-based predic-
tions of miRNA-target interactions may or may not
exist in reality and should be verified by in vitro
and/or in vivo investigations, often involving addi-
tion and removal ofmiRNAs from a system. In recent
years, rapid advances in next generation sequencing
have been successfully incorporated to analyze
miRNAs and their targets [40]. In addition, deep
sequencing of small RNAs isolated from virus-
infected cells may provide valuable information [41].

MICRORNAS AND RESPIRATORY VIRUSES
Respiratory viruses are the most common global
health problem with morbidity and mortality world-
wide [42]. Respiratory viral infections are

responsible for an enormous economic burden, pre-
cipitating considerable absence from school and
work, large numbers of visits to clinicians, and also
represent a major cause of exacerbations of chronic
respiratory disease such as asthma and chronic
obstructive pulmonary disease [43]. Viruses most
commonly associated with respiratory infections are
orthomyxoviruses, adenoviruses, paramyxoviruses,
coronaviruses, picornaviruses, human bocavirus,
and human herpesviruses [44]. The availability of
effective vaccines against respiratory viral infections
is limited, and other than the anti-influenza medica-
tions oseltamivir and zanamivir, no clinical anti-viral
treatments for common respiratory viruses are avail-
able [45,46]. Novel anti-viral therapeutic approaches
to prevent and treat respiratory viral infection are
needed according to theWHO initiative Battle against
Respiratory Viruses [47].

In recent years, significant progress has been
made in understanding the molecular mechanisms
underlying respiratory virus infection and host
interaction. Identification and characterization of
the miRNA expression profile following respira-
tory viral infection and its implication in viral infec-
tion is an important tool for understanding
host–virus interaction, mechanisms of infection,
and also therapy strategy development. Here, we

Figure 1. Following viral infection, host cells alter their microRNAs (miRNAs) expression as a defense against infection, while viruses can cir-
cumvent host defense and promote their own propagation by affecting host cellular miRNAs expression or by expressing their own miRNAs
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summarize the literature data on such host-
respiratory virus implications in humans and dis-
cuss how these implications can be used as research
tools or targets in the development of novel anti-
viral therapeutics (Table 1).

RNA VIRUSES
Unlike DNA viruses, RNA viruses usually do not
encode their own miRNA, and the reasons behind
this discrepancy are debated theoretically [89].
The majority of RNA viruses replicate in the
cytoplasm where they cannot access the nuclear
enzyme Drosha, which is required for miRNA pro-
cessing. Those RNA viruses, which do have access
to the nucleus (e.g. influenza and HIV-1), may
avoid encoding their own miRNAs because exci-
sion of a primary miRNA from RNA virus genome
would induce cleavage and destruction of viral
genome [20,27]. In addition, viruses that undergo
short lytic replication cycles are less likely to
encode miRNAs [22].

Influenza virus
Influenza virus is a common respiratory pathogen
that primarily infects airway epithelial cells and
leads to clinical outcomes ranging from mild upper
respiratory infection to severe pneumonia [90]. The
host cellular response, specifically miRNA dysreg-
ulation, is likely to play a critical role in influenza
infection outcome [53,58]. Recent studies show dis-
tinct miRNA expression profiles in ill patients with
influenza A (H1N1), that is, down-regulation of
miR-29a, miR-29c, let-7g, miR-146b-5p, miR-150,
miR-342-3p, miR-769-5p, miR-30b, miR-31, miR-
361-3p, miR-362-3p, miR-342, miR-155, miR-210,
and miR-192. These miRNAs are involved in the
regulation of important biological pathways dur-
ing virus infection, such as mitogen-activated pro-
tein kinase, epidermal growth factor receptor, and
toll-like receptor signaling pathways [91]. Addi-
tional studies detected high expression of miR-
299-5p and miR-335 in influenza patients [91,92].
In contrast, miR-765, miR-34b, miR-519e, miR-18a,
miR-628-3p, miR-185, miR-576-3p, miR-519d, miR-
28-5p, miR-26a, miR-1285, miR-665, and miR-30a
were down-regulated in H1N1 patients, and inter-
estingly, miR-576-3p could affect viral entry into
cells by regulating AP1G1 expression [60]. Further-
more, miR-17, miR-20a, miR-106a, and miR-376c
were significantly elevated in H7N9 patients [93].

The virulence of influenza virus may be medi-
ated in part by host cellular miRNAs via dysregula-
tion of pathways critical for anti-viral immune
responses [48]. Influenza infection up-regulates
miR-29 expression, which is involved in regulation
of both innate and adaptive immune responses
through protection of A20 mRNA [32]. miR-29 acts
as an RNA decoy to prevent HuR (human antigen
R) from binding to the A20 3 -UTR and recruiting
the RISC [94]. A20 is a deubiquitinating enzyme
known to play an important role in terminating
the anti-viral immune response by inhibiting nu-
clear factor kappa B (NF-kB) and interferon regula-
tory factor pathways [95]. Influenza infection of
A549 cells induces expression of miR-146a, also a
negative regulator of NF-kB [51]. Interestingly,
one study showed that the zoonotic respiratory
hendra virus induces miR-146a, which promotes
viral replication by targeting ring finger protein 11
[33]. In a study by Huang, et al., up-regulation of
several miRNAs including miR-15b-3p, miR-24-2-
5p, miR-331-3p, miR-124-3p, and miR-337-5p was
demonstrated following H1N1 infection. These
miRNAs participate in toll-like receptor and RIG-
I-like receptor signaling pathways, and also regu-
late IL-1β and TNF receptor-associated factor 3
[52]. Furthermore, miR-7, miR-132, miR-146a,
miR-187, miR-200c, and miR-1275 accumulate in
human lung cell lines in response to infection with
two influenza A virus strains, A/Udorn/72 and
A/WSN/33, causing down-regulation of anti-viral
proteins such as interleukin-1 receptor-associated
kinase (IRAK1) and mitogen-activated protein
kinase 3 [53].
Virulence of highly pathogenic influenza viruses

may be mediated in part by host cellular miRNAs.
For example, the highly pathogenic H5N1 virus
induces miR-141 shortly after infection, which
suppresses the expression of transforming growth
factor-β in lung epithelial cells [58]. Without suffi-
cient transforming growth factor-β, the pro-
inflammatory response might not be tightly
controlled in cases of highly pathogenic H5N1
infection [96]. The 1918 pandemic influenza virus
induces a distinct miRNA expression profile in
mice compared with non-lethal influenza
A/Texas/36/91, including down-regulation of
miR-200a and up-regulation of miR-223; miR-
223 is a negative modulator of neutrophil
activation, and miR-200a has a role in the type I
IFN response [59].
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Table 1. miRNAs effects in respiratory viral infection

Virus miRNAs Effects Reference

Influenza miR-30 down-regulation
and miR-223 up-regulation

Regulate apoptosis [48]

miR-29 up-regulation Regulates apoptosis [49]
miR-4276 induction Inhibits COX6C and caspase-9 [50]
miR-29 up-regulation Protects A20 mRNA [32]
miR-146a induction Regulates immune response [51]
miR-15b-3p, miR-24-2-5p, miR-331-3p,
miR-124-3p, and miR-337-5p up-
regulation

Regulate anti-viral response [52]

miR-7, miR-132, miR-146a, miR-187,
miR-200c, and miR-1275 expression

Regulate anti-viral response [53]

miR-106b, miR-124, and
miR-1254 expression

Regulate human protease genes [54]

miR-24 down-regulation Up-regulates furin mRNA [55]
miR-21 expression Inhibits proliferation-suppressing

factors
[56]

miR-30 family down-regulation Contribute to higher proliferation [57]
miR-141 up-regulation Suppress expression of TGF-β [58]
miR-200a and miR-223 expression Regulate neutrophil and IFN-I

response
[59]

miR-576-3p down-regulation Regulates virus entry [60]
miR-323, miR-491, and miR-654
expression

Inhibit H1N1 influenza replication [37]

let-7c expression Inhibits M1 protein [39]
RSV let-7f expression Contributes to delayed viral

clearance
[31]

let-7i and miR-30b inhibition Enhance viral replication [61]
miR-221 silencing Enhance NGF and TrkA expression [62]
miR-125a down-regulation Contributes to the virus immune

evasion
[63]

Coronavirus miR-17, miR-574-5p, and
miR-214 up-regulation

Contribute to virus evade immune
elimination

[64]

miR-9 expression Potentiates NF-kB activation [65]
Rhinovirus miR-128 and miR-155 expression Contribute to the anti-viral activity

against rhinovirus-1B
[38]

miR-23b expression Inhibits infections of minor
group rhinoviruses

[66]

HMPV miR-30a and miR-16 inhibition Regulate host cellular response to
HMPV virus infection

[67]

Adenovirus miVARNAs expression Targets cellular and viral genes [68]
miVARNAs expression Inhibits human pre-miRNA [69]
miVARNAs expression Down-regulates the TIA-1

expression
[70]

miVARNAs expression Down-regulates the HDGF
expression

[71]

miR-214 expression Inhibits virus replication [72]

Continues
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Apoptosis is characteristic of influenza virus
infection, and the mechanisms underlying this
have advanced understanding of influenza virus
replication [49,50]. According to Othumpangat,
et al., in the first hours after influenza infection,
down-regulation of miR-4276 increases cytochrome
c oxidase VIC expression, inhibiting viral replica-
tion by inducing the apoptotic protein caspase-9.
However, after 6 to 9h, this effect is completely
reversed, thereby prolonging cell survival. This
may suggest that influenza virus is able to induce
miR-4276 and inhibit cytochrome c oxidase VIC
and caspase-9 expression, thus promoting viral
replication [50]. Recent studies have revealed that
miR-29 family members are up-regulated during

influenza infection, especially miR-29c, which tar-
gets the anti-apoptotic factor B-cell lymphoma 2-
like 2 contributing to virus-mediated apoptosis
[49]. Furthermore, down-regulation of miR-30 fam-
ily members and up-regulation of miR-223 during
influenza infection lead to increased apoptosis [48].
The expression of host genes required for influ-

enza virus replication can be regulated by multiple
cellular miRNAs, for example, miR-106b, miR-124,
and miR-1254 regulate human protease genes
(ADAMTS7, CPE, DPP3, MST1, and PRSS12) that
are essential for influenza replication [54]. In addi-
tion, down-regulation of miR-24 with a concomi-
tant up-regulation of furin mRNA has been
demonstrated during the influenza H5N1 infection

Table 1. (Continued)

Virus miRNAs Effects Reference

miR-466 expression Down-regulates the level of CAR
protein

[73]

miR-1, miR-34, miR-22,
miR-365, miR-29, miR-145,
and let-7 expression

Target Rb-dependent cell cycle and
DNA replication mRNAs

[74]

HCMV miR-US4-1 expression Inhibits CD8+T cell response [75]
miR-UL112 expression Attenuates NK cell activity [76]
miR-UL148D expression Targets the human chemokine

CCL5
[77]

miR-UL112-3p expression Targets TLR2 and following
signaling

[78]

miR-UL112-1 expression Down-regulates IL-32 expression [79]
miR-US25-1-5p expression Inhibits viral replication [80]
miR-US25-2 expression Reduces viral replication [81]
miR-200 family members
expression

Targets the UL122 expression [82]

miR-US33 expression Down-regulates virus replication [83]
miR-UL112-1 expression Decreases genomic viral DNA

levels
[84]

miR-UL112-1 expression Down-regulates cellular BclAF1 [85]
miR-UL112-1, miR-US5-1,
and miR-US5-2 expression

Target multiple components of
the host secretory pathway

[86]

miR-UL70-3p and miR-UL148D
expression

Target the pro-apoptotic genes [87]

HHV-6 miR-U86 expression Targets the HHV-6A IE gene U86,
thereby regulates virus lytic
replication

[88]

miRNAs, microRNAs; TGF-β, transforming growth factor-β; COX6C, cytochrome c oxidase VIC; NGF, nerve growth
factor; TrkA, tropomyosin-related kinase A; NF-kB, nuclear factor kappa B; HMPV, human metapneumovirus; HCMV,
human cytomegalovirus; CAR, Coxsackie virus and adenovirus receptor; HDGF, hepatoma-derived growth factor.
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in A549 cells. miR-24 regulates furin-mediated acti-
vation of influenza hemagglutinin precursor and
subsequent production of fusion-competent virions
in the host secretory pathway [55].
Some miRNAs play important roles in priming

airway cells for repair and regeneration following
influenza infection [97]. Elevated expression of
miR-21 throughout repair and regeneration corre-
sponds with increased cell proliferation in repairing
lungs, because miR-21 targets proliferation-
suppressing factors [56]. ThemiR-30 familywas sig-
nificantly down-regulated during repair consistent
with increased expression of its main target p53,
which promotes proliferation in recovering lung
tissues [57].
While influenza virus can clearly take advantage

of cellular miRNAs via their promotion or inhibi-
tion, it is also revealed that certain cellular miRNAs
can inhibit replication of influenza viruses in
infected cells [37,39]. miR-323, miR-491, and miR-
654 inhibit replication of the H1N1 influenza A
virus in MDCK cells by targeting the same con-
served region in the influenza PB1 gene [37].

Furthermore, let-7c inhibits M1 protein expression
of the H1N1 influenza A virus in A549 cells [39].

Overall, these results suggest that influenza respi-
ratory infection induces or inhibits expression of cer-
tain miRNAs in airway cells that favor viral
replication, pathogenesis, and also suppress anti-viral
responses (Figure 2). Thus, cellular miRNAs associ-
ated with immune response, apoptosis, and protease
genes could be the best candidates for development
of miRNA-based therapies for influenza disease.
However, caution must be taken due to the
immunopathogenic character of influenza infection.

Respiratory syncytial virus
RSVis a leading cause of viral respiratory tract disease
among infants and young children [98,99]. World-
wide, 33.8 million episodes of RSV-associated acute
lower respiratory tract infections are estimated to
occur in children <5years of age [100]. In developed
countries, the RSV-associated mortality rates are
reported to be approximately three deaths per
100000 in children younger than 1year [101–104].

Figure 2. Influenza infection of airway epithelial cells induces or inhibits certain cellular microRNAs (miRNAs) expression in favor of
viral replication, pathogenesis, and also suppress anti-viral responses. However, certain cellular miRNAs can inhibit replication of influ-
enza in infected cells, and certain miRNAs play important roles in priming airway cells for repair and regeneration following influenza
infection
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RSV infection is a common example of viruses
that modulate host miRNA expression to influence
the outcome of the anti-viral host response and
viral replication [7,15,105]. Distinct immune-
associated miRNA expression profiles have been
detected in the nasal epithelium of RSV-positive in-
fants; down-regulation of miR-34b, miR-34c, miR-
125b, miR-29c, miR125a, miR-429, and miR-27b,
and up-regulation of miR-155, miR-31, miR-203a,
miR-16, and let-7d were detected in these patients.
In addition, miR-125a and miR-429 were down-
regulated in mild disease, but not in severe disease,
and the lack of down-regulation in severe disease
may rationalize the observed differences in disease
manifestations following RSV infection [63]. miR-
125a regulates the expression of NF-kB by sup-
pressing the inhibitor protein A20, and chemokine
(C-C motif) ligand (CCL5), an important cytokine
in both innate and adaptive immune systems [106].

RSV infection of A549 cells induced let-7f, miR-
24, miR-337-3p, miR-26b, and miR-520a-5p and
repressed miR-198 and miR-59 expression. Let-7f
expression was RSV G protein dependent, and its
expression likely contributes to delayed viral clear-
ance by targeting CCL7 and suppressor of cytokine
signaling 3, which are involved in anti-viral
response [31]. In another study, let-7b, let-7c, let-
7i, and miR-30b were up-regulated on RSV infec-
tion of monocyte derived dendritic cells and hu-
man bronchial epithelial cells, and associated with
IFN-β and/or NF-kB activation. Interestingly, RSV
nonstructural proteins NS1 and NS2 antagonized
the up-regulation of let-7i and miR-30b, a process
that may favor viral replication [61]. The miRNAs
described in these studies have a number of exper-
imentally confirmed targets that are associated
with RSV replication and pathology. For example,
an experimentally confirmed target of the let-7 fam-
ily is IL-13, which appears to enhance the severity
of disease [107].

RSV infection modifies the expression of critical
neurotrophic factors and receptors such as nerve
growth factor (NGF), and its cognate high-affinity
receptor tropomyosin-related kinase A (TrkA),
which prevents apoptosis by increasing expression
of the anti-apoptotic Bcl-2 family members [108]. In
human bronchial epithelial cells, high levels of
intracellular miR-221 reduced NGF and TrkA
expression, which favor the apoptotic death of
infected cells, and attenuate virus infection. RSV
infection reduces miR-221 expression, thus

interfering with the apoptotic death of infected cells
by increasing NGF and TrkA expression and ulti-
mately promoting viral replication [62].
Overall, these findings suggest that following

RSV respiratory infection, an altered expression
profile of distinct immune-associated miRNAs
occurs in the airway cells that inhibit viral replica-
tion and preserve the airway epithelial barrier.
However, the virus concurrently induces or inhibits
the expression of other miRNAs that favor viral
replication (Figure 3). These conflicting miRNA ef-
fects during RSV infection may provide treatment
options in susceptible individuals. However,
attempts to modulate RSV pathology in clinical
practice should be made with caution as RSV
immunopathogenesis is complicated and an early
RSV vaccine candidate caused serious adverse
events during natural RSV infection [109].

Coronaviruses
Coronaviruses can cause a wide spectrum of respi-
ratory infections ranging from mild, upper respira-
tory tract infections to severe and life-threatening
lower respiratory tract infections [110]. There are
no in vivo studies regarding the role of miRNAs in
coronaviruses infection, but the OC43 virus has
been investigated in vitro, and severe acute respira-
tory syndrome-coronavirus (SARS-CoV) and
Middle East respiratory syndrome-coronavirus
(MERS-CoV) were analyzed by in silico methods
(Figure 4).
The coronavirus OC43 contributes to the com-

mon cold worldwide [112]. Coronavirus N protein
is essential for replication and binds to genomic
RNA to form a helical capsid. OC43 N protein
potentiates NF-kB activation by binding to its neg-
ative regulator miR-9. It is not clear whether NF-kB
activation is directly beneficial to viral replication,
or whether this is an incidental effect that limits
viral virulence. Compared with more pathogenic
coronaviruses, reduced OC43 virulence with lim-
ited symptoms may promote contact between
infected and non-infected individuals and thus pro-
mote spread of the virus within a population [65].
This novel mechanism of miRNA-binding to pro-
mote gene activity may provide insight into the
mechanisms by which successful RNA viruses
avoid the host immune system or cause pathology.
Severe acute respiratory syndrome-coronavirus

is a novel coronavirus that threatened to cause a
global pandemic of the severe acute respiratory
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syndrome in 2002–2003 [113]. An in silico analysis
of miRNA interactions with SARS-CoV mRNA
suggested that the virus might suppress its own
replication early during infection by up-regulation
of miR-17, miR-574-5p, and miR-214. These host
miRNAs target all four virulent viral proteins,
spike (S), nucleocapsid (N), matrix (M), and enve-
lope (E) [64]. Suppression of viral replication may
aid evasion of immune surveillance until successful
infection of other cells. These results demonstrate
how SARS-CoV might alter host miRNA expres-
sion profile to its own advantage.
Middle East respiratory syndrome, caused by a

novel human coronavirus MERS-CoV, has emerged
recently [114]. An in silico analysis identified miR-
628-5p, miR-6804-3p, miR-4289, miR-208a-3p,
miR-510-3p, miR-18a-3p, miR-329-3p, miR-548ax,
miR-3934-5p, miR-4474-5p, miR-7974, miR-6865-
5p, and miR-342-3p as having significant sequence
similarity to hairpin structures in the MERS-CoV
genome, and they may thus down-regulate viral
gene expression to inhibit viral replication [111].

This knowledge may help us to better understand
host–virus interactions with the intention to de-
velop new anti-viral therapies against MERS-CoV,
a highly lethal respiratory disease.

Rhinoviruses
Rhinoviruses are members of the Picornaviridae
family. Rhinoviruses cause respiratory infection in
humans with severity ranging from the common
cold to viral bronchiolitis, and exacerbations of
asthma and chronic obstructive pulmonary disease
[115]. Bondanese, et al. showed that cellular
miRNAs miR-128 and miR-155 with putative sites
in the rhinovirus-1B coding region can inhibit virus
replication. miR-128 inhibition seemed to increase
viral replication by inducing apoptosis. The detec-
tion of miR-155-mediated anti-viral activity in
bronchial epithelial cells is very relevant because
thismiRNAhas a central role in innate and adaptive
immunity. As an example, miR-155 has been shown
to target suppressor of cytokine signaling 1, an
inhibitor of type I IFN signaling [38].

Figure 3. Following RSV respiratory infection, an altered expression profile of certain cellular miRNAs, specifically immune-associated
miRNAs, occurs in order to inhibit viral replication and preserve the airway epithelial barrier; meanwhile, the virus induces or inhibits the
expression of other miRNAs that favor viral replication. The RSV G protein enhances let-7f, the RSV NS1/NS2 proteins decrease miR-30b
and enhance let-7i, and RSV infection decrease miR-221, which is an advantage for the virus
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A minor group of rhinoviruses including sub-
types 1A, 1B, 2, 23, 25, 29, 30, 31, 44, 47, 49, and
62 commonly utilize the very low-density lipopro-
tein receptor (VLDLR) for entry into host cells,
and cause disease more often than the major group.
Recent evidence published by Ouda, et al., showed
that down-regulation of VLDLR by miR-23b is of
significance for host defense against the minor
group of rhinoviruses. miR-23b was induced by
RIG-I-like receptor signaling resulting in suppres-
sion of respiratory infections caused by minor
group viruses, specifically rhinovirus-1B through
down-regulation of its receptor VLDLR [66]. In
conclusion, these results suggest that miRNAs play
an important role in human anti-viral responses
against rhinovirus infection (Figure 5).

Human metapneumovirus
Human metapneumovirus causes acute respiratory
disease in infants, the elderly, and immunocompro-
mised individuals ranging frommild upper respira-
tory illness to more serious lower respiratory illness
[117]. Limited literature is available regarding the
role of miRNAs in human metapneumovirus

(HMPV) infection. Deng, et al. reported that host
airway epithelial cells alter their miRNA expression
profile upon HMPV infection as a defense mecha-
nism against the virus. The HMPV M2-2 protein
acted as a key viral protein that regulated host cell
miRNA expression, specifically antagonizing miR-
30a and miR-16 (Figure 5). Interestingly, M2-2-
mediated miR-16 suppression was interferon de-
pendent, whereas suppression of miR-30a was in-
terferon independent [67].
The aforementioned data suggest a new way in

which HMPV regulates the host cell response to
infection. There are currently no licensed therapeu-
tics or vaccines against HMPV. These and future
studies may help the development of effective
miRNA-based therapies.

DNA VIRUSES
Many DNA viruses encode their own miRNAs,
because they generally replicate in the nucleus and
have access to the canonical miRNA pathway
(except poxviruses) [27].Most DNAviruses establish
long-term latent or persistent infections and take
advantage of virus-encoded and host cell miRNAs

Figure 4. Coronaviruses interact with the host cell at the onset of infection and induces several changes in host cellular microRNAs
(miRNAs) expression profile to their own advantage; severe acute respiratory syndrome-coronavirus (SARS-CoV) uses cellular miRNAs
machinery to evade immune elimination [64]; in Middle East respiratory syndrome-coronavirus (MERS-CoV), host cells miRNAs would
be an anti-viral therapeutic agent [111], and the N protein of OC43-coronavirus (OC43-CoV) causes potentiation of nuclear factor kappa
B (NF-kB) activation via binding to its negative regulator miR-9 [65]
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[22]. Because of the fact that viral miRNAs, unlike vi-
ral proteins, are non-immunogenic, viruses have de-
veloped their own miRNAs in order to escape and
suppress both host innate and adaptive immune re-
sponses [118].

Adenoviruses
Adenoviruses cause mild to serious respiratory tract
infections in many age groups [119]. Adenovirus in-
fection has a great impact on cellular miRNA expres-
sion profiles [120,121]. A total of 44 miRNAs
demonstrated high expression and 36 miRNAs low
expression following adenovirus type 3 infection in
human laryngeal epithelial cells [120]. A temporal
study demonstrated dramatic changes in cellular
miRNA expression patterns during the course of
adenovirus type 2 infection in lung fibroblast cells;
up-regulation of miR-22, miR-320, let-7, miR-181b,
miR-155, miR-125, miR-27, and miR-191 and down-
regulation of miR-21, miR-31, let-7 family, miR-30
family, and miR-23/27 cluster was detected. These
miRNAs have been associated with host immune
evasion and inflammatory responses, as well as in
virus entry, replication, and propagation [121].
Adenoviruses encode a set of highly abundant

miRNAs that are generated by Dicer-mediated cleav-
age of the larger non-coding virus-associated RNAs
(VARNAs) I and II. VARNAs are dsRNA molecules
similar in structure to cellular pre-miRNAs. They are

transported by exportin 5 into the cytoplasm, and
processed to functional viral miRNAs (miVARNAs)
[122]. miVARNAs actively target the expression of
cellular genes involved in cell proliferation, DNA re-
pair, or RNA regulation [68]. VARNAs are expressed
at very high levels in adenovirus-infected cells and
potently inhibit human pre-miRNA via inhibition of
nuclear export of pre-miRNA, competition for
exportin 5 to facilitate their transportation, and inhibi-
tion of Dicer activity by direct binding to Dicer
[69,123]. Adenovirus miVARNAs target cellular and
viral genes that are important for the virus cell cycle.
Hepatoma-derived growth factor inhibits adenovirus
growth. However, the expression level of hepatoma-
derived growth factor significantly decreased in
response to miVARNAs under replication-deficient
conditions, and this suppression was also observed
during the early phase of viral infection under
replication-competent conditions [71]. Adenovirus
miVARNAs also target cellular genes involved in cell
growth, gene expression and DNA repair. The TIA-1
(cytotoxic granule-associated RNA binding protein)
is down-regulated at mRNA and protein levels in
infected cells expressing functional miVARNAs and
in transfected cells [70].

Conversely, cellular miRNAs may play a role in
anti-adenovirus replication by regulating virus
gene expression. It was shown that cellular miR-
214 inhibits adenovirus replication by regulating
the translation of viral E1A protein, which is key

Figure 5. In rhinoviruses infection, cellular microRNAs play anti-viral responses against viruses [38], human metapneumovirus (HMPV)
M2-2 regulates the host cell microRNAs response to infection [67], and HHV-6A miR-U86 targets the HHV-6A IE gene U86, thereby regu-
lating virus lytic replication [116].
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to the activation of other adenovirus genes, while
inhibition of miR-214 increases the productive effi-
ciency of the virus [72]. Lam, et al. showed that
cellular miR-466 can effectively down-regulate
human Coxsackie virus and adenovirus receptor
protein expression [73]. Furthermore, a subset of
cellular miRNAs including miR-1, miR-34, miR-
22, miR-365, miR-29, miR-145, and let-7 was shown
to coordinately target retinoblastoma-dependent
cell cycle and DNA replication mRNAs to restrict
proliferation [74].

Taken together, these results suggest that
miVARNA-mediated silencing can represent a novel
mechanism used by adenoviruses to control cellular
or viral gene expression, and are potential therapeutic
targets. The actions of cellular miRNAs may also be
exploited to combat adenovirus infection (Figure 6).

Human cytomegalovirus
Human cytomegalovirus (HCMV), a DNA virus,
infects a broad range of human cell types and dis-
rupts cellular processes through a variety of mech-
anisms. For example, HCMV uses several of its

own encoded proteins to disrupt the MHC class I
pathway [124] and the fine balance between a ben-
eficial and a destructive immune response [82], and
uses several of its own encoded miRNAs to disrupt
a variety of cellular pathways such as
TLR2/IRAK1/NF-kB signaling [125]. This virus
therefore induces a complex and diverse pathogen-
esis, and is an opportunistic pathogen causing lung
infection in immunocompromised individuals
[126]. Host cell miRNA expression levels may de-
termine the cellular site of HCMV infection. As an
example, host miR-200 family members target the
HCMV protein UL112 resulting in repression of
this viral protein, and cells permissive for lytic
HCMV replication demonstrate low levels of these
miRNAs [127]. However, HCMV can also selec-
tively alter the expression of some cellular miRNAs
to help its own replication [128]. For example, sig-
nificant up-regulation of miR-96, miR-182, and
miR-183 have been observed following infection
[77]. A study by Fu, et al., indicated that expression
of host miRNAs may be affected by latent HCMV;
at least 49 miRNAs were differentially expressed;

Figure 6. Adenovirus encodes viral miRNAs (miVARNAs) that potently inhibit human pre-microRNA (miRNA) via inhibition the nuclear
export of pre-miRNA, competition for the exportin 5, and inhibition of Dicer activity by direct binding of Dicer. The miVARNAs are able
to target cellular and viral genes that are important for virus cell cycle. Adenovirus miVARNAs target cellular genes involved in cell pro-
liferation, DNA repairing, and RNA regulation. However, cellular miRNAs may play a role in anti-adenovirus replication by regulating
virus gene expression.
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39 were up-regulated and 10 were down-regulated
accordingly [76]. In addition, HCMV encodes its
own miRNAs that target both viral and cellular
genes in order to regulate viral replication, viral
latency, cell survival, and anti-viral immunity
(Figure 7) [79].
Human cytomegalovirus has miRNAs that help

escape and suppress both host innate and adaptive
immune responses [118]. HCMV-encoded miR-
UL148D modulates host immune response by
directly targeting the mRNA of human chemokine
CCL5 [78]. HCMV miR-UL112 attenuates NK cell
activity by inhibition of type I IFN secretion [75],
down-regulation of IL-32 expression [129], and
TLR2 targeting, causing significant modulation of
the downstream signaling pathway (TLR2/
IRAK1/NF-kB) [125]. HCMV may evade CD8+

T-cells by altering MHC class 1 antigen expression;
HCMV miR-US4-1 targets the endoplasmic reticu-
lum aminopeptidase 1, a key step in the MHC class
I antigen-processing pathway [80]. Furthermore,
HCMV expresses miR-US25-2 and, in addition,
increases cellular miR-17p expression, both of
which target tissue inhibitor of metalloproteinase
3. Reduced tissue inhibitor of metalloproteinase 3

expression following HCMV infection reduces sig-
naling via the MHC class I-like ligand MICA [81].

Some HCMV-encoded miRNAs suppress virus
replication and lytic infection, which could help
the virus to establish or maintain latent infection.
It has been reported that HCMV miR-US25-1-5p
was highly expressed during lytic and latent infec-
tions, and inhibited viral replication [83]; HCMV
miR-US25-2 reduces viral replication by targeting
the RNA helicase eIF4A1, which is a requisite for
translation of viral mRNA [130], and HCMV miR-
US33 negatively influences virus replication, possi-
bly by suppression of the HCMV gene US29 [84] or
cellular syntaxin 3 expression [131]. Premature
expression of HCMVmiR-UL112-1 during infection
resulted in a significant decrease in genomic viral
DNA levels, suggesting a functional role for miR-
UL112-1 in regulating the expression of genes
involved in viral replication [85]. Finally, HCMV
encodes latency-associated CMV-IL-10, a homologue
for cellular IL-10 associated with latent infection.
Latency-associated CMV-IL-10 has been shown to
suppress miR-92a, resulting in up-regulation of its
target CCL8. The mechanisms for both miR-92a sup-
pression and how CCL8 up-regulation might

Figure 7. Human cytomegalovirus, a DNA virus, encodes its own microRNAs, and human cytomegalovirus microRNAs target both viral
and cellular genes in order to; first regulation of viral replication, second regulation of viral latency infection, and third regulation of cel-
lular anti-viral immunity.
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promote latent infection are unclear, but seem to be
associated with increased immune-regulatory cellu-
lar IL-10. These results provide insight into how
HCMV can alter host gene expression [86].

Human cytomegalovirus-encoded miRNAs do
not only suppress virus lytic replication but can
also enhance virus replication. For example,
HCMV-restricting cellular BclAF1 is down-
regulated late in infection by HCMV-encoded
miR-UL112-1 to promote virus production [87].
Furthermore, multiple HCMV-encoded miRNAs
coordinately regulate reorganization of the secre-
tory pathways responsible for controlling cytokine
secretion and facilitate formation of the viral
assembly compartment for efficient infectious virus
production. In this aspect, HCMV-encoded
miRNAs such as miR-UL112-1, miR-US5-1, and
miR-US5-2 target multiple components of the host
secretory pathways, including VAMP3, RAB5C,
RAB11A, SNAP23, and CDC42 [132]. Additionally,
HCMV employs its miRNA repertoire to counter
cellular apoptosis and autophagy, particularly the
mitochondrial-dependent intrinsic pathway of apo-
ptosis. The pro-apoptotic genes MOAP1, PHAP,
and ERN1 are identified as potential targets for
miR-UL70-3p and miR-UL148D, respectively
[133]. Finally, a viral intergenetic non-coding RNA
element, composed of highly conserved sequences
throughout HCMV clinical strains, selectively
degrades the cellular miR-17 family members of
the miR-17-92 cluster and accelerates virus produc-
tion [134].

Overall, these results suggest that identification
and characterization of the HCMV-encoded
miRNAs that are expressed during lytic and latent
infection are crucial to understanding their roles
in HCMV persistence, pathogenesis, and disease.
Knowledge of host and viral miRNAs expressed
during HCMV infection can thus provide a precise
insight into viral pathogenesis and may help
researchers to develop new therapeutic
approaches.

Human herpesvirus 6
HHV-6, a DNA virus in the betaherpesvirus sub-
family, is associated with several human diseases.
Complications of acute respiratory tract infection
such as pneumonia and sinusitis in young children
are associated with HHV-6 as is limbic encephalitis
following hematopoietic stem cell transplantation.
In addition, HHV-6 salivary gland replication and

subsequent secretion in saliva is the epidemiologi-
cally proven source of transmission [88,135]. As
discussed previously, herpesvirus-derived
miRNAs play considerable roles in modulating
both cellular and viral gene expression, thereby
facilitating a suitable environment for productive
viral infection and/or latency. Like other human
herpesviruses, HHV-6 encodes its own miRNAs,
promoting efficient viral infection [116,136]. An
miRNA encoded by HHV-6A (miR-U86) targets
the HHV-6A IE gene U86, thereby regulating lytic
replication, as revealed by growth analyses of
mutant viruses (Figure 5) [116]. However, HHV-
6B encodes at least four pre-miRNAs at two
positions within the genome in an antisense orien-
tation related to predicted HHV-6B-specific genes
[136]. These data suggest that HHV-6, like other
herpesviruses, encodes its own miRNAs, but the
precise function of these miRNAs in HHV6B
requires further investigation.

CONCLUSIONS
This comprehensive review attempts to highlight
the role of miRNAs in replication as well as patho-
genesis of respiratory viral infections. miRNAs
modulate a variety of cellular processes by regulat-
ing multiple targets, promoting or inhibiting the
development of viral infection [29]. Increasing
evidence regarding disrupted miRNA expression
and function following viral infection makes them
promising targets for therapeutic interventions
[137]. The development of miRNA-based therapy
for respiratory infection is less advanced compared
with other viral infections, such as hepatitis C.
Improved knowledge on the cross-talk between
host cells and viruses should increase our under-
standing of the molecular basis for viral pathogen-
esis and may enable us to develop better
therapeutic strategies [23].
Therapeutic modulation of miRNAs can be

achieved through miRNA inhibitors to disrupt
miRNA function or miRNA mimics to increase
miRNA function [138]. The application of
miRNA-based therapies is in its beginning, and
important difficulties remain. A significant barrier
to miRNA-based therapy is the development of
essential pharmaceutical strategies for targeted
delivery to specific sites with minimum toxicity
[139,140]. In support of this, novel nanotechnol-
ogies and delivery methods are under develop-
ment for efficient and effective delivery [140,141].
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Alongside the critical role of miRNAs in the reg-
ulation of viral respiratory infection and their
potential to be targeted by new therapeutics,
caution must be taken because excessive inhibition
or overexpression of miRNAs might predispose
patients to cellular abnormalities, impaired immu-
nity, or even cancer. The relevance of miRNAs in vi-
ral infection has been proven broadly; however, the
exact role of each miRNA on viral pathogenesis

remains to be determined, and future studies are
warranted. Enhancing the knowledge on miRNAs
may open opportunities to use them in clinical
practice in order to develop more accurate and
powerful diagnostic and therapeutic strategies.
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