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The Role of Mitochondrial DNA Mutations
in Mammalian Aging
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ABSTRACT

M itochondrial DNA (mtDNA) accumulates both
base-substitution mutations and deletions with
aging in several tissues in mammals. Here, we

examine the evidence supporting a causative role for mtDNA
mutations in mammalian aging. We describe and compare
human diseases and mouse models associated with
mitochondrial genome instability. We also discuss potential
mechanisms for the generation of these mutations and the
means by which they may mediate their pathological
consequences. Strategies for slowing the accumulation and
attenuating the effects of mtDNA mutations are discussed.

Introduction

The mitochondrial theory of aging is based on the premise
that reactive oxygen species (ROS), generated throughout the
lifespan of an organism, damage mitochondrial
macromolecules, including proteins, lipids, and mtDNA.
Although most molecular damage is reversible through repair
or molecular turnover mechanisms, unrepaired DNA damage
may lead to mutations that accumulate as a function of age.
The accumulation of mutations ultimately leads to
permanent age-related mitochondrial dysfunction, which
contributes to the aging phenotype. The mammalian
mitochondrial genome is compact (;16 kbp), encoding 13
essential subunits of the respiratory chain and multiple
tRNAs and rRNAs. Because cells may have hundreds of
mitochondria, and each carries multiple copies of mtDNA,
the contribution of mtDNA mutations and deletions to
normal aging remains a controversial issue.

Evidence for a Causal Role of mtDNA Mutations in
Aging

Because the most obvious consequence of mtDNA
mutations is an impairment of energy metabolism, most
studies addressing aging effects have focused on tissues that
are postmitotic and display high energetic demands, such as
the heart, skeletal muscle, and the brain. Indeed, several
studies have unambiguously demonstrated that mtDNA base-
substitution mutations accumulate as a result of aging in a
variety of tissues and species, including rodents, rhesus
monkeys, and humans. In humans, initial studies focused on
quantification of individual base-substitution mutations in
mtDNA that were shown previously to be pathological in
human inherited mitochondrial diseases. For example, the
A3243G mtDNA mutation, which results in maternally
inherited mitochondrial encephalomyopathy, lactic acidosis,
and stroke-like episodes syndrome (MELAS), increases with
age in the skeletal muscle of normal humans [1], but only a
small fraction of mtDNA molecules in phenotypically normal

humans is likely to carry these disease-associated mutations.
Thus, it is unlikely that these mutations have deleterious
consequences in normal aging. Studies performed in the
Attardi laboratory have established that some specific base-
substitution mutations can reach high levels in fibroblast cells
derived from aged individuals [2] and also in skeletal muscle
[3]. The reason why these specific mutations accumulate in
mtDNA is unclear, but they are tissue-specific and occur in
mtDNA control sites for replication. Interestingly, the same
group has found a C150T transition mutation that occurs in
most or all mtDNA molecules (i.e., a homoplasmic mutation)
is present in leukocytes from approximately 17% of
individuals aged 99–106 years old. This mutation is associated
with a new replication origin position, suggesting that it may
confer a survival advantage in humans [4].
With the development of high-throughput sequencing

methods, an unbiased large-scale examination of either
selected regions or the entire mtDNA sequence has become
feasible. Using a PCR-based amplification and subsequent
cloning and sequencing of individual mtDNA fragments, Lin
et al. reported that the brains of elderly human subjects had a
high aggregate of mtDNA base-substitution mutations,
reaching 2 3 10�4 mutations/bp [5]. Several studies in rodent
and primate tissues are in agreement with this estimate of
mtDNA mutational burden, but a study using direct cloning
of mtDNA reported much lower levels [6]. This suggests that
technical issues remain a problem in determining mtDNA
mutation frequencies. Deletions, which can be readily
detected by PCR but are not easily quantified, also increase
with aging in multiple tissues in rodents [7] and humans [8,9]
and can be clonal, as determined by analysis of individual
cardiomyocytes from aged humans [10]. In agreement with
the hypothesis that mtDNA deletions contribute to
mammalian aging, it has been shown that they accumulate
exponentially in several tissues, and do so much faster in
short-lived mice as compared to long-lived humans [11].
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An ongoing debate in the field relates to the issue of
causality: are mtDNA mutations merely markers of biological
age, or do they lead to a decline in physiological function that
contributes to the aging process? Two important age-related
phenotypes have helped to address this issue. A common
feature of aging in multiple species, including humans, is the
age-related loss of muscle mass, termed sarcopenia. Studies
using laser capture microdissection to study single muscle
fibers in skeletal muscle from sarcopenic rats have shown that
mtDNA deletions colocalize with electron transport system
abnormalities, fiber atrophy, and splitting [12]. Interestingly,
the mutations are largely clonal and absent from
phenotypically normal regions within individual muscle
fibers [13]. In a similar study of aged (69–82 years old) human
muscle biopsies, an association between a deficiency in the
mitochondrially encoded cytochrome c oxidase (COX) and
clonally expanded base-substitution mutations and deletions
was shown [14]. Perhaps the strongest evidence that clonally
expanded mtDNA mutations can be causal in both age-
related dysfunction and disease comes from recent studies of
neurons present in the substantia nigra region of the human
brain. These dopamine-rich, pigmented neurons contain very
high levels of mtDNA deletions. Deleted mtDNA molecules
are clonal in each neuron, and are associated with respiratory
chain deficiency [15]. The level of mtDNA deletions increases
with normal aging, and is higher in Parkinson’s disease [16].
Cytochrome c oxidase–deficient cells have also been shown to
increase with age in both hippocampal pyramidal neurons
and choroid plexus epithelial cells [17]. Although these
studies do not prove causality, they provide strong evidence
in support of the hypothesis that mtDNA deletions
contribute to aging in mammals.

A significant gap in our knowledge concerns the
mechanisms of age-related clonal expansion of mtDNA base-
substitution mutations. Using single-cell sequence analysis,
Nekhaeva et al. [10] first reported that a high proportion of
human buccal epithelial cells and cardiomyocytes carry
clonally expanded mtDNA base-substitution mutations.
These clonally expanded mtDNA mutations are abundant in
cells of aged individuals and result in very different mtDNA
mutational spectra in these two cell types. Specifically,
epithelial cells display a mutational hotspot in a
homopolymeric C7–8 tract, whereas almost all cardiomyocyte
mutations were observed within a 30-bp sequence in the
control region. This sequence was postulated to represent
either a binding site for a mitochondrial protein or a
secondary structure of functional importance to
mitochondria [10]. Because only a small fraction (;5%) of the
mtDNA genome was sequenced in this study, it appears very
likely that most human cells carry clonally expanded mtDNA
base-substitution mutations.

A recently described observation, the accumulation of
mtDNA mutations in human crypt stem cells, has also
provided insights on the mechanisms of clonal mtDNA
mutation accumulation. Taylor et al. described the high
incidence of COX-negative cells in intestinal crypts of aged
humans [18], and a more recent study strongly suggests that
intestinal crypts carrying mtDNA mutations clonally expand
by fission [19]. Interestingly, the pattern of distribution of
these cells in individual crypts is not random, suggesting that
mutations arising in adult stem cells result in the
accumulation of such mutations in the tissue. But how do

mtDNA mutations become clonal within a cell in the first
place? Because the spectrum of expanded mutations is very
different between cardiomyocytes and epithelial cells,
different mechanisms of expansion, namely random
segregation or positive selection, have been proposed for
these cell types [10]. Interestingly, modeling of mtDNA
replication in human cells suggests that genetic drift and
expansion of mutations that occur in early adult life may
account for the abundance of specific mtDNA mutations
within individual cells [20]. The finding that the clonal
expansion of mtDNA base-substitution mutations is a
widespread process in human somatic cells may have
profound implications for both aging and age-related
diseases.

Human Disorders Associated with Instability of the
Mitochondrial Genome

Normal human aging is a gradual, cumulative process that
spans decades and most likely involves multiple mechanisms.
Information on the specific contribution of mtDNA
instability to human aging can be inferred through the
analysis of disorders associated with increased mtDNA
mutation or deletion frequency. Tissues most affected by
disorders associated with inherited mtDNA mutations are the
same tissues markedly affected by normal aging; these include
the brain, heart, skeletal muscle, kidney and the endocrine
system [21]. Disorders associated with increased levels of
mtDNA mutations generally fall into two classes: those
associated with specific, maternally-inherited mtDNA
mutations; and, those associated with mutations in nucleus-
encoded genes important for maintaining the fidelity of
mtDNA replication and mtDNA stability. Because disorders
in the latter category result in random accumulation of many
different mtDNA mutations and deletions, they may better
represent the potential consequences of age-related mtDNA
mutation accumulation in humans.
Nucleus-encoded DNA polymerase c (POLG) is the only

known DNA polymerase in animal cell mitochondria. It has
conserved polymerase and exonuclease domains, the
combined action of which results in high-fidelity mtDNA
replication with human POLG displaying an average error
frequency of ;1 error/500,000 bp in vitro [22,23]. Mutations
in the human POLG gene are associated with progressive
external ophthalmoplegia (PEO), Alpers syndrome, and
ataxia (see Figure 1). Disease onset typically occurs after the
mid-twenties and can be associated with a variety of
symptoms, including ophthalmoplegia, cataracts, progressive
muscle weakness, parkinsonism, premature ovarian failure,
male infertility, hearing loss (presbycusis), and cardiac
dysfunction [24–30]. There are over 80 pathogenic mutations
in POLG in humans (Figure 1). Most reported mutations are
recessive and are commonly found in combination with other
mutations in POLG, or with mutations in genes encoding
other proteins that function in mtDNA replication (such as
TWINKLE and ANT1). At the molecular level, these mutations
are often associated with the accumulation of mtDNA
deletions in multiple tissues. The few dominant POLG
mutations reported in PEO occur within the polymerase
domain and tend to disrupt the interaction between the
polymerase and the incoming nucleotide; this can cause
misincorporation of nucleotides and may also lead to large
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deletions between direct repeats [31,32]. Interestingly,
sequencing of mtDNA deletions from patients suggests that
replication stalling may be the major mechanism of deletion
formation [33].

PEO can also result from mutations in the gene encoding
TWINKLE [34], a mitochondrial helicase and putative
primase that functions as a hexamer. Mutations in TWINKLE
are thought to be the cause of 35% of autosomal dominant
PEO cases [35]. These mutations seem to enhance dNTPase
activity and thus may lower the pool of nucleotides available
for mtDNA replication. There are recessive TWINKLE
mutations that cosegregate with POLG mutations, resulting in
PEO [36]. Other recessive mutations found in TWINKLE and
TWINKY (a rare splice variant) cause infantile spinocerebellar
ataxia [37,38]. Mutations in ANT1, an adenine nucleotide
translocase involved in ATP/ADP exchange across the
mitochondrial inner membrane, as well as mutations in
POLG2, the POLG accessory subunit, can also lead to PEO
[39–41].

In humans, the classical progeroid diseases Hutchinson-
Gilford syndrome and Werner’s syndrome are associated with
defects in nucleus-encoded genes involved in nuclear
architecture [42–44] and DNA damage repair [45,46],
respectively. The absence of a more general progeroid
syndrome in humans carrying mutations that lead to mtDNA
instability suggests that mtDNA mutations do not contribute
to general aspects of normal human aging. However, the

association of genetic disorders of mtDNA instability with
cataracts, presbycusis, Parkinson’s disease, early menopause,
and decreased cardiac and skeletal muscle function suggests
that these aging phenotypes are most likely to be influenced
by the age-related accumulation of mtDNA base-substitution
mutations and deletions.

Mouse Models of Disease Associated with mtDNA
Mutations

A number of transgenic and knock-in mouse models have
been developed to test the in vivo effects of increased mtDNA
mutation accumulation. Two groups have independently
generated knock-in mice expressing an exonuclease-deficient
version of the mitochondrial DNA polymerase c (PolgD257A)
[47,48]. The lack of proofreading activity in PolgD257A mice
results in mitochondrial mutation frequencies that are
increased by at least 3- to 11-fold in multiple tissues, with
accumulation of mtDNA base-substitution mutations
beginning in development. Deletions of mtDNA can also be
detected in these mice [48]. The two models have very similar
phenotypes resembling aspects of premature aging; these
include hair graying and loss, reduced bone density and
increased incidence of kyphosis, reduced muscle mass, severe
reduction in body fat, early loss of fertility, dilated cardiac
hypertrophy, accelerated thymic atrophy, presbycusis, and
reduced survival. Anemia and intestinal dysplasia are also
seen. A progressive decline in respiratory function of

doi:10.1371/journal.pgen.0030024.g001

Figure 1. Human Disease-Associated Mutations in Genes Involved in mtDNA Replication and Maintenance

Mutations reported in POLG [36,151–162], TWINKLE (gene also known as PEO1) [34,38,39,163–167], and ANT1 (gene also known as SLC25A4) [35,40]
proteins associated with human diseases.
Mutations in black are associated with PEO, those in blue are associated with Alpers syndrome, red indicates mutations present in both PEO and Alpers,
and green indicates mutations associated with other disorders. Italics indicate changes in DNA sequence.
A) POLG. The light green and light blue segments represent the exonuclease and polymerase domains, respectively. Highly conserved motifs within
each are shown as red segments. The POLG mutation figure is adapted from the Human DNA Polymerase Gamma Mutation Database maintained by
the Mitochondrial Replication Group at the National Institute of Environmental Health Sciences (http://dir-apps.niehs.nih.gov/polg).
B) TWINKLE. The pink domain is the primase-helicase linker region, as identified by homology to T7 phage protein [34].
C) ANT1. In addition to the pathogenic mutations shown within the protein, a 3.3-kb deletion upstream of ANT1 results in derepression of ANT1 and is
associated with facioscapulohumeral muscular dystrophy [168].
Dup, duplication; fs, frameshift mutation; ins, insertion; *, termination codon
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mitochondrially encoded complexes was evident as early as 12
weeks, resulting in decreased oxygen consumption and ATP
production [48,49]. No increase in DNA, RNA, protein, or
lipid markers of oxidative stress was observed in these mice
and antioxidant defense systems were likewise not
upregulated [47,49]. Instead, mtDNA mutation accumulation
was associated with the activation of apoptosis in multiple
tissues as measured by TUNEL and cleaved caspase-3 assays
[47].

Additional mitochondrial mutator mouse models have
employed tissue-specific PolgD181A exonuclease-deficient
transgenes, expressed primarily in the heart [6] or in the
brain [50]. Both base-substitution mutations and mtDNA
deletions accumulated in these models. Elevated levels of
mtDNA mutations in the heart, beginning after birth,
resulted in dilated cardiomyopathy by 4 wk of age, with
mutant mice dying of congestive heart failure by ;6 mo [6].
Respiratory function remained comparable to controls [51].
Similarly to the Polg knock-in mice, the transgenic hearts did
not display increased oxidative damage to proteins (including
oxidation-sensitive aconitase enyzme activity) or mtDNA, nor
elevated antioxidant defenses [52]. Cytosolic fractions from
transgenic hearts contained cytochrome c [51], mitochondrial
release of which is a hallmark of apoptosis. Interestingly,
although apoptotic (TUNEL-positive and morphologically
dying) cells in the transgenic hearts exceeded controls by ;3
wk of age [51], a subsequent protective antiapoptotic
response involving upregulation of Bcl-2, Bcl-xL, Bfl-1, XIAP,
and Hsp27 transcript or protein levels was noted in nearly all
transgenic myocytes [52,53]. This survival response was of
functional consequence, in that it could protect the
transgenic hearts from further apoptotic stress induced by
doxorubicin [53]. This suggests that mtDNA base-substitution
mutations and/or deletions in the heart may trigger a
retrograde signaling system from the mitochondria to the
nucleus. Alternatively, those cells with the highest mutational
burden could release cell-extrinsic factors that induce
widespread gene expression changes throughout the heart.
Cell death seems to be a key element driving the pathology of
mtDNA mutations in the heart because cyclosporin A, a cell-
death inhibitor that blocks the opening of the mitochondrial
permeability transition pore, prevents the cardiomyopathy of
the transgenic mice [54].

As discussed earlier, mutations in human POLG are
associated with chronic PEO, with some patients exhibiting
mood disorders [29,30]. Furthermore, mitochondrial
dysfunction and altered energy metabolism have been
implicated in the etiology of bipolar disorder by magnetic
resonance spectroscopy, mtDNA polymorphism association,
and detection of mtDNA deletions in bipolar patient brains
(for reviews, see [55–57]). In mice with neuronal expression of
proofreading-deficient PolgD181A (under control of the Ca2þ/
calmodulin-activated protein kinase IIa promoter, CaMKIIa),
behavioral phenotypes resembling mood disorder were
observed, including reduced wheel-running and altered day–
night activity patterns [50]. These behaviors were worsened
by treatment with amitriptyline hydrochloride, an
antidepressant that can induce mania in individuals with
bipolar disorder. Although total wheel-running activity
decreased, a 5-d pattern of peak activity coinciding with the
estrus cycle was observed in female transgenic mice;
treatment with lithium, commonly used as a mood stabilizer

in the treatment of bipolar disorder, diminished this
periodicity. No measurements of respiratory function,
apoptosis, or oxidative stress were reported for this model.
In addition to Polg, mtDNA replication and maintenance

involves the activities of other nuclear genes such as Tfam
(mitochondrial transcription factor A) [58,59], Twinkle (also
known as Peo1 or C10Orf2) [60], Tfb1m (mitochondrial
transcription factor B1, previously called mtTFB) [61],
RNaseH1 [62], and Ssbp1 (mitochondrial single-strand binding
protein; also called mtSSB) [63]. Mutations in these genes
result in reduction or loss of mtDNA content and mice
deficient for some of these genes die during development
[58,62]. For example, several mouse models with general [58]
or tissue-specific [64–67] deficiencies in Tfam have been
generated, all based on a loxP-flanked Tfam allele (TfamloxP),
and are associated with mtDNA depletion (see Table 1). All of
these Tfam mouse models exhibit a delay between onset of cre
expression and the occurrence of respiratory dysfunction,
which can be attributed to the time needed to turn over
Tfam, mtDNA, and respiratory enzyme subunits.
Pathogenic mutations in TWINKLE have been identified in

human PEO families [34]. Transgenic mice expressing mutant
Twinkle isoforms modeled after those mutations seen in
human disease display progressive localized mitochondrial
respiratory deficiencies, particularly in individual muscle
fibers and neuronal subpopulations (transgene expression
was noted in heart, muscle, and brain), and mild myopathy at
about 1 y of age [68]. These mice acquire multiple mtDNA
deletions but do not show increased mtDNA base-
substitution mutations. Premature aging does not appear to
be a feature of these Twinkle transgenic mice, although it is
unclear if transgene expression was achieved in most tissues
or cell types.
Similarly, mutations in the heart- and muscle-specific

isoform of the adenine nucleotide transporter 1 (ANT1) gene
are present in human PEO families [41]. Disruption of Ant1
inhibits oxidative phosphorylation by compromising
exchange of ADP and ATP across the inner mitochondrial
membrane. Ant1–/– mice display cardiomyopathy and
peripheral myopathy with ragged red fibers (a histological
marker of mitochondrial proliferation), severe respiratory
defects (although electron transport enzyme activities per se
are intact), elevated serum lactate levels, and exercise
intolerance [69]. Increased H2O2 production in heart, muscle,
and brain was observed in Ant1–/– mice (in addition to high
levels in heart and muscle, Ant1 is expressed at lower levels in
the brain and a few other tissues [70]), and was accompanied
by varying levels of augmented antioxidant enzymes,
depending upon the tissue [71]. Accumulation of mtDNA
deletions or rearrangements was observed, with levels in line
with the extent of induced antioxidant defenses. In the heart,
which showed maximal H2O2 production (i.e., antimycin A
treatment did not further increase ROS levels in the Ant1–/–

tissue) and minimal induction of Sod2 and Gpx1 defense
enzymes, mtDNA deletions increased to considerably higher
levels than in skeletal muscle, where antioxidant defenses
were more robust.
An additional mouse model carrying mtDNA deletions has

been generated via a methodology distinct from gene
targeting in mouse embryonic stem cells. The so-called ‘‘mito-
mouse’’ was generated when synaptosomes (presynaptic
terminals isolated after subcellular fractionation) containing
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mitochondria from aged C57Bl/6J mouse brain were fused to
rho8 cells devoid of mtDNA. The resulting cytoplasmic hybrid
cells (cybrids) were screened by PCR to identify those
containing a high proportion of mtDNA deletions. Such
cybrid clones were enucleated and fused to donor embryos to
create heteroplasmic founder females that could transmit the
mtDNA deletion–containing mitochondria through their
germline [72]. Germline transmission of mtDNA deletions in
humans is rare [73], and partially duplicated mtDNA
intermediates were postulated to allow for such transmission
in the mice [72]. Mito-mice carry a 4,696 bp deletion in
mtDNA that removes six tRNA and seven structural genes
(for complexes I, IV, and V) from the mitochondrial genome.
F1 and F2 generations of mice contained varying proportions
of the DmtDNA4696 deletion and exhibited COX-negative
muscle fibers when deletion levels rose to .85%; classic
ragged red fibers were not observed, however. Similar mosaic
respiratory deficits were noted in heart and kidney. An
atrioventricular conduction block was reported, but in the
absence of cardiac dilation [74]. Mito-mice were anemic and
died from renal failure by 200 days of age. No phenotypes
traditionally present in mitochondrial disease or aging were
reported. An increase in TUNEL staining was seen in the
kidneys of mito-mice, implicating apoptosis as an important
mechanism of pathology [75]. A second mito-mouse model
with .80% deleted mtDNA exhibited age-related hearing
loss with onset between 3 mo and 6 mo [76]. The molecular
nature of the mtDNA deletions was not characterized.

Generation of transmitochondrial mice has also been
extended to include mtDNA base-substitution mutations.
Mito-mice with homoplasmic T6589C-mutated mtDNA,
encoding a V421A substitution in the COI gene (a COX
subunit), show specific loss of COX activity, increased serum
lactate, and lower body weight [77]. No further
characterization of aging phenotypes is available yet.
Transmitochondrial mice bearing T2433C 16S rRNA–
mutated mtDNAs (denoted CAPR mice, because the mutation
confers resistance to chloramphenicol) displayed growth
retardation, myopathy, dilated cardiomyopathy, and
embryonic or perinatal lethality [78]. These models of
homoplasmic mtDNA base-substitution mutations are more
reflective of the inherited mitochondrial disease situation in
humans, as opposed to the more random accumulation of
mutations and deletions that occurs in normal aging.

Although direct comparisons of mouse models derived
through gene targeting, insertional transgenesis, and cybrid
approaches is complicated by differences in gene dosage and
tissue-specific expression patterns, it is curious to note that
multi-system aging-like phenotypes are much more obvious
in models bearing increased base-substitution mutations and
deletions such as PolgD257A mice, as opposed to those with
only increased deletions (see Table 1). Whether this is
biologically meaningful or reflects technical differences in
the methodology of mouse generation remains to be
determined. Two issues are in particular need of clarification
because they could explain the observed differences: First, do
the mouse models showing aging phenotypes result in more
extensive accumulation of mutations/deletions? And second,
do the ‘‘ubiquitously expressed’’ transgenic models truly
result in widespread transgenic expression in multiple tissues
and cell types?

Mechanisms of mtDNA Mutation Generation

Base-substitution mutations caused by polymerase
infidelity.
The mitochondrial polymerase c holoenzyme consists of

two separate proteins, POLG and POLG2. POLG, the
catalytic subunit, contains the polymerase domain, an editing
exonuclease domain, as well as a deoxyribose phosphate lyase
activity necessary for DNA repair. POLG2, the accessory
subunit, increases the affinity of the complex for DNA,
elevating polymerase processivity [79] and repair [80]. The
human holoenzyme consists of a heterotrimer of two
accessory subunits attached to one catalytic subunit [81].
Detailed kinetics experiments with and without the accessory
subunit and exonuclease domain have yielded important
insights into the mechanism of polymerase fidelity [23,82,83].
It is important to note that polymerase infidelity has been
hypothesized to be the major cause of mutation in human
mtDNA and may be responsible for many of the mutational
hotspots that appear across individuals [84].
Although in vitro the POLG exonuclease domain plays only

a small role in the overall fidelity of the enzyme as compared
to the discrimination between incoming dNTPs by the
catalytic domain [82], this proofreading activity has been
demonstrated to be essential in preventing the accumulation
of mutations with age in mice [6,47,48,50] and human cells in
culture [85]. Overexpression of the exonuclease-deficient
protein in human cells had a dominant negative effect,
resulting in the accumulation of mtDNA base-substitution
mutations over time. After 3 mo in culture, one mutation was
found for every 1,700 bp of mtDNA [85]. These results
demonstrate the importance of proper proofreading to
prevent mtDNA base-substitution mutations that cause cell
and tissue dysfunction with age.
The vast majority of DNA polymorphisms and disease-

causing base-substitution mutations that have been detected
in human mtDNA are transition mutations [86]. Transition
mutations are also the predominant type of mutation in both
wild-type and PolgD257A mice [47,48]. This can be partly
explained by the slight infidelity of the POLG enzyme, which
allows G:T mismatches to occur as a relatively frequent event
[83]. These particular misincorporation events can be
exacerbated by dNTP pool imbalances. As shown in rats,
dGTP is present at a much higher concentration than dATP in
mitochondria from many postmitotic tissues, including heart
and skeletal muscle, possibly increasing the frequency of G:T
mismatches [87]. In contrast, dTTP is present at the lowest
concentration of the four deoxynucleotides in mitochondria
from these tissues. These pool imbalances do not differ
between young and old animals. At this time, it is unknown
what role dNTP pool imbalances play in the generation of the
other specific types of mtDNA mutations that occur with age,
such as transversion or deletion mutations.

Oxidative damage to mitochondrial DNA.
mtDNA has been shown to replicate by two distinct

mechanisms. In the traditional strand-asynchronous model,
replication begins at the heavy (guanine-rich) strand origin
and proceeds approximately two-thirds of the way around the
mitochondrial genome before initiation of light (cytosine-
rich) strand synthesis begins [88]. There is a positive
correlation between the rate of accumulation of base-
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substitution mutations in mammalian mitochondrial
genomes and the distance from the origin of light strand
replication, relating to the amount of time mtDNA is single
stranded during replication [89]. This suggests that mtDNA
may be particularly susceptible to oxidative damage when
single stranded. Pathogenic mitochondrial base-substitution
mutations are found at a disproportionately high level in
mitochondrial tRNA genes and it has been hypothesized that
this high frequency is due to a stem-loop structure formed
when these regions are single stranded during mtDNA
replication [90]. However, further evidence is needed to
support or refute this suggestion. The spectrum of base-
substitution mutations that accumulate in aged individuals
differs across tissues [3]. This may be due to variations in the
mechanism of replication in different tissues. Specifically,
evidence for coupled leading and lagging strand mtDNA
synthesis has emerged in recent years [91]. If coupled-strand
replication differs from the strand-asynchronous mechanism
in its susceptibility to mutation generation, then differential
reliance on the two modes of replication among tissue types
or under different cellular conditions might contribute to
tissue-specific mutation patterns. Alternately, even when
replication proceeds primarily via the strand-asynchronous
model, utilization of alternate origins of light strand
replication may influence mutation specificity by variations
in proximity to the heavy strand replication origin and, thus,
differences in the time that mtDNA is present in single-
stranded form [88].

Mitochondria do not have the enzymes necessary for
nucleotide excision repair of DNA. They do, however, possess
base excision repair enzymes that are capable of repairing
oxidatively damaged bases in mtDNA, and many of these
repair enzymes are alternatively spliced variants of nucleus-
targeted proteins [92]. Mitochondrial base excision repair
activity declines in the aging mouse brain [93]; if applicable to
tissues in general, this may contribute to the accumulation of
mtDNA mutations with age. Base-substitution mutations may
occur as a result of POLG replicating across these lesions. In
mitochondria, 8-oxoguanine is the most abundant oxidative
lesion and can cause transversion mutations if unrepaired
[94]. Mitochondria contain an 8-oxoguanine DNA glycosylase
(OGG1) that repairs the vast majority of this damage. Mice
lacking Ogg1 had 20-fold higher levels of 8-oxoguanine in
mtDNA isolated from liver [95] but this did not lead to
respiratory defects [96]. Mitochondria also possess an 8-
oxoGTPase (MTH1) to prevent oxidized dGTP from being
incorporated into DNA [97]. mtDNA in brains from mice
lacking Mth1 accumulate more 8-oxoguanine than controls
[98,99]. No accelerated aging phenotypes were observed in
either Ogg1–/– [95,100] or Mth1–/– mice, although both are

slightly more prone to certain types of tumors [101,102].
Unexpectedly, Ogg1–/–Mth1–/– mice have a decreased
incidence of tumorigenesis [101]. Both OGG1 and MTH1 also
function outside mitochondria to protect nuclear DNA, so it
is unclear if the phenotypes of these mice are related to
mtDNA or nuclear DNA mutations.

Mitochondrial DNA deletions.
mtDNA deletions may play a contributing role in age-

related tissue dysfunction in human postmitotic tissues.
Deleted mtDNA molecules can accumulate, reaching up to
60% of the total mtDNA and cause oxidative phosphorylation
defects and COX-negative staining in specific cells of aged
postmitotic tissues [14,15]. The mechanism of deletion
formation is unknown. However, many deletions are thought
to involve base pairing by direct repeat sequences [103] and
this occurs more frequently during oxidative stress, perhaps
due to polymerase stalling, slipping, and mispairing during
replication (Table 2). Topoisomerase II cleavage and other
DNA double strand breaks have also been proposed as
possible mechanisms of deletion formation [103,104]. A study
analyzing deletions in human mtDNA suggests that most
deletion formation may be linked to two 13-bp repeats in
mtDNA [105].

Mechanisms of Pathology Induced by mtDNA
Mutations

Data from mitochondrial mutator mouse models support
the hypothesis that mtDNA mutations can promote tissue
dysfunction through the loss of critical irreplaceable cells due
to activation of apoptosis. In support of this hypothesis,
human cells bearing mutations causing Leber’s hereditary
optic neuropathy, an inherited mtDNA disease, are sensitized
to Fas-induced apoptosis [106]. Is apoptosis required for
development of mtDNA-induced phenotypes, and how might
mtDNA mutations trigger the apoptotic process? Loss of
respiratory function is associated with activation of apoptosis
(e.g., see mouse models of mtDNA depletion in Table 1), and
mitochondrial bioenergetics are compromised in
mitochondrial mutator mice [48,49]. Release of apoptotic
factors, such as cytochrome c, Smac/diablo, apoptosis-
inducing factor (AIF), Omi/Htra2, and endonuclease G from
the mitochondrial intermembrane space can occur through
two mechanisms [107,108]. In the first, channels in the outer
mitochondrial membrane can open in a process regulated by
Bcl-2 family members without the involvement of inner
mitochondrial membrane components. In the second,
opening of a permeablility transition (PT) pore, involving
components of the outer mitochondrial membrane (VDAC,
Bax, and Bcl-2), inner mitochondrial membrane (ANT), and
matrix (Cyp D) results in osmotic mitochondrial swelling,
outer mitochondrial membrane rupture, and release of
apoptogenic factors. The observation that cyclosporin A–
mediated inhibition of PT pore opening was successful in
preventing cardiomyopathy in the heart-specific
mitochondrial mutator model [54] implicates a central role
for the PT pore generally, and cyclophilin D (Cyp D) in
particular, in mtDNA mutation-mediated cell-death signaling
in the heart, because Cyp D is the main mitochondrial
binding target of cyclosporin A [109]. However, mitochondria
from the PolgD181A transgenic hearts are purportedly more

Table 2. Mechanisms for mtDNA Mutation

Mutation Type Mechanism References

Base substitutions Polymerase infidelity [84]

Replicating across damaged bases [84]

Deletions DNA strand slippage and mispairing [149]

Illegitimate recombination [103]

DNA double strand breaks [150]

doi:10.1371/journal.pgen.0030024.t002
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resistant to calcium-induced PT pore opening than those
from control hearts [110], an effect attributed to the
protective actions of induced Bcl-2 in the pro-survival
response. Thus, other functions of Cyp D aside from its role
in PT pore opening (such as its chaperone activity) may be
important. Mouse models deficient for many of the genes
involved with apoptotic regulation (e.g., Bax, Bak, and Cyp D)
are available. Examining the effects of these apoptotic
modulators on the aging phenotypes of mitochondrial
mutator mice should help to establish whether apoptosis is
required for the downstream effects of mitochondrial
mutations.

Recently, Zassenhaus and colleagues proposed an
intriguing mechanism whereby mtDNA mutations would
generate a pool of misfolded mitochondrial proteins, some
small proportion of which might have the conformation
necessary to bind to Bax or Bak and thereby activate
apoptosis or perhaps bind to Cyp D and inhibit its chaperone
function [110]. This hypothesis could explain how
heteroplasmic mtDNA mutations could elicit a cell-death
response in the presence of many wild-type copies of mtDNA.

A long-standing tenet of the mitochondrial free radical
theory of aging is the expectation of increased ROS
production in mitochondria compromised by respiration-
inactivating mtDNA mutations (i.e., ‘‘the vicious cycle’’).
However, we [47] and others [49,52] have clearly demonstrated
that mitochondrial mutator mice do not have increased levels
of oxidative stress. Mitochondria treated with specific
chemical electron transport chain (ETC) inhibitors can indeed
produce increased ROS levels [111]. Similarly, mouse models
such as the Ant1–/– mice also exhibit elevated levels of ROS
production [71]. However, inhibition of ETC function in
Ant1–/– mice or by chemical inhibitors may generate ROS
because all mitochondria show the same defect (e.g., lack of
available ADP or blockage of electron flow at a specific point
in the ETC). Upstream complexes can still function, resulting
in electron stalling and transfer to O2 to generate the
superoxide anion. By contrast, in the mitochondrial mutator
mice, a variety of mutations is present and multiple upstream
complexes could be nonfunctional or be lacking subunits if
mitochondrial rRNA or tRNA mutations are numerous. Thus,
electron flow through all the complexes (except nucleus-
encoded complex II) may be impaired and reduced
intermediates may not be accumulating. In the case where
mtDNAmutation levels are much lower, the presence of many
wild-type copies of mtDNA will mask the effects of specific
respiratory mutations.

If mtDNA mutations do not lead to increased ROS damage
in mitochondrial mutator mice, how does this finding fit into
the field of oxidative stress and aging? Certainly, oxidative
stress could be playing a role in the generation of mtDNA
mutations in wild-type animals. The rate of mitochondrial
ROS production, extent of mtDNA (but not nuclear DNA)
oxidative damage, and degree of membrane fatty acid
unsaturation (a determinant of vulnerability to lipid
peroxidation) are all inversely correlated with longevity
across species [112–115]. Most of these parameters are
reversed by caloric restriction (CR) [116]. Mice expressing
mitochondrion-targeted catalase show reduced total DNA
oxidative damage (in skeletal muscle), fewer mtDNA
deletions, and extended mean and maximal lifespan by 17%–
21% [117], suggesting that mitochondrial accumulation of

oxidative damage can limit rodent lifespan. However, mice
with reduced levels of the mitochondrial MnSOD enzyme
(Sod2þ/–) do not appear to age any faster than their wild-type
counterparts, despite harboring increased levels of oxidative
damage to both nuclear and mtDNA [118]. Similarly, mice
deficient for Ogg1 or Mth1 do not exhibit accelerated aging
features [95,100,102]. Thus, increased mitochondrial
oxidative damage is not sufficient for accelerated aging. It is
unclear, however, whether the increased oxidative damage to
mtDNA observed in the Sod2þ/�mouse model actually leads to
increased base substitutions or deletions, and, if so, to what
extent the mutation levels compare to those of the Polg
mutator mice or natural aging.
The mitochondrial mutator mice suggest that activation of

apoptotic pathways is important for the induction of an aging
phenotype. Indeed, we speculate that activation of apoptosis
may be a common underlying mechanism in many accelerated
aging models. For example, mice that are both deficient in
Werner’s (Wrn) helicase and possess shortened telomeres
display a phenotype strikingly similar to PolgD257A mice and
exhibit elevated levels of apoptosis [119]. Livers from old, but
not young or middle-aged, Sod2þ/– mice have 3-fold more
TUNEL-positive cells [120]. Therefore, the long delay before
activation of apoptosis in the Sod2þ/– mice might account for
the failure to see early aging phenotypes in these animals.
The phenotypes of multiple mouse models of mtDNA base-

substitution or deletion mutation accumulation that have
been generated in recent years have lent support to the
notion that mtDNA mutations can play a causative role in
aging-related degenerative processes. This interpretation is
not without controversy, however, with opponents arguing
that the levels of mtDNA mutations present in the
mitochondrial mutator mice are catastrophically high and
exceed those associated with human aging [121–123]. The
manifestation of clinical phenotypes of classic mitochondrial
diseases are dependent upon mtDNA mutations or deletions
rising above a critical threshold, so one might also expect that
aging phenotypes require accumulation of mutations
exceeding a threshold. High mtDNA mutational loads
accompanied by severe respiratory deficiency have been
observed in muscle fibers, intestinal crypts, and substantia
nigra neurons [2,3,5,15,16,18,19]. Ultimately, testing the effect
of reduced mtDNA mutation accumulation on lifespan and
aging phenotypes will provide the strongest support of a
causal relationship between mtDNA mutations and aging.
It is important to note that aging is a complex process that

is likely to have multifactorial causes (Figure 2). Mitchondrial
DNA mutations can arise directly from errors during DNA
replication. Oxidative stress may also generate mtDNA
mutations as well as damaged proteins that might be able to
directly signal apoptosis through a misfolded protein
response. Respiratory deficiency could contribute to
apoptotic signaling or be directly responsible for some
aspects of tissue dysfunction. The importance of cell loss
versus metabolic dysfunction to aging phenotypes might vary
depending upon the tissue type.

Interventions to Retard mtDNA Mutations and Its
Consequences

Because mtDNA mutations cause dysfunction in cells, it is
of interest to determine if preventing these mutations could
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delay the onset or decrease the severity of aging phenotypes.
Several strategies have the potential to retard age-related
accumulation of mtDNA mutations (Table 3).

Decreasing the generation of ROS by caloric restriction.
The only known intervention that has consistently delayed
aging in multiple species is CR [124]. Decreased levels of
mtDNA deletions are detected in calorically restricted
animals [125]. The mechanism of protection by CR may
involve decreased production of ROS from Complex I of the
mitochondrial ETC [126]. Although this involves altering the
degree of reduction of Complex I, the exact mechanism as to
how this occurs is unknown. One hypothesis is that decreased
levels of methionine ingested during CR lead to a higher
reduced/oxidized cellular glutathione ratio, which decreases
Complex I free radical generation [127]. Another hypothesis
is that mitochondria from calorically restricted animals

undergo increased biogenesis, and are more efficient than
normal at generating equal amounts of ATP with a lower
membrane potential, oxygen consumption, and free radical
production [128].
Decreasing oxidative damage with antioxidants. The use of

nutritional and genetically encoded antioxidants can prevent
mtDNA mutations. Expression of mitochondrion-targeted
catalase, which decreases hydrogen peroxide levels, prevented
mtDNA deletions and extended the lifespan of mice [117].
Nutritional antioxidants may function, in part, by
maintaining mitochondrial glutathione in the reduced state,
which can prevent the increase in free radical generation
from the ETC that occurs with age and damages mtDNA
[129]. Examples of dietary antioxidants that decrease the
accumulation of potentially mutagenic 8-oxoguanosine levels
in mtDNA include carnitine [130], alpha tocopherol (Vitamin

doi:10.1371/journal.pgen.0030024.g002

Figure 2. Multifactorial Events in Mammalian Aging

Oxidative stress is generated when reactive oxygen and nitrogen species (RONS) production exceeds protection from antioxidant defenses, and can
lead to damaged proteins and mtDNA mutations. Replication errors are an additional source of mtDNA mutations. mtDNA mutations can result in
reduction or loss of respiratory complex function and a pool of aberrant mitochondrial proteins. In certain situations (e.g., homoplasmic inherited
mtDNA base-substitution mutations), specific mtDNA mutations could lead to increased oxidative stress, but this is not a feature of mice bearing
random accumulations of mtDNA mutations. Activation of apoptosis could occur through mechanisms that sense energetic deficits or by signaling via
rare misfolded proteins that might be capable of interacting with apoptotic regulators such as Bax or Bak. Prolonged activation of apoptotic cell death
would gradually deplete tissues of both differentiated and possibily regenerative stem cells, leading to eventual tissue dysfunction and aging-related
phenotypes. Additionally, chronic energetic deficiency in itself may contribute to altered tissue functioning with age. Inset: PolgD257A mitochondrial
mutator mouse (right) showing hair graying, alopecia, and kyphosis compared to a healthy age-matched control mouse.
ETS, electron transport system; RONS, reactive oxygen and nitrogen species
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E) [131], Vitamins C and E in combination [129], thiazolidine
carboxylate [129], and Ginko biloba extract [132]. Oxidative
stress also leads to deletions in mtDNA that can be prevented
by dietary antioxidants. Beta-carotene and creatine protected
against mtDNA deletions in skin human fibroblasts exposed
to UVA radiation [133,134], while coenzyme Q lowered the
level of mtDNA deletions in a mouse model of oxidative stress
[135]. Interestingly, dihydrolipoic acid partially rescued the
phenotype of yeast cells expressing a POLG variant carrying a
mutation found in PEO patients [136]. However, none of
these antioxidant compounds has yet consistently been shown
to be beneficial in the treatment of human mitochondrial
disease [137], and likewise none has been shown to retard
mammalian aging.

Increasing mitochondrial DNA repair. There is evidence in
cell culture that expression and mitochondrial targeting of
base excision repair enzymes protects against oxidant-
induced cell death. Proteins found to be protective include
human 8-oxoguanine DNA glycosylase/apurinic lyase (OGG1)
[138] and E. coli endonucleases III and VIII [139]. The MTH1
protein, a free 8-oxo-GTPase present in both the nucleus and
mitochondria, also protects cells from oxidative stress [140].
Extensive studies examining the roles of these proteins in
aging have yet to be performed and may yield insight into
possible connections between mtDNA damage and aging.

It has been reported that liver mitochondria contain a
DNA mismatch repair activity [141], a pathway that corrects
DNA polymerase errors and inhibits other kinds of genome
instability. Consistent with this observation, the DNA
mismatch repair enzyme Mlh1 has been localized to mouse
mitochondria [142,143]. There have also been mixed reports
on the localization of the mismatch repair protein Msh2 in
mitochondria [141,143]. Bioinformatic analysis implicates
Msh5 as a candidate mtDNA repair enzyme [142]. Whether or
not these enzymes actually constitute a functional
mitochondrial mismatch repair system awaits further
verification. Yeast and plant mitochondria utilize the MSH1
protein in mitochondrial mismatch repair, whereas no MSH1
homolog is present in mammalian mitochondria [144].
Increased expression of one or more of these proteins in
mitochondria might have the potential to delay the
accumulation of mtDNA mutations with age.

Conclusion

The hypothesis that aging is due in part to mtDNA damage
and associated mutations [145,146] was based on the
observations that mtDNA is located in the organelle that
generates most cellular ROS, that mtDNA is relatively
unprotected from ROS damage due to a lack of histones, and

also that mtDNA repair may be limited. Although
provocative, this hypothesis is only viable as a major aging
mechanism if three conditions are met for any given tissue: 1)
mutations must accumulate with age; 2) due to the high copy
number of mtDNA, most mutations should reach near or
complete homoplasmy; and 3) such mutations must be of
functional consequence. The first two conditions have clearly
been satisfied for several cell types examined in humans.
Future developments in the field are likely to focus on
identifying the functional consequences of specific mtDNA
mutations found in aged human tissues, mechanisms of clonal
expansion, and the dissection of pathways that mediate the
deleterious effects of mtDNA base-substitution mutations
and deletions using animal models. These studies should help
uncover the relevance of mtDNA mutations to animal aging,
and allow the rational design of therapeutic interventions. &

Accession Numbers

The National Center for Biotechnology Information Entrez Gene
(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD¼search&DB¼gene)
accession numbers for the genes and gene products discussed in this
paper are POLG (5428); TWINKLE, or PEO1 (56652); and ANT1, or
SLC25A4 (291).
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