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Lithium (Li+) is prescribed against a wide range of neurological disorders. Besides

its excellent therapeutic properties, there are several adverse effects associated with

Li+. The impact of Li+ on renal function and diabetes insipidus is the most common

adverse effect of this drug. On the other hand, infertility and decreased libido is

another complication associated with Li+. It has been found that sperm indices of

functionality, as well as libido, is significantly reduced in Li+-treated men. These adverse

effects might lead to drug incompliance and the cessation of drug therapy. Hence,

the main aims of the current study were to illustrate the mechanisms of adverse

effects of Li+ on the testis tissue, spermatogenesis process, and hormonal changes

in two experimental models. In the in vitro experiments, Leydig cells (LCs) were

isolated from healthy mice, cultured, and exposed to increasing concentrations of Li+

(0, 10, 50, and 100 ppm). In the in vivo section of the current study, mice were

treated with Li+ (0, 10, 50, and 100 ppm, in drinking water) for five consecutive

weeks. Testis and sperm samples were collected and assessed. A significant sign

of cytotoxicity (LDH release and MTT assay), along with disrupted testosterone

biosynthesis, impairedmitochondrial indices (ATP level andmitochondrial depolarization),

and increased biomarkers of oxidative stress were detected in LCs exposed to Li+. On

the other hand, a significant increase in serum and testis Li+ levels were detected in

drug-treated mice. Moreover, ROS formation, LPO, protein carbonylation, and increased

oxidized glutathione (GSSG) were detected in both testis tissue and sperm specimens

of Li+-treated mice. Several sperm anomalies were also detected in Li+-treated

animals. On the other hand, spermmitochondrial indices (mitochondrial dehydrogenases

activity and ATP levels) were significantly decreased in drug-treated groups where

mitochondrial depolarization was increased dose-dependently. Altogether, these data

mention oxidative stress and mitochondrial impairment as pivotal mechanisms involved
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in Li+-induced reproductive toxicity. Therefore, based on our previous publications in

this area, therapeutic options, including compounds with high antioxidant properties that

target these points might find a clinical value in ameliorating Li+-induced adverse effects

on the male reproductive system.

Keywords: antipsychotic drugs, bipolar disease, energy crisis, heavy metals, infertility, sperm

INTRODUCTION

Lithium (Li+) is used for the management of a wide range of
neurological diseases (1). On the other hand, humans are also
exposed to Li+ through different routes such as drinking water,
foods, or environmental exposure (e.g., in miners or Li+-battery
manufacturers) (2, 3). Nielsen (1998) has calculated that the
dietary needs of Li+ are generally < 0.05 mg/kg of feed/day for
laboratory animals (4). In humans, Schrauzer (2002) has reported
that 0.5–3mg of Li+/day are needed (5). On the other hand, Aral
and Vecchio-Sadus (2008) have reviewed that up to 10 mg/L
of Li+ in serum is recommended to bipolar patients (2). They
have also shown that the higher doses (10, 15, and 20 mg/L in
blood) cause a moderate poisoning (10mg/L), slurred speech and
confusion (15 mg/L), and high fatality rate (20 mg/L) (2).

Even though many investigations reported that low levels of
Li+ are precious in mitigating signs of bipolar disorders and
depression (6–8) found that prolonged exposure to therapeutic
doses of Li+ triggers complications among hospitalized patients
(8). Hence, toxicity in the renal system (9–11), nervous system
(12), thyroid glands (goiter) (13), and dermatological-related
complications (14, 15), as well as circulatory system (16) under
Li+ exposure have been earlier reported. On the other hand, it
has been shown that this light metal can pass across the placental
barriers and then induce teratogenic effects (17, 18). Besides the
above-mentioned alterations, sterility is a well-described adverse
phenomenon in Li+-treated groups.

Several cases of reproductive abnormalities have been
reported in association with Li+ administration (16, 19–21). The
first reproductive studies indicated that exposure to Li+ could
trigger sexual anomalies in men (22, 23). In rats, Li+ induced
a considerable decrement in steroidogenesis-related essential
genes expression and then steroidogenesis and spermatogenesis
impairment (24, 25); whereas, its deficiency can also mitigate the
mammalian reproductive performance. In a prolonged exposure
investigation, subfertility induced by reproductive toxicity was
observed in male rats exposed orally to Li+ (26). Halder et al. (27)
have also highlighted the pivotal roles of Li+ on the fine-tuning
regulation of maturation in epididymal spermatozoa (27). Li+

chloride- challenged birds also showed significant degenerative
alterations in germ cells and the epithelium of seminiferous
tubules (28, 29). Acute exposure of albino rats to various doses of
Li+ (200 and 400 µg/100 g body live weight; for 3 weeks) could
cause a considerable decrement in the spermatogenesis, and the
serum concentrations of prolactin, testosterone (T), luteinizing
hormone (LH), and follicle-stimulating hormone (FSH), along
with remarkable mitigation in the activities of steroidogenesis-
related genes (3ß-HSD and 17ß -HSD); none of the above indices

were influenced with a low dose (100 µg/100 g body live weight)
of Li+ (30).

Oxidative stress (OS) and its associated adverse events are
the most prevalent mechanisms for xenobiotics-induced adverse
effects (31–33). The role of OS in the mechanism of metals-
induced cytotoxicity has been widely investigated (34–36). There
are several lines of evidence mentioning the role of OS in
the pathogenesis of Li+-induced adverse effects in the testis
tissue and semen in both experimental models and human cases
(19, 20). For instance, many anomalies in the functionality of
spermatozoa are attributed to the increased level of ROS in
testis and semen (37–40) through severe impairments of DNA,
interruption of plasma membrane integrity, and denaturation of
proteins (41–43). However, there is no precise source for reactive
oxygen species (ROS) and the induction of OS in the reproductive
system of Li+-treated patients.

It has been found that mitochondria could be a critical target
for Li+ adverse effects in biological systems (21, 44, 45). Li+

can adversely affect mitochondrial function in other tissues such
as the liver, heart, and kidney (21, 44, 45). The effects of Li+

on the reproductive system through sperm mitochondria and
consequent intracellular events, in two experimental models, has
not been evaluated so far. Therefore, uncovering the mechanisms
of Li+ adverse effects in the reproductive system could lead to
the development of therapeutic strategies against xenobiotics-
induced reproductive toxicity. Hence, the purpose of the current
study was to uncover the intracellular events involved in Li+-
inducedmale reprotoxicity through two different models (in-vivo
and in-vitro).

In the current investigation, two experimental models were
used. In the in vitro study, Leydig cells (LCs) were isolated from
healthy mice, cultured, and exposed to increasing concentrations
of Li+ (0, 5, 10, 50, and 100 ppm). In the in vivo experiments,
male mice were treated with Li+ (10, 50, and 100 ppm, in
drinking water) for 35 consecutive days. Serum, sperm, and
testis tissue specimens were collected. Several indices, including
biomarkers of OS, and mitochondrial functionality indices,
as well as sperm parameters under various doses of Li+,
were monitored.

MATERIALS AND METHODS

Chemicals
2′,7′-Dichlorofluorescein diacetate (DCFH-DA), 3-
[4,5dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide
(MTT), 4,2-Hydroxyethyl,1-piperazineethanesulfonic acid
(HEPES), oxidized glutathione, dinitro fluoro benzene, bovine
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serum albumin, lithium chloride (Li+), 3-(N-morpholino)
propane sulfonic acid (MOPS), ethylene glycol-bis (2-aminoethyl

ether)-N, N, N
′
, N

′
-tetraacetic acid (EGTA), dimethyl sulfoxide,

iodo-acetic acid, nigrosine, glutathione (GSH), malondialdehyde,
potassium chloride, eosine, thiobarbituric acid, coomassie
brilliant blue, sucrose, sodium chloride, dithiothreitol,
rhodamine 123, and ethylenediaminetetraacetic acid (EDTA)
were purchased from Sigma Chemical Co. (St. Louis, MO,
USA). Trichloroacetic acid (TCA) and hydroxymethyl
aminomethane hydrochloride (Tris-HCl) were purchased
fromMerck (Darmstadt, Germany).

Experimental Setup
Thirty mature male Balb/c mice (25–30 g) were purchased
from the Animal House of Shiraz Medical University, Shiraz,
Iran. Controlled conditions (12:12 h, photoschedule; 18–22◦C;
appropriate ventilation, and 40% relative humidity) were set for
experimental units. Animals had access to a commercial rodent
pellet (RoyanFeed R©, Esfahan, Iran) and tap water Ad libitum. All
animal procedures were performed according to the guidelines
of the ethics committee of Shiraz University of Medical Sciences,
Shiraz, Iran (#97-01-36-16776). Mice were allotted to four trial
in-vivo groups (n = 6 in each), as follow: (A) Control (vehicle-
treated, 0 ppm lithium chloride in drinking water); (B) Li+ (10
ppm in drinking water); (C) Li+ (50 ppm in drinking water); (D)
Li+ (100 ppm in drinking water). Lithium chloride was treated
daily for 35 consecutive days (in-vivo) and 48 h (in-vitro). After
the trial exposure time, animals were anesthetized (thiopental 80
mg/kg, i.p), and samples were collected. A wide range of Li+

concentrations were used in the current study (10–100 ppm).
These concentrations are closed to plasma level of these drugs in
patients (e.g., bipolar patients) (46). The toxicity of Li+ in animal
models is also in the range of Li+ concentrations used in the
current study (47, 48).

According to the procedure described in previous studies
(49, 50), Leydig cells (LCs) were isolated from dissected testes.
Afterward, the isolated LCs were added to 24-well (2 ×

105 cells/mL/well) plates containing Ham’s F12/DMEM culture
medium supplemented with 10% FBS and 1% myllicin. All in-
vitro culture methods took place in a 37◦C controlled humidified
conditions (5% CO2 in the air). The isolated cells were incubated
for 2 days. Then, cells were washed twice with a serum-free
medium. Afterward, the washed LCs were challenged with
different doses of Li, similar to that exposed to in-vivo study (0,
10, 50, and 100 ppm) for 48 h.

Sample Collection, LCs Isolation, and
Evaluation
Animals were deeply anesthetized with thiopental (80 mg/kg,
i.p). The epididymides and testes were excised and weighed.
The left testes were kept in a buffered formalin solution (10%
formalin in phosphate buffer, pH = 7.4) for histopathological
assessments. Total antioxidant capacity, lipid peroxidation,
reactive oxygen species (ROS) production, protein carbonylation,
and glutathione contents were determined in the right testes,
spermatozoa, and LCs. Sperm sample was collected from the left
cauda epididymis.

For evaluating the effects of Li+ on LCs, these cells were
isolated from healthy mice and cultured (50). For LCs isolation
male gonads were quickly removed and dissected. The tunica
albuginea and all three parts of epididymides were gently
removed to expose the seminiferous tubules (ST). Then, each
dissected gonad was transferred into a sterile plastic plate
containing 2.5ml phosphate-buffered saline (PBS; pH = 7.4).
The testis was chopped with a tweezer in the shaking water
bath (37◦C) until the PBS became opaque. Subsequently, the
isolated cells were centrifuged (200 g, 5min), the supernatant
was discarded and the pellet was resuspended in the F12/DMEM
medium (4.5ml, Gibco, NY, USA) supplemented with fetal calve
serum (FBS; 10%, Gibco, NY, USA), 100µg/mL streptomycin,
and 100 U/mL penicillin in a standard incubation condition
(37◦C, 5% CO2). Giemsa staining was applied for morphological
identification of cultured LCs.

Bodyweight Gain, and Organ Weight Index
Mice were weighed at the first and final days of the trial, and
the bodyweight gain in each group was recorded. Testicular,
epididymal, and vas-deferens weight indices were determined as
weight index= [wet weight of organ (g)/body weight (g)]× 100.

Sperm Indices
The eosin-nigrosin staining was used to evaluate spermatozoa
viability and abnormality (51, 52). Briefly, the extracted caudal
epididymal germ cells (100 µL) were incubated in PBS (35◦C;
pH = 7.4). Spermatozoa smear was stained with eosin-nigrosin
(10 µL). Slides were monitored randomly for viability assay,
where unstained germ cells were considered live (51, 52). The
germ cells with ab-axial tail, protoplasmic droplets, double tails,
malformed heads, coiled tails, bent tails, and without tail and
head were considered abnormal. Spermatozoa concentration and
progressive motility were also assessed based on previous studies
(39, 41). Briefly, progressive motility of sperm was assessed by
adding a drop of spermatozoa suspension on a glass slide covered
with a coverslip. Samples were observed under a light microscope
(400 × magnification, Zeiss, Jena, Germany) equipped with hot-
stage (35◦C). Hypoosmotic swelling test (HOST) was applied to
assess the integrity of the spermatozoa plasmamembrane. Briefly,
10 µL of germ cells were suspended in 50 µL of a hypo-osmotic
solution (50-mOsm NaCl). Then, samples were then incubated
for 10min at 37◦C. Finally, the spermatozoa percentage with a
swollen “bubble” around the curled flagellum through counting
200 germ cells, were randomly counted on each slide using a light
microscope (1,000 × magnification) (53, 54). The concentration
of germ cells was assessed by a Neubauer hemocytometer using
light microscopy (200×magnification).

Oxidative Stress Indices in Testis, Sperm,
and Cultured LCs
Reactive Oxygen Species (ROS)
Testicular, spermatozoa, and cultured LCs’ ROS level was
estimated using dichlorofluorescein diacetate (DCFH-DA) (55–
59). Briefly, DCFH-DA was added (10µM final concentration)
to sperm (106 sperm/mL), isolated LCs (104 cells/well), and
homogenized testicular samples (1mg protein/mL). Specimens
were incubated in the dark (15min, 35◦C). Afterward, the DCF

Frontiers in Veterinary Science | www.frontiersin.org 3 March 2021 | Volume 8 | Article 603262

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Ommati et al. Lithium-Induced Reproductive Toxicity

fluorescence intensity was measured using a FLUOstar Omega R©

fluorimeter (BMG LABTECH R©, Germany) at λ excitation =

485 nm and λ emission = 525 nm (37, 58, 60).

Lipid Peroxidation
Thiobarbituric acid reactive substances (TBARS) test was used
to assess lipid peroxidation in the current study (61–63). For
this purpose, 500mg of testis tissue homogenate (10% w/v in
KCl, 1.15% w: v), samples of 106 sperm/mL, and isolated LCs
(104 cells/well) were added to a reaction mixture consisting of
1mL thiobarbituric acid (0.375%, w: v) and 1mL phosphoric

acid (1% w: v, pH = 2) (63–66). Then, samples were heated in
a water bath (20min, 100◦C). Afterward, 1mL of n-butanol was
mixed and mixed. Samples were centrifuged (10,000 g, 5min)
and the absorbance of the the n-butanol phase (upper phase) was
measured (λ = 532 nm, EPOCH R© plate reader, USA) (66–68).

Glutathione Content of the Testis Tissue, LCs, and

Sperm Samples
An HPLC apparatus with an NH2 column (25 cm; Bischoff
chromatography, Leonberg, Germany), was used to determine
nanomole levels of reduced (GSH) and oxidized (GSSG)

FIGURE 1 | Effect of lithium on animals’ weight gain and male reproductive organ weight index. Data are presented as mean ± SEM (n = 6). Asterisks indicate

significantly different from the control (0 ppm) group (*P < 0.05, ***P < 0.001).
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glutathione in deproteinized specimens (39, 69). Water and
acetate (Buffers A; 4:1 v: v) along with a mixture of methanol
with buffer A (Buffers B; 4:1 v: v) were considered as the mobile
phases (flow rate = 1 mL/min). A gradient technique with a
constant upsurge of buffer B to 95% in 25min was applied
(70). Samples (500 µL of testis homogenate) was treated with
50 µL of TCA (50% w: v, 4◦C, in MiliQ water). Sperm (1mL
of 10 6 sperm/mL) and LCs (1mL of 10 6 cells/mL) were
also treated with 100 µl of ice-cooled TCA (50% w: v, 4◦C).
Samples were incubated on ice (30min). After the incubation
period, samples were mixed well and centrifuged (17,000 g,
15min, 4◦C). Afterward, the supernatant was added to 5mL
tubes and treated with 0.5mL of NaOH: NaHCO3 solution
(2 M: 2M). Then, 0.1mL of iodoacetic acid (1.5% w: v in
MiliQ water) was added and the mixture was incubated in
the dark (60min; 4◦C). Afterward, 0.5mL of DNFB (1.5% v:
v in HPLC grade ethanol) was carefully mixed and incubated
in the dark (25◦C, 24 h). Samples were centrifuged (17,000 g,
30min, 4◦C) and filtered. Finally, 25 µL of each specimen was
injected into the HPLC apparatus. The UV detector was set
at λ = 252 nm (71).

Ferric Reducing Antioxidant Power (FRAP)
Total antioxidant capacity of testicular tissue, LCs, and sperm
specimens was measured using the FRAP assay (72–74). Briefly,
the working FRAPmixture was freshly prepared bymixing 25mL
of acetate buffer (300 mmol/L, pH = 3.6), 2.5mL of TPTZ (2,
4, 6-tripyridyl-s-triazine, 10 mmol/L in 40 mmol/L hydrochloric
acid), and 2.5mL of ferric chloride (20 mmol/L). Testicular, LCs,
and sperm specimens were homogenized, separately, in 0.25M of
Tris-HCl buffer (pH = 7.4; 4◦C), containing 0.2M sucrose and
5mM dithiothreitol (DTT) (75, 76). Afterward, FRAP reagent
(1.5mL) and deionized water (150 µL) were added to 100 µL of
homogenates and incubated at 37◦C (5min, in the dark). Finally,
the absorbance was measured at λ = 593 nm (EPOCH plate
reader, USA) (72, 77–79).

Protein Carbonylation
The testicular and cultured LC’s protein oxidative damage of Li-
exposed groups, was assessed by the determination of carbonyl
groups based on the reaction with dinitrophenylhydrazine
(DNPH) (80, 81). In summary, the tissue homogenate (1,000 µL,
10% in KCl) and cultured LCs specimens (1mL; 104 cells/well)

FIGURE 2 | Effect of lithium administration on epididymal sperm parameters in mice. HOST: Hypo-osmotic swelling test. Data are presented as mean ± SEM (n = 6).

Asterisks indicate significantly different from the control (0 ppm) group (*P < 0.05, **P < 0.01, ***P < 0.001).
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were mixed with 0.1mL of TCA (20% w: v, 4◦C) and centrifuged
(700 g, 5min, 4◦C). Then, the supernatant was mixed with
0.3mL of 2, 4-dinitrophenylhydrazine (DNPH; 10mM, dissolved
in 2M HCl). Samples were incubated at room temperature
(25◦C, 60min, in the dark, regularly vortexed every 10min).
Then 0.1mL of trichloroacetic acid (20% w: v, 4◦C) was added,
and centrifuged (12,000 g, 10min). The pellet was washed
(three times) with 1mL of ethanol: ethyl acetate (1:1 v: v).
The final pellet was dissolved in 0.6mL of guanidine solution
(6M, in 20mM potassium phosphate, pH = 2.3). Samples
were centrifuged (12,000 g, 5min), and the absorbance of the
supernatant was measured at λ =370 nm (EPOCH plate reader,
USA) (72).

Measuring Mitochondrial Indices in Mice
Epididymal Spermatozoa, and Cultured Lcs
Mitochondrial Dehydrogenase Activity
The 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium
bromide colorimetric method was used for the assessment of
mitochondrial dehydrogenases activity in sperm and isolated
LCs. For this purpose, the specimens (1mg protein/mL) were
incubated at 37◦C for 30min (in the dark) with 40 µL MTT
solution (5 mg/mL). Samples were centrifuged and the pellet was

dissolved in 1,000 µL of DMSO. The absorbance was measured
at λ = 570 nm using the EPOCH R© plate reader (63, 82–84).

Mitochondrial Depolarization
Mitochondrial uptake of rhodamine-123 was applied as a method
for the determination of sperm and cultured LCs mitochondrial
depolarization (55, 80, 83, 85, 86). Briefly, the specimens (1mg
protein/mL) were incubated with rhodamine-123 (35◦C, 15min,
in the dark) and then centrifuged (10,000 g, 5min, 4◦C) (87–
89). Finally, the fluorescence intensity (FI) of the supernatant was
measured at λ excitation = 485 nm and λ emission = 525 nm using a
fluorimeter (BMG LABTECH R©, Germany) (55, 83, 90).

Assessment of ATP Levels
The ATP level in sperm and LCs was assessed by an HPLC
method (91). For this purpose, LCs (104 Cells/mL) and sperm
specimens (106 sperm/mL) were treated with 100 µL ice-cooled
meta-phosphoric acid (50% w: v, 4◦C). Samples were mixed and
incubated on ice for 10min. Afterward, samples were centrifuged
(30min, 17,000 g, 4◦C), and the supernatant (100µL) was treated
with ice-cooled KOH (10 µL of 1M solution) (92). Samples were
centrifuged (30min, 17,000 g, 4◦C), and 20µL of the supernatant
was injected into an HPLC system. The HPLC system consisted
of an LC-18 column (25 cm µ-Bondapak R© column). The mobile

FIGURE 3 | Biomarkers of oxidative stress in the testis tissue of lithium-treated mice. Data are presented as mean ± SEM (n = 6). Asterisks indicate significantly

different from the control (0 ppm) group (*P < 0.05, ***P < 0.001).
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phase was a mixture of potassium phosphate buffer (100mM
KH2PO4, pH = 7 adjusted with KOH), tetrabutylammonium
hydroxide (1mM), and acetonitrile (2.5% v: v) (63, 89, 93). An
isocratic method with the flow rate was 1 mL/min was used. The
UV detector was set at λ = 254 nm (63, 94).

Testosterone (T) Biosynthesis in Li+-Exposed LCs
An ELISA-based testosterone assay kit (Elabscience, Wuhan,
China) was used to measure T content in Li+-exposed LCs
[44]. For T generation, isolated LCs (2 × 105 cells/well)
were seeded in 24-well plates. After 24 h of incubation, the
quality of cells was monitored and then cultured with various
doses of Li+ (0, 10, 50, and 100 ppm) for 48 h. After
the exposure time, media were gathered, and centrifuged
(3,000 rpm, 10min). The supernatant was used for assessing
T levels.

Cellular Lactate Dehydrogenase (LDH) Release
A commercial kit (Pars Azmun R©, Tehran, Iran) and Mindray R©

BS-200 autoanalyzer (Guangzhou, China) were used to assess

cells lactate dehydrogenase (LDH) levels in cultured LCs (95, 96).
Isolated LCs were treated with different concentrations of Li+

(0, 10, 50, and 100 ppm) after the incubation period. Afterward,
200 µL of the culture medium was taken, and the LDH content
was measured.

LCs Viability Assay
The viability of LCs was examined based on a colorimetric
technique using MTT (49). Briefly, the LCs were seeded in
quadruplicate into 96-well plates at a density of 1 × 104

cells/well and allowed to attach into the cells overnight at
37◦C with 5% CO2. LCs were challenged with Li+ (0, 10,
50, and 100 ppm) for 48 h at 37◦C. Afterwards, the LCs (1
× 10 4 cells/well) were incubated with MTT (0.4%, 37◦C,
30min, 5% CO2). Plates were centrifuged (3,000 g, 15min) and
the purple pellet was dissolved in l,000 µL dimethyl sulfoxide
(DMSO). Finally, the optical density (OD) was measured at λ

= 570 nm (EPOCH plate reader, BioTek R© Instruments, USA)
(21, 97).

FIGURE 4 | Biomarkers of oxidative stress in the epididymal sperm of lithium-exposed mice. Data are presented as mean ± SEM (n = 6). Asterisks indicate

significantly different from the control (0 ppm) group (*P < 0.05, **P < 0.01, ***P < 0.001).
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Testicular Histopathological Alterations
Male gonads were fixed in a buffered formalin solution
(10% formaldehyde in phosphate buffer; pH = 7.4).
The fixed tissue was paraffin-embedded and specimens
were sectioned (5µm) using a rotary microtome.

Tissue sections were then stained with hematoxylin-
eosin (H&E). Testicular histopathological changes were
monitored and recorded by a specialized pathologist
in a blind manner using a light microscope (Olympus
BX41; Olympus Optical Co. Ltd, Japan). Testis tissue

FIGURE 5 | Lithium-induced mitochondrial impairment in mice epididymal germ cells. Data are presented as mean ± SEM (n = 6). Asterisks indicate significantly

different from the control (0 ppm) group (*P < 0.05, ***P < 0.001).
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histopathological alterations were quantified as previously
reported (98–100).

Statistical Analysis
Data were expressed as Mean ± SEM. Data analysis was
performed by the one-way analysis of variance (ANOVA),
and mean comparison performed using the Tukey’s multiple
comparison test as the post hoc test at P < 0.05 (GraphPad
Prism 8).

RESULTS

Bodyweight Gain and Organ Weight Index
Bodyweight and reproductive organ weight index measurement
in the Li+-exposed mice uncovered significant variations
(Figure 1). It was observed that live bodyweight considerably
decreased in the group receiving a high dose of Li+ (100
ppm). On the other hand, the weight index was significantly
reduced in the epididymis weight index of the mice exposed
to various doses of Li+ (10, 50, and 100 ppm) and vas-
deferens weight index of the animal challenged with the highest

TABLE 1 | Testis tissue histopathological alterations in lithium-exposed mice.

Tubular injury Tubular

desquamation

Spermatogenic index

Control (Lithium 0 ppm) – – 1

Lithium 10 ppm + ++ 1

Lithium 50 ppm ++ +++ 0.8

Lithium 100 ppm +++ +++ 0.75

+: Mild; ++: Moderate; and +++: Severe histopathological alterations.

dose of Li+ (100 ppm). However, there was no significant
difference in the testis weight index among all trial groups
(Figure 1).

Sperm Indices
Assessment of the epididymal spermatozoa indices showed a
dose-dependent increment in the percentage of abnormality
along with a decrement in the rate of spermatozoa viability,
motility, HOST, and sperm count in the Li+- challenged mice,
in a dose-dependent manner (except of the motility index)
(Figure 2).

Oxidative Stress Biomarkers
Oxidative stress indices were assessed in the testis tissue
(Figure 3), epididymal spermatozoa (Figure 4) of the male mice
(in-vivo), and isolated/cultured LCs (in-vitro) challenged with
various doses of Li+ (Figure 5; Giemsa staining was used for
morphological observation of cultured LCs). Significant ROS
levels in addition to lipid peroxidation, protein carbonylation,
and oxidized glutathione (GSSG) were found in the testis tissue,
extracted epididymal spermatozoa, and cultured/exposed LCs
in Li+-treated groups, approximately in a dose-dependent-
manner (Figures 3–5). Meanwhile, it was also observed that total
antioxidant capacity (TAC) along with glutathione (GSH) level
and the ratio of GSH / GSSG were significantly decreased in
Li+-exposed groups (Figures 3–5).

Mitochondrial Indices, Cytotoxicity
Markers, and Testosterone Biosynthesis
Epididymal spermatozoa and cultured/exposed LCs
mitochondrial parameters revealed significant mitochondrial
depolarization, decreased dehydrogenases activity, and depleted
ATP content in Li+-exposed groups, in a dose-proportional

FIGURE 6 | Light micrograph of testis tissue histopathological alterations in normal and lithium-treated mice. H&E staining (400× magnification). The grades of

histopathological changes are given in Table 1. A severely degeneration and altered seminiferous tubule (A), and a massive loss of elongated spermatozoa (¤), as well

as a disappearance and degeneration of interstitial cells (LCs) from the interstitial space (*) was recorded.
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FIGURE 7 | Effect of lithium exposure on biomarkers of oxidative stress in Leydig cells (LCs) isolated from mice testis. A: Giemsa staining (magnification at × 400) of

cultured LCs. Data are presented as mean ± SEM (n = 6). * & *** Significantly different from the control group (P < 0.05 and P < 0.001, respectively).

manner (Figures 6, 7). Along with these alterations, our
data showed that cellular LDH release and T levels were
dose-dependently increased and significantly decreased in
mice isolated/exposed LCs, respectively (Figure 7). Serum
testosterone levels were also significantly lower than the control
group in mice exposed to 100 ppm of Li+ (Figure 3).

Histopathology Alterations of the Testis
Tissue
In Li+-exposed mice with various doses (10, 50, and 100 ppm
in drinking water/day), the male gonad revealed the severe
tubular injury, tubular desquamation, and low spermatogenic
index. However, the maximum alterations were observed in the
group received the highest dose (100 ppm) of Li+ (Table 1 and
Figure 8). No significant histopathological changes were detected
between the groups of low (10 ppm) and medium (50 ppm)

(Figure 8). It is noteworthy that serum and testis tissue levels of
Li+ was significantly higher in drug-treated groups (Figure 9).

DISCUSSION

Li+ is a drug used for the treatment of a wide range of
neurological disorders (1). Despite its tremendous clinical value,
several adverse effects have been attributed to Li+ (1). Several
reports of Li+-induced reproductive toxicity have also been
reported (2, 16, 20, 26). Unfortunately, there is no precise
mechanism(s) for Li+-induced reproductive toxicity. Hence, this
investigation was planned to monitor the deleterious effects of
Li+ on reproductive indices of male mice in two in-vitro and
in-vivo models. It was found that Li+-induced mitochondrial
impairment and oxidative stress play a significant role in its
adverse effects on male reproductive system.
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FIGURE 8 | Lithium-induced cytotoxicity and mitochondrial impairment in mice Leydig cells. Data are presented as mean ± SEM (n = 6). * & *** Significantly different

from the control group (P < 0.05 & P < 0.001, respectively).

Several investigations mentioned the primary role of
oxidative stress (OS) in the pathogenesis of reproductive system
dysfunction (16, 20, 26, 101).Many anomalies in the functionality
of spermatozoa are attributed to the increased level of ROS in
testis and semen (37–40) through severe impairments of DNA,
interruption of plasma membrane integrity, and denaturation of
proteins (41–43). It is well–known that interstitial cells (Leydig
cells; LCs) into the male gonad are formed of many lipid-filled
vesicles; therefore, the LCs are liable to OS via the exogenous ROS
producing by mitochondria as their pivotal by-products (50).
Quinn and Payne (102) have also been shown that steroidogenic-
related cytochrome p450 enzymes can produce ROS in the LCs
through the mechanisms related to their catalytic reactions.

There is no precise mechanism for the source of ROS in
males treated with Li+. On the other hand, there is no specific
description for reproductive indices abnormalities (e.g., sperm
motility) in Li+-treated patients. In line with previous studies, we
found that OS is involved in the mechanism of testis and sperm
injury in Li+-treated animals. The current study also revealed the
effects of Li+ on testosterone biosynthesis in both in vivo and
in vitro models. More importantly, we found that mitochondrial

impairment could play a critical role in sperm abnormality, LC’s
injury, and testis injury in Li+-exposed groups. Li+-induced
mitochondrial impairment and decreased ATP levels could
induce decreased sperm motility.

Finding the mechanism(s) of xenobiotics-induced organ
injury is a critical step in developing therapeutic options. Li+

is a drug with adverse effects on the reproductive system.
There are several lines of evidence indicating the pivotal
role of OS in the pathogenesis of Li+-induced reproductive
toxicity (2, 16, 20, 26). At the sub-cellular levels, we found
that sperm mitochondria are a critical target for Li+-induced
sperm abnormalities. The motility of sperm in Li+-treated
groups was significantly lower as compared with the control
animals (Figure 2). This important data could indicate the
lack of energy (ATP) for sperm motility. Moreover, we also
found that LC’s ATP level was significantly depleted. This
event could hamper the physiological role of these basic testes’
cells in the synthesis and secretion of testosterone (Figure 7).
All these events could finally lead to reduced reproductive
performance in patients who are treated with Li+ for a
long time.
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FIGURE 9 | Serum and testis level of lithium (Li+). Data are represented as mean ± SEM (n = 6). *** Indicate significantly different as compared with the control (Li+ 0

ppm) (P < 0.001).

Disturbed sperm mitochondrial function in Li+-treated
animals could occur through several pathways. It has been found
that Li+ can readily enter the mitochondrial matrix. Li+ could
disrupt mitochondrial membrane potential as the driving force
for ATP production (44, 45, 103). It has also been found that Li+

could adversely interact with mitochondrial electron transport
chain (44, 45, 103). Li+ is also able to increase mitochondrial
permeability (mPT) and ease the release of various cell death
mediators to the cytoplasm (44, 45, 103). All these events could
finally lead to cell death.

In the current study, we found that Li+ administration
significantly impaired sperm parameters in the drug-treated
mice. The adverse effects of this drug on mitochondrial function
and OS parameters seems to play a pivotal role in its adverse
impact on the reproductive system. On the other hand, we
found that the treatment of isolated LCs with Li+ caused
a significant decrease in testosterone production, increased
LDH release, and a substantial reduction in cell viability
(MTT assay) (Figure 7). Moreover, mitochondrial membrane
potential and ATP levels were significantly decreased in Li+-
exposed LCs (Figure 7). Mitochondrial impairment could lead
to an energy crisis. As the proper mitochondrial function is a
critical factor for proper sperm function (e.g., sperm motility)
(104), any changes in mitochondrial function could lead to
sperm abnormalities. Altogether, all these data indicate a role
for OS and mitochondrial impairment in the pathogenesis
of Li+-induced reproductive toxicity. Hence, antioxidants and
mitochondria protecting agents could serve as viable therapeutic
options against this adverse effect. Recently, several antioxidant
agents have been tested against Li+-induced organ injury (16,
105). On the other hand, we tested several safe and clinically

applicable agents (amino acids and peptides), which could boost
mitochondrial function and energy metabolism (34, 67, 106–
109). We hope that these agents could finally find a clinical
application against drug-induced organ injury (e.g., Li+-induced
reproductive toxicity). Indeed, further studies are needed to
identify the precise mechanisms of Li+-induced reproductive
organ injury, the possible interaction of ancillary treatments with
the pharmacological effects of Li+, and finally, translating these
experimental data to the clinical settings.
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