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Upper-ocean turbulence at scales smaller than the mesoscale is believed to exchange surface and

thermocline waters, which plays an important role in both physical and biogeochemical budgets.

But what energizes this submesoscale turbulence remains a topic of debate. Two mechanisms

have been proposed: mesoscale-driven surface frontogenesis and mixed layer instabilities. The

goal here is to understand the differences between the dynamics of these two mechanisms, us-

ing a simple quasi-geostrophic model. The essence of mesoscale-driven surface frontogenesis

is captured by the well-known surface quasi-geostrophic model, which describes the sharpen-

ing of surface buoyancy gradients and the subsequent breakup in secondary roll-up instabilities.

We formulate a similarly archetypical Eady-like model of submesoscale turbulence induced by

mixed layer instabilities. The model captures the scale and structure of this baroclinic instabil-

ity in the mixed layer. A wide range of scales is energized through a turbulent inverse cascade

of kinetic energy that is fueled by the submesoscale mixed layer instability. Major differences

to mesoscale-driven surface frontogenesis are that mixed layer instabilities energize the entire

depth of the mixed layer and produce larger vertical velocities. The distribution of energy across

scales and in the vertical produced by our simple model of mixed layer instabilities compares

favorably to observations of energetic wintertime submesoscale flows, suggesting that it captures

the leading-order balanced dynamics of these flows. The dynamics described here in an oceano-

graphic context have potential applications to other geophysical fluids with layers of different

stratifications.

Key words: keywords to be added during typesetting process

1. Introduction

The upper ocean is host to energetic flows at scales smaller than the order 100 km mesoscale

eddies. Sharp surface fronts associated with strong along-front currents are generated in high-

resolution numerical simulations (e.g. Capet et al. 2008b; Klein et al. 2008) and are observed

in the wintertime midlatitude ocean (Shcherbina et al. 2013; Callies et al. 2015). These subme-

soscale flows at scales 1–100 km are associated with large vertical fluxes of both physical and

biogeochemical tracers that have been argued to regulate the oceanic heat and carbon uptake in

global warming scenarios (Capet et al. 2008b; Klein & Lapeyre 2009; Ferrari 2011; Lévy et al.

2012; Mahadevan 2014). Current global ocean models do not resolve submesoscale flows, so

† Email address for correspondence: joernc@mit.edu
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these fluxes must be represented by parameterizations that should be based on physical under-

standing.

Despite the attention received by submesoscale flows in both the theoretical and observa-

tional oceanographic communities, the dynamics that generate them remain a topic of debate.

Two mechanisms have been proposed: mesoscale-driven surface frontogenesis (Lapeyre & Klein

2006; Roullet et al. 2012) and baroclinic mixed layer instabilities (Boccaletti et al. 2007). It is

important to understand the differences between these two mechanisms, because they produce—

as we shall see—distinct submesoscale flow characteristics and vertical fluxes.

The essential physics of mesoscale-driven surface frontogenesis can be understood with quasi-

geostrophic (QG) dynamics (Stone 1966a). A mesoscale strain field sharpens lateral buoyancy

gradients at the surface more effectively than in the interior of the ocean. An ageostrophic circu-

lation develops in response to the increasing lateral buoyancy gradient, as described by the omega

equation (e.g. Hoskins et al. 1978). In the interior, this circulation acts to weaken the lateral buoy-

ancy gradient: light water downwells on the dense side and dense water upwells on the light side

of the gradient. At the surface, however, the vertical velocity must vanish and the ageostrophic

circulation cannot counteract the increase in lateral buoyancy gradient—the mesoscale strain

field is left unopposed to create strong submesoscale surface fronts.

Mixed layer instabilities, on the other hand, can energize submesoscale flows by releasing

available potential energy stored in large- and mesoscale buoyancy gradients in the surface mixed

layer. The weak stratification in deep wintertime mixed layers allows baroclinically unstable

modes to rapidly amplify (Haine & Marshall 1998). Much like deep mesoscale modes in the

ocean interior (e.g. Gill et al. 1974), these mixed layer modes slide dense water under light water,

but their horizontal scale is 1–10 km and they grow on time scales of order 1 day (Boccaletti et al.

2007).

The presence of a seasonal cycle in submesoscale turbulence suggests that baroclinic mixed

layer instabilities are an important aspect of upper-ocean dynamics. Both modeling (Mensa et al.

2013; Sasaki et al. 2014) and observations (Callies et al. 2015) show that submesoscale turbu-

lence is energized in winter and suppressed in summer. Mixed layer instabilities are expected to

undergo a strong seasonal cycle, following the seasonal cycle of the mixed layer depth and the as-

sociated mixed layer potential energy. Mesoscale-driven surface frontogenesis, on the other hand,

is not expected to vary seasonally, because mesoscale eddies do not undergo a strong seasonal

cycle (cf. Qiu 1999; Qiu & Chen 2004). A full understanding of how submesoscale turbulence

is energized by baroclinic mixed layer instabilities, however, is not as well established as that of

mesoscale-driven surface frontogenesis.

The simplest model capturing the essence of mesoscale-driven surface frontogenesis is the

surface QG model (Blumen 1978; Held et al. 1995). It assumes an infinitely deep ocean with

constant stratification and vanishing interior QG potential vorticity (PV),

q = ∇2ψ +
∂

∂z

(

f2

N2

∂ψ

∂z

)

= 0, (1.1)

where q is the PV, ψ is the geostrophic streamfunction, f is the (constant) Coriolis frequency,

and N the buoyancy frequency. The streamfunction is related to the horizontal flow by u =
(−∂ψ/∂y, ∂ψ/∂x). The evolution of the flow is completely determined by the lateral advection

of buoyancy at the surface, which represents the no-normal-flow boundary condition (i.e. the

vertical advection of the background stratification vanishes),

∂b

∂t
+ J(ψ, b) = 0, (1.2)
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where b = f∂ψ/∂z is buoyancy and

J(ψ, b) =
∂ψ

∂x

∂b

∂y
− ∂ψ

∂y

∂b

∂x
(1.3)

is the Jacobian operator. The surface buoyancy supplies the boundary condition for the elliptic

problem (1.1). Straining by mesoscale eddies creates sharp buoyancy gradients associated with

strong flows at the surface. Filamentary instabilities eventually lead to fully turbulent dynam-

ics (Held et al. 1995). Kolmogorov-like dimensional arguments (Kolmogorov 1941) predict that

the fully turbulent surface kinetic and potential energy spectra scale like Kkh
= Pkh

∼ kh
−5/3

in a submesoscale inertial range in which surface potential energy b2/N2 is cascaded to small

scales (Blumen 1978)—kh is the horizontal wavenumber. This prediction implies that the gra-

dients of velocity and buoyancy (i.e. fronts), whose spectra scale like kh
2Kkh

and kh
2Pkh

, are

stronger at small submesoscales (large kh) than at large submesoscales (small kh). The forward

cascade of surface potential energy occurs in conjunction with an inverse cascade of surface ki-

netic energy fed by the release of potential energy through slumping fronts (Capet et al. 2008a).

The submesoscale energy generated by surface QG turbulence is surface-trapped: modes de-

cay exponentially in the vertical, with small-scale modes decaying more rapidly than large-scale

modes (e.g. Scott 2006).†
If non-QG dynamics are taken into account, ageostrophic advection of buoyancy further ac-

celerates frontogenesis and potentially leads to frontal collapse, the formation of true discontinu-

ities in buoyancy (Hoskins & Bretherton 1972). In this case, the submesoscale energy spectrum

is modified to Ekh
∼ kh

−2 (Boyd 1992) and the decay in the vertical becomes less rapid (Badin

2012). An additional modification of the dynamics by non-QG effects is that the release of po-

tential energy leads to near-surface restratification (Hakim et al. 2002; Lapeyre et al. 2006). This

effect is neglected in QG dynamics, where stratification is fixed. Non-QG surface frontogenesis

also induces a finite forward flux of kinetic from small submesoscales (order 1 km) to dissipation

scales, which is not present in QG dynamics (Capet et al. 2008c,b; Klein et al. 2008; Molemaker

et al. 2010). Despite these omissions, surface QG turbulence predicts many of the characteristics

found in primitive equation simulations of mesoscale-driven surface frontogenesis (e.g. Klein

et al. 2008). Our working hypothesis is thus that surface QG turbulence adequately captures the

leading-order dynamics of the balanced flow in mesoscale-driven surface frontogenesis.

The upper ocean does not have a nearly constant PV, however, contrary to what is assumed

in surface QG turbulence. Instead, a weakly stratified mixed layer typically overlies a strongly

stratified thermocline (Fig. 1). There is a sharp step-like increase in stratification at the base of

the mixed layer, corresponding to a step-like increase in background PV. This PV jump is dynam-

ically important, because it supports edge waves that have the potential to interact with surface

edge waves and thus produce a baroclinic instability in the mixed layer (e.g. Haine & Marshall

1998). This linear instability is to leading order captured by an Eady model with a rigid interface

at the base of the mixed layer (Eady 1949). Corrections due to ageostrophic effects and a move-

able interface at the mixed layer base can be computed (Stone 1966b; Boccaletti et al. 2007),

but for typical wintertime conditions the instability scale and growth rate are qualitatively cap-

tured by Eady’s QG model. When baroclinic mixed layer instabilities grow to finite amplitude,

turbulent scale interactions distribute energy across scales. Because of the rotational constraint,

they transfer energy preferentially to larger scales. These nonlinear dynamics have been studied

in idealized mixed layer models, where baroclinic mixed layer instabilities grow on a prescribed

front (e.g. Boccaletti et al. 2007; Fox-Kemper et al. 2008).

† Heuristic extensions of surface QG ideas have been developed to infer interior flows from surface prop-
erties (Lapeyre & Klein 2006). These extensions are diagnostic in nature and do not attempt to describe the
evolution of the flow or make predictions for submesoscale energy levels. We therefore limit our discussion
of surface QG dynamics to the case with zero interior PV.
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FIGURE 1. Potential temperature section from the wintertime eastern subtropical North Pacific. The data
were obtained using a conductivity–temperature–depth sensor towed on a sawtooth profile along 140◦W as
part of the Spice experiment on Jan. 28 to Feb. 2, 1997. For more information on the data, see Ferrari &
Rudnick (2000).

In the real ocean, baroclinic mixed layer instabilities occur in the presence of an energetic

mesoscale eddy field, so mixed layer modes can grow on mesoscale buoyancy gradients and can

be sheared by mesoscale strain fields. Realistic submesoscale-permitting models capture these

dynamics (e.g. Mensa et al. 2013; Sasaki et al. 2014), but the models’ complexity makes it hard

to distill the essence of the dynamics and even these simulations only marginally resolve many

submesoscale phenomena. In this paper, we explore submesoscale dynamics by formulating a

QG model that allows both mixed layer and thermocline instabilities. This simple model of sub-

mesoscale turbulence energized by baroclinic mixed layer instabilities captures salient features

of wintertime observations of submesoscale flows. If the mixed layer in this model is eliminated,

the submesoscale dynamics dynamics revert to surface QG turbulence, which allows a straight-

forward comparison of the two mechanisms that can energize submesoscale turbulence.

We use QG scaling to formulate the dynamics of the model, which requires small Rossby and

Froude numbers (e.g. Pedlosky 1987). Typical mesoscale Rossby and Froude numbers are on

the order 0.1 and increase slowly with wavenumber if the submesoscales are energetic, reaching

order 1 at scales of order 1 km (Callies et al. 2015). While the QG approximation does not

apply anymore at these small scales, the QG system can be expected to capture the leading-order

dynamics over the 10–100 km range.

A major limitation of QG dynamics in representing mixed layer instabilities is that QG scaling

does not allow for restratification. The weak mixed layer stratification will be fixed in our QG

model, whereas in reality there is a competition between restratification and atmospherically

forced mixed layer turbulence, which tends to keep the mixed layer deep and unstratified. The

assumption is that the slower balanced dynamics described by the QG model develop on top

of this background state, which is maintained by fast small-scale turbulence. A full description

of mixed layer dynamics will eventually need to consider the interplay of the fast and slow
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FIGURE 2. Schematic of the model setup in a vertical–horizontal plane. There are rigid surfaces at z = 0 and
z = −H and a deformable interface at the mean depth z = −h, separating layers of constant stratifications,
Nm in the mixed layer and Nt in the thermocline.

dynamics, a topic we hope to address in a future study (cf. Hamlington et al. 2014). We take up

the discussion of how other non-QG effects may alter the dynamics toward the end of the paper.

As described above, our inquiry into the dynamics of a weakly stratified mixed layer coupled

to a strongly stratified thermocline is motivated by the study of the submesoscale upper ocean.

The model we present and the dynamics we describe, however, have relevance for the atmosphere

as well, where a weakly stratified troposphere is capped by a strongly stratified stratosphere (e.g.

Eady 1949). The dynamics may also apply to the atmospheres of gas giants (e.g. Seiff et al. 1998)

or other geophysical fluids that have layers of different stratification.

We formulate the model and give some physical intuition for its behavior in Section 2. In

Section 3, we investigate the linear dynamics of the model to understand its stability properties.

These linear dynamics are suggestive of the fully nonlinear turbulent dynamics that we address in

Section 4, where we analyze the energy spectra and fluxes for cases with and without baroclinic

mixed layer instabilities. We compare the results to observations in Section 5 and conclude in

Section 6.

2. Model formulation

Consider two layers with constant stratification and constant mean shear on an f -plane, so

that each layer has constant PV (Fig. 2). The upper layer represents the mixed layer, which has

a mean depth h, stratification Nm, and mean zonal shear Λm that is in thermal wind balance

with the mean meridional buoyancy gradient −fΛm. The lower layer represents the thermocline

and has stratification Nt and mean zonal shear Λt that is in thermal wind balance with the mean

meridional buoyancy gradient −fΛt. The total depth is H . The layers are coupled through a

deformable interface; flat rigid boundaries are assumed at both the surface and the bottom. The

presence of a rigid bottom at the base of the thermocline is not realistic, but we will show that the

bottom layer still captures the key thermocline physics relevant to our study. A weakly stratified

abyssal layer could be included but is omitted here for simplicity, because it does not significantly

affect the surface submesoscale dynamics of interest here. The approximation that the stratifica-

tion is discontinuous at the base of the mixed layer is appropriate at horizontal scales larger than

the deformation radius Nd/f associated with the transition depth d between the mixed layer and

the thermocline (Smith & Bernard 2013). The transition at the base of the mixed layer is typically

quite sharp (Fig. 1), so this deformation radius is much smaller than the submesoscales we are

interested in here.

The assumption of a uniform PV within the two layers greatly simplifies the dynamics. PV

conservation within the layers is trivial, as in the classic Eady (1949) problem. The flow in the
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interior of the layers is obtained by solving (1.1), with the boundary conditions supplied by the

distribution of buoyancy at the surface and bottom and by matching conditions at the interface

between the mixed layer and the thermocline.

In QG, the buoyancy anomaly b is governed by the horizontal advection of buoyancy anomalies

by the geostrophic flow and by the vertical advection of the background buoyancy field,

∂b

∂t
+ J(ψ, b) + wN2 = 0. (2.1)

At the surface and bottom, where the vertical velocity w vanishes, buoyancy anomalies are con-

served under horizontal advection and (2.1) reduces to (1.2). To ensure that pressure is continuous

at the interface, we require that the streamfunction ψ is continuous. Mass conservation requires

that the vertical velocityw also is continuous. These conditions are applied at z = −h, consistent

with QG scaling. The conservation equations for buoyancy just above the interface at z = −h,

∂b+

∂t
+ J(ψ1, b

+) + wN2
m = 0, b+ = f

∂ψ

∂z
(−h+), (2.2)

and just below the interface,

∂b−

∂t
+ J(ψ1, b

−) + wN2
t = 0, b− = f

∂ψ

∂z
(−h−), (2.3)

can then be combined to eliminate w, where ψ1 denotes the streamfunction at z = −h. This

gives a conservation law for the quantity

θ1 = f

(

b+

N2
m

− b−

N2
t

)

, (2.4)

which is simply advected by the horizontal flow at the interface,

∂θ1
∂t

+ J(ψ1, θ1) = 0. (2.5)

It should be noted that this does not ensure that buoyancy is continuous at z = −h. Instead, there

is an implied interface displacement and buoyancy is continuous across the displaced interface.

The displacement is small and, consistent with QG scaling, the matching conditions are applied

at z = −h.

The quantity θ1 is nothing but the integrated PV associated with the interface displacement, as

can be verified by integrating

q = ∇2ψ + f
∂

∂z

(

b

N2

)

(2.6)

across the interface. (The relative vorticity term vanishes because ψ is continuous across the in-

terface.) While there are no PV anomalies within the two layers, the displacement of the interface

between the layers induces a PV anomaly that, according to (2.5) and consistent with QG dy-

namics, is advected by the geostrophic flow at z = −h. The conservation equation (2.5) has been

used to study the dynamics of the tropopause, which is similarly an interface between the weakly

stratified fluid in the troposphere and the strongly stratified fluid in the stratosphere (Eady 1949;

Rivest et al. 1992; Juckes 1994; Held et al. 1995).

The two-layer model can equivalently be interpreted as consisting of three PV sheets:

q = θ0δ(z) + θ1δ(z + h) + θ2δ(z +H), (2.7)

where δ is Dirac’s delta function and θ0 = −fb/N2
m at z = 0, θ2 = fb/N2

t at z = −H , and θ1
at z = −h is given in (2.4). PV is advected by the geostrophic flow, so

∂θj
∂t

+ J(ψj , θj) = 0, (2.8)
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FIGURE 3. Vertical structure of streamfunction amplitude associated with anomalies of θ0 (surface),
θ1 (interface), and θ2 (bottom). Shown are the vertical profiles for θj anomalies with different horizon-
tal wavenumbers kh = 2π/λ. The wavelength λ is given in the respective panel title.

where j = 0, 1, 2 and ψj is the streamfunction at the level corresponding to θj . This formulation

is simply an extension of Bretherton’s (1966) representation of boundary conditions to include

an interior PV sheet due to the deflection of an interface between layers of different stratification.

Note that even though θ1 is only advected by the geostrophic flow, this does not imply that

w = 0 at the interface, much like the fact that interior PV anomalies in the QG system are only

advected by the geostrophic flow does not imply that w = 0. The vertical velocity is implicit in

the dynamics and can be solved for using the omega equation (e.g. Hoskins et al. 1978).

To complete the dynamics, we require an inversion relation that allows us to obtain the stream-

functions ψj from the conserved quantities θj . For simplicity, we consider a doubly-periodic

domain and express the inversion relation as a linear equation for Fourier coefficients of the

variables θj and ψj :

θ̂ = Lψ̂, θ = (θ0, θ1, θ2)
T, ψ = (ψ0, ψ1, ψ2)

T. (2.9)

where Fourier transforms are denoted by carets. The matrix L, which depends on the zonal and

meridional wavenumbers k and l, is determined by solving

−kh2ψ̂ +
∂

∂z

(

f2

N2

∂ψ̂

∂z

)

= 0 (2.10)

in each layer, where kh = (k2 + l2)1/2 is the magnitude of the horizontal wavenumber vector.

The first column of L is determined by setting ψ̂ = (1, 0, 0)T, solving (2.10) for ψ̂(z), and

subsequently calculating θ0, θ1, and θ2. Repeating for ψ̂ = (0, 1, 0)T and ψ̂ = (0, 0, 1)T gives

L = fkh







− cothµm

Nm

cschµm

Nm
0

cschµm

Nm
− cothµm

Nm
− cothµt

Nt

cschµt

Nt

0 cschµt

Nt
− cothµt

Nt






, (2.11)

where µm = Nmkhh/f and µt = Ntkh(H−h)/f are nondimensional wavenumbers. This 3×3
matrix can easily be inverted.

This model can be generalized to an arbitrary number of layers of constant stratification and

shear, which may be a useful way to approximate more realistic stratification and shear profiles.



8 J. Callies, G. Flierl, R. Ferrari and B. Fox-Kemper

This is discussed in Appendix A. The model can also be extended to include a density jump at

the interface, as is sometimes present at the base of the mixed layer. The formulation is given in

Appendix B. Here we consider only the case of a continuous density profile, which is simpler

and captures the essential physics of the submesoscale ocean.

To build intuition for the dynamics of the model, we illustrate the vertical structure of the flow

associated with anomalies of θj at the surface, the interface, and the bottom. Here and throughout

the paper, we use the parameters given in Table 1, which are typical of the wintertime midlatitude

ocean.† At the largest scales, for θj anomalies with wavelength λ = 1000 km or kh ≪ f/NtH ,

the flow is nearly depth-independent, irrespective of which level the anomaly is at (Fig. 3a).

Around the thermocline deformation radius, at λ = 100 km or kh ∼ f/NtH ≪ f/Nmh,

flow anomalies significantly decay in the thermocline, while the flow is nearly uniform across

the mixed layer (Fig. 3b). Surface (θ0) and interface (θ1) anomalies still induce significant flow

at the bottom and vice versa. Around the mixed layer deformation radius, at λ = 10 km or

kh ∼ f/Nmh≫ f/NtH , surface (θ0) and interface (θ1) anomalies induce very little flow at the

bottom and vice versa (Fig. 3c). The flow now varies significantly across the mixed layer, but

surface anomalies (θ0) still induce significant flow at the interface and vice versa. At λ = 1 km
or kh ≫ f/Nmh, all levels are decoupled: θj anomalies on any one of the levels induce very

little flow at the other levels (Fig. 3d).

The dependence of the vertical flow structure on the horizontal scale of the anomalies il-

luminates the qualitative dynamics of the model. At the largest scales, the flow is essentially

depth-independent and follows two-dimensional dynamics. At scales kh ∼ f/NtH , around the

thermocline deformation radius, surface or interface anomalies can interact with bottom anoma-

lies, allowing phase locking and a thermocline instability. At scales kh ∼ f/Nmh, around the

mixed layer deformation radius, surface and interface anomalies can interact, enabling an insta-

bility in the mixed layer. Bottom anomalies, on the other hand, are decoupled, so there is no

thermocline instability at these scales. At the smallest scales, all three levels are independent and

follow surface QG dynamics.

3. Linear stability analysis

We now analyze the linear stability of the model formulated above. This linear analysis reveals

the nature of the instabilities that fuel the nonlinear turbulence, which we describe in the next

section.

Blumen (1979) analyzed short-wave instabilities in the atmosphere using a model consisting

of two coupled constant-PV layers. He performed a linear stability analysis equivalent to what

will be presented here. For completeness, we repeat the analysis in the context of upper ocean

dynamics to emphasize the aspects most relevant for the nonlinear regime.

We consider the linear stability of normal-mode perturbations to a zonal flow with constant

vertical shear Λm in the mixed layer and Λt in the thermocline (Fig. 4). The linearized conserva-

tion equation for the perturbations from this mean state, written in Fourier space, is

∂θ̂

∂t
+ ikUθ̂ + ikΓψ̂ = 0, (3.1)

† The values listed imply a mixed layer Richardson number of N2

m/Λ2

m = 400, which is larger than the
order-1 Richardson numbers typically considered (e.g. Boccaletti et al. 2007). The relatively large Richard-
son number is the result of a relatively weak shear, which is chosen such that realistic energy levels are
reached in the nonlinear simulations described below. QG dynamics overestimate the baroclinic growth
rate for small Richardson numbers (Stone 1966b), which would result in unrealistically strong mixed layer
instabilities if a larger shear was chosen. It should also be noted that the leading-order QG dynamics can be
rescaled to different Richardson numbers.
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FIGURE 4. Mean buoyancy structure in the meridional–vertical plane for (a) the full model and (b) the
thermocline-only model. The contours show isopycnals; light shading indicates more buoyant fluid.

where the mean zonal flows and mean meridional PV gradients at the respective levels are rep-

resented by the diagonal elements of the matrices U and Γ:

U = diag
(

0,−Λmh,−Λmh− Λt(H − h)
)

, (3.2)

Γ = diag
(

f2Λm/N
2
m,−f2Λm/N

2
m + f2Λt/N

2
t ,−f2Λt/N

2
t

)

. (3.3)

The system is Galilean invariant, so we are free to set the mean zonal flow to zero at the sur-

face. Using the inversion relation (2.9), we can replace the ψ̂ and obtain an equation for the θ̂

coefficients only,

∂θ̂

∂t
+ ikUθ̂ + ikΓL−1θ̂ = 0. (3.4)

Substituting θ̂ = θ̃e−iωt, with complex frequency ω, turns this equation for θ̂ into the eigenvalue

problem

(U+ ΓL
−1)θ̃ = cθ̃, (3.5)

where the eigenvalue is c = ω/k. The real part of c is the zonal phase speed; the imaginary part

gives the growth rate σ = k Im c.
Being a third-order system, (3.5) can be solved analytically, but the solutions are rather com-

plicated and give little useful insight. We instead explore the characteristics of the solutions

numerically for the set of parameters given in Table 1. We then explain the stability properties

and parameter dependencies by considering special limit cases.

3.1. Full model

We start by considering the growth rate σ as a function of horizontal wavenumber. The eigenvalue

problem (3.5) only depends on kh = (k2+l2)1/2, so the eigenvalue c is a function of kh only. For

a given kh, the maximum growth rate σ = k Im c hence occurs at l = 0. We therefore consider

disturbances with no meridional dependence only.

Plotting the growth rate σ as a function of zonal wavenumber k reveals that there are two lobes

of instability: one at the mesoscale and one at the submesoscale (Fig. 5a, branches ‘b’ and ‘e’).

The maximum growth rates occur at zonal wavelengths of about 160 km (mesoscale) and 9 km

(submesoscale). The two lobes can overlap, for example if the mixed layer is deeper or if a den-

sity jump at the base of the mixed layer is included (not shown). The submesoscale instability
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Parameter Symbol Value

Mixed layer depth h 100 m
Total depth H 500 m

Mixed layer stratification Nm 2 × 10−3 s−1

Thermocline stratification Nt 8 × 10−3 s−1

Mixed layer shear Λm 10−4 s−1

Thermocline shear Λt 10−4 s−1

Coriolis frequency f 10−4 s−1

Domain size a 500 km
Numerical resolution ∆x ∼ 1 km

TABLE 1. Parameters used throughout this article unless otherwise noted. These are typical of the
wintertime midlatitude ocean.
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has a peak growth rate much larger than the mesoscale instability. The growth rates are similar to

what Boccaletti et al. (2007) found in a linear QG stability analysis of a realistic mean state of the

wintertime eastern subtropical North Pacific. The magnitudes are slightly smaller here, because

the shear is slightly weaker. But the similarity of the instabilities supports that this model, despite

being highly idealized, captures the essential physics of mesoscale and submesoscale instabili-

ties. Whether it also captures the essential physics in the nonlinear regime will be discussed in

Sections 4–6.

The mesoscale and submesoscale instabilities have very different vertical structures, as also

noted by Boccaletti et al. (2007). The perturbation streamfunctions—derived from the eigenvec-

tors of (3.5)—show that the fastest-growing mesoscale mode is deep and spans the entire water

column (Fig. 6a), whereas the fastest-growing submesoscale mode is almost completely confined

to the mixed layer, with only weak penetration into the thermocline below 100 m depth (Fig. 6b).

Both modes exhibit the familiar pattern of baroclinically unstable modes with streamfunction

perturbations tilted into the shear, as is necessary to extract potential energy from the mean flow.

Further insight into the dynamics of the model can be gained by considering the propagation

speeds of the linear modes in conjunction with their growth rates (Fig. 5a,d). Being a third-order

system, the model has three normal modes at each wavenumber. In both lobes of instability, the

growing modes are conjugate to decaying modes, which have the same phase speeds. This is

the familiar phase locking of counter-propagating waves in baroclinic instability (branches ‘b’

and ‘e’). In these unstable wavenumber ranges, there is an additional neutral mode (branches

‘a’ and ‘d’). At wavenumbers with no instability, all three modes have distinct phase speeds—

no phase locking occurs. We will discuss the dynamics of the various branches by considering

approximations to the full model.

3.2. Thermocline only

We start by examining the deep mesoscale instability of the full model. As discussed in the model

formulation (Section 2), the mesoscale modes are deep and only slightly modified by the presence

of the mixed layer. We can understand the mesoscale instability by eliminating the mixed layer

altogether and consider a thermocline-only model (Fig. 4b). This amounts to setting h = 0 (or

Nm = Nt and Λm = Λt) in the full model. In this limit, the model reduces to one layer with the

dynamics controlled by buoyancy advection at the surface and bottom only—the classic Eady
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(1949) model. The inversion matrix (2.11) reduces to

L = fkh

(

− cothµt

Nt

cschµt

Nt

cschµt

Nt
− cothµt

Nt

)

, (3.6)

and the matrices representing the mean flow are

U = diag
(

0,−ΛtH
)

, (3.7)

Γ = diag
(

f2Λt/N
2
t ,−f2Λt/N

2
t

)

. (3.8)

Solving the eigenvalue problem (3.5) with these matrices, we find the eigenvalues

c = −ΛtH

2
± iΛtH

µm

(

µt cothµt − 1− µ2
t

4

)
1

2

, (3.9)

where µt = NtkhH/f is the nondimensional wavenumber (Eady 1949).

The solution (3.9) shows that this thermocline-only model has a baroclinic instability near the

thermocline deformation radius NtH/f . The maximum growth rate σ = 0.31fΛt/Nt occurs

at µt = 1.6 and l = 0, which corresponds to a zonal wavelength λ = 3.9NtH/f . The growth

curve for this thermocline-only model approximates the mesoscale lobe of the full model very

well (Fig. 5b). The short-wave cutoff in the Eady model at λ = 2.6NtH/f nearly coincides

with the short-wave cutoff of the mesoscale instability in the full model. The phase speed of the

phase-locked waves −ΛtH/2 very nearly matches the phase speed of the unstable mesoscale

mode of the full model (Fig. 5e). The split at the short-wave cutoff into surface and bottom

modes also features in the full model. In the thermocline-only model, these surface and bottom

modes are very nearly Eady edge waves that do not sense the other boundary. The bottom mode

of the thermocline-only model very nearly matches that of the full model (branch ‘d’). The sur-

face mode of the thermocline-only model traces out branch ‘c’ of the full model, but then the

full model transitions to dynamics associated with the mixed layer that are not present in the

thermocline-only model.

This comparison shows that the mesoscale instability of the full model very nearly follows

Eady dynamics. The presence of the mixed layer only modifies the characteristics of the insta-

bility slightly. At submesoscales, on the other hand, the thermocline-only model has surface QG

dynamics, as opposed to the mixed layer dynamics of the full model.

3.3. Mixed layer only

Turning our attention to the submesoscale instability, we note that the submesoscale instability

peaks around the deformation radius of the mixed layer Nmh/f . Based on the discussion in the

model formulation (Section 2) and the vertical structure of this instability (Fig. 6b), we antici-

pate that this instability arises from the interaction between anomalies at the surface and at the

interface between mixed layer and thermocline.

In a first attempt to isolate the submesoscale instability, we disregard the possibility that sur-

face and interface anomalies induce flow in the thermocline and assume a rigid bottom at the

base of the mixed layer. This reduces the full model to an Eady model for the mixed layer,

which is the limit of infinite thermocline stratification. This Eady model reasonably approxi-

mates the location and magnitude of the peak growth rate with λ = 3.9Nmh/f = 8 km and

σ = 0.31fΛm/Nm = 0.13 day−1. The Eady model captures the short-wave cutoff of the full

model, but misses the long-wave cutoff. This suggests that the fastest-growing mode approx-

imately follows Eady dynamics as if the thermocline acted like a rigid bottom, but also that

larger-scale modes are significantly modified by reaching into the thermocline.

All features of the submesoscale instability are captured if flow in the thermocline is allowed.

To still isolate the submesoscale instability, we consider again the layered model but let the
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thermocline be infinitely deep. That eliminates bottom edge waves, so no mesoscale instability

occurs. Eady (1949) considered the upside-down atmospheric analogue to this system, relaxing

the assumption that a rigid lid is placed at the tropopause.

Our system with no bottom again reduces to two variables; the inversion matrix is

L = fkh

(

− cothµm

Nm

cschµm

Nm

cschµm

Nm
− cothµm

Nm
− 1

Nt

)

(3.10)

and the mean flow is represented by

U = diag
(

0,−Λmh
)

, (3.11)

Γ = diag
(

f2Λm/N
2
m,−f2Λm/N

2
m + f2Λt/N

2
t

)

. (3.12)

In the case Λ = Λm = Λt, the solution to the eigenvalue problem (3.5) is

c = −Λh

2

(

1 +
α

µm

)

± iΛh

µm

[

(1− α2)(µm − tanhµm)

tanhµm + α
− 1

4
(µm − α)2

]
1

2

, (3.13)

where α = Nm/Nt (Eady 1949; Blumen 1979). This converges to the classic Eady solution if

α ≪ 1 and α ≪ µm, which is equivalent to Nt ≫ Nm and kh ≫ f/Nth. This shows that

large thermocline stratification acts like a rigid bottom, but only for scales that are not too large,

as alluded to above. Modes of large horizontal scale penetrate into the thermocline and their

dynamics are altered.

The growth rates and phase speeds of this reduced model very nearly match the growth rates

and phase speeds of the full model at scales smaller than about 100 km (Fig. 5c and 5f). This

model now captures the long-wave cutoff of the submesoscale instability. At large scales, where

µm ≪ α and µm ≪ 1 or equivalently kh ≪ f/Nth and kh ≪ f/Nmh, the dynamics split into

modes that are barotropic and baroclinic in the mixed layer. The barotropic mode behaves like

a surface edge wave, which has a phase speed −fΛ/Ntkh and does not sense the mixed layer

(Fig. 5f). The baroclinic mode is baroclinic in the mixed layer and remains shallow for large

scales—its critical level is the base of the mixed layer and its phase speed is −Λh. The vastly

different phase speeds of these two modes prevent phase-locking, so no instability occurs at large

scales. This stabilization is analogous to that by the β-effect (Phillips 1954; Lindzen 1994; Vallis

2006). Note that no tilt in the interface is required for this long-wave cutoff (cf. Boccaletti et al.

2007). For the unstable modes, the reduced model with no bottom also captures the deepening of

the critical level as the scale gets larger, −Λh(1 + f/Ntkhh)/2, which is due to the increasing

penetration of the unstable mode into the thermocline.

The location of the long-wave cutoff in this constant-shear case depends on the ratio Nm/Nt.

In the more general case Λm 6= Λt, it also depends on the ratio Λm/Λt. No long-wave cutoff

occurs if Λt = 0, as found by Rivest et al. (1992), who considered the atmospheric case with no

shear in the stratosphere. There is also no long-wave cutoff if Nm/Nt → 0, which is the Eady

limit. The instability itself requires a reversal of the PV gradient, so the condition for instability

is Λm/N
2
m > Λt/N

2
t . This condition is typically satisfied in the ocean, because the thermocline

stratification is much larger than the mixed layer stratification and horizontal buoyancy gradients

are typically of the same order in the mixed layer as in the thermocline, if not larger.

3.4. Summary

We are now in a position to understand all branches in the phase speed diagram of the full model.

Branch ‘a’ is a mode that is baroclinic in the mixed layer and does not penetrate much into the

thermocline. It does not sense the bottom. Branch ‘b1’ is the unstable branch corresponding to

the Eady-like thermocline instability; branch ‘b2’ is the conjugate decaying branch. Branch ‘c’

is a mode that is nearly barotropic in the mixed layer and behaves like a surface edge wave in
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the thermocline. It does not interact much with the bottom. Branch ‘d’ is a bottom edge wave

that is independent of the surface and interface. Branch ‘e1’ is the unstable branch corresponding

to the mixed layer instability; branch ’e2’ is the conjugate decaying branch. The instability is

significantly modified by the modes’ penetration into the thermocline, but the size and growth

rate of the most unstable mode still scale with the mixed layer deformation radius and the Eady

growth rate. Branches ‘f’ and ‘g’ are edge waves propagating on the surface and the interface

that do not interact with any of the other edge waves.

4. Nonlinear dynamics

We now turn to the nonlinear dynamics that arise when perturbations are amplified by the

instabilities and grow to finite amplitude. We solve numerically the full nonlinear equations

∂θ

∂t
+U

∂θ

∂x
+ Γ

∂ψ

∂x
+ J(ψ,θ) = r∇−2θ − ν(−∇2)nθ, (4.1)

where the Jacobian operator is understood to act element-wise:

J(ψ,θ) = (J(ψ0, θ0), J(ψ1, θ1), J(ψ2, θ2))
T. (4.2)

These are the evolution equations for perturbations from the prescribed mean zonal flow, which

appears in form of the diagonal matrices U and Γ. We consider flows that are doubly periodic

in the perturbations, so no modification of the prescribed mean can occur. We introduce hy-

poviscosity with coefficient r, which provides a drag to remove energy from large scales, and

hyperviscosity with coefficient ν and order n, which helps ensure numerical stability and ab-

sorbs enstrophy at small scales. Hypoviscosity is a convenient but somewhat unphysical choice.

We introduce it to halt the inverse cascade and allow for mesoscale equilibration. Hypoviscos-

ity appears in the dynamical equations for the conserved quantities at the surface, interface, and

bottom, but it can be thought of as acting throughout the layers. If applied to buoyancy and

momentum, it does not affect PV and PV conservation within the layers remains trivial. Linear

drag cannot prevent an inverse cascade to the domain scale without significantly damping the

instabilities.

We integrate these equations on a 500 km × 500 km domain using a fully dealiased pseudo-

spectral code with a resolution 512×512. The time derivatives are discretized using a forth-order

Runge-Kutta scheme. The hypoviscosity coefficient is r = 10−16 m−2 s−1; the hyperviscosity

is of order n = 10 and the coefficient is ν = 2.5× 1046 m20 s−1. All calculations are initialized

with white noise of small amplitude in θj .

Before considering the combined effect of mesoscale and mixed layer instabilities, we first

consider them separately. We start with the thermocline-only model, which allows only the

mesoscale thermocline instability while submesoscale flows follow surface QG dynamics. We

subsequently contrast this case with the mixed-layer-only model, which allows only the subme-

soscale mixed layer instability. We finally consider the full model, in which both instabilities

occur.

4.1. Thermocline only

We start by studying surface QG turbulence generated by mesoscale eddies, one of the proposed

mechanisms to energize submesoscale flows. Surface QG flows cannot themselves extract energy

from the mean flow, so they must be forced at the mesoscale. Instead of prescribing external

forcing (e.g. Pierrehumbert et al. 1994; Scott 2006), we use the thermocline-only Eady model

to generate mesoscale eddies that in turn generate the submesoscale flows. As we saw in the

linear stability analysis, the dynamics of surface buoyancy anomalies in this model decouple

from the bottom at scales smaller than the thermocline deformation radius, so flows very nearly
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FIGURE 7. Snapshots of surface buoyancy (mean plus anomalies) from the equilibrated states of the (a) the
full model, (b) the thermocline-only model, and (c) the mixed-layer-only model. The color scale extends
from white (more buoyant) through blue to black (less buoyant) and extends between ±fΛa.

follow surface QG dynamics at the submesoscales, i.e. the scales smaller than the thermocline

deformation radius. The mesoscale instability is an obviously crude representation of the real

mesoscale instability, with no interior PV gradients and the presence of an artificial rigid interface

at the base of the thermocline. But the instability does generate mesoscale eddies of roughly the

right scale, which is sufficient to drive the submesoscale surface QG flows (cf. Roullet et al.

2012).

Since the dissipative terms are weak in the linear regime, the instability grows until it reaches

finite amplitude, when the nonlinear terms become important. Secondary instabilities set in and

the flow quickly evolves into a fully turbulent regime. The perturbations grow in scale until

they reach a scale where hypoviscosity is significant. Thereby, the flow comes into statistical

equilibrium, which is the time period considered in what follows.

A snapshot from the equilibrated state exhibits a patchy surface buoyancy field with strong

buoyancy gradients (Fig. 7b). The largest eddies are about 200 km in scale. The strongest co-

herent vortices have a scale of about 50 km. Smaller-scale vortices are present, but weaker the

smaller the scale. They result from a roll-up instability that features prominently in the evolution

of the flow (Held et al. 1995).

As typical for turbulent flows, a continuum of scales is energized. This is quantified by the ki-

netic and potential energy spectra in statistical equilibrium, 〈Kk,l〉 and 〈Pk,l〉, which are defined

by

Kk,l =
1

2

(

|û|2 + |v̂|2
)

, Pk,l =
1

2

|b̂|2
N2

. (4.3)

The angle brackets denote an average in time, performed over the statistical equilibrium, and u
and v denote the leading-order zonal and meridional geostrophic velocity components. Isotropic

spectra 〈Kkh
〉 and 〈Pkh

〉 are computed by averaging 〈Kk,l〉 and 〈Pk,l〉 over circles of constant

kh in wavenumber space—the statistics are very nearly isotropic.

The surface spectra of both kinetic and potential energy peak at a wavelength of about 200 km

and fall off roughly like 〈Kkh
〉 ∼ 〈Pkh

〉 ∼ kh
−5/3 (Fig. 8), as predicted by surface QG turbu-

lence theory for scales smaller than the scales at which mesoscale instabilities inject energy into

the system (Blumen 1978). Since small-scale modes decay more rapidly in the vertical than

large-scale modes, the spectra are steeper in the interior (e.g. Scott 2006). At 100 m depth, the
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FIGURE 8. Wavenumber spectra of kinetic and potential energy from the thermocline-only simulation.
(a) Kinetic and (b) potential energy spectra at the surface and 100 m depth, spectral density of (c) kinetic
and (d) potential energy in the wavenumber–depth plane. In panels (c) and (d), no values below 10−3 m3 s−2

are shown. Reference lines with slopes −3 and −5/3 are shown in gray.

mesoscale energy levels are similar to those at the surface, but submesoscales energy levels are

much lower.

A useful diagnostic of turbulent dynamics is the spectral energy budget (e.g. Larichev & Held

1995; Roullet et al. 2012). While the dynamics are completely determined by the advection of

conserved quantities at the surface and bottom, we first consider the energy budget over the

entire depth range. We will take into account the reduced nature of these models below, where

we present a vertically integrated energy budget for the mixed-layer-only case.

The equations for the spectral perturbation potential and kinetic energies are

∂Pk,l

∂t
= Re

[

fΛ

N2
v̂∗b̂− ŵ∗b̂− 1

N2
b̂∗Ĵ(ψ, b)

]

−
(

rkh
−2 + νkh

2n
)

Pk,l (4.4)

∂Kk,l

∂t
= Re

[

−f ∂
∂z

(

ŵ∗ψ̂
)

+ ŵ∗b̂+ ψ̂∗Ĵ(ψ,∇2ψ)

]

−
(

rkh
−2 + νkh

2n
)

Kk,l (4.5)

where the asterisks denote complex conjugates and Re denotes taking the real part. The Fourier

transforms in the square bracket are all understood to be evaluated at the wavenumbers k and l.
The first term on the right-hand side of the potential energy equation represents the extraction

of potential energy from the mean flow. The second term represents the conversion from po-
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FIGURE 9. Spectral energy budget for the thermocline-only simulation. The terms are (a) potential energy
extraction from the mean, (b) spectral potential energy flux divergence, (c) potential to kinetic energy con-
version, (d) kinetic energy flux divergence, including spectral flux and pressure flux, (e) hypoviscosity on
both kinetic and potential energy, and (f ) hyperviscosity on both kinetic and potential energy. All terms are
multiplied by the wavenumber to compensate for logarithmic shrinking.

tential to kinetic energy. This term appears as a source term in the kinetic energy budget. The

third term in the potential energy budget represents spectral transfer by triadic interactions. The

sum of this term over all wavenumbers vanishes. An equivalent spectral transfer term appears

in the kinetic energy budget (third term). Kinetic energy can also be distributed vertically by

pressure fluxes, represented by the first term in the kinetic energy budget. The vertical integral

of this term vanishes. The viscosity terms act as sinks for both potential and kinetic energy—

hypoviscosity acting at large scales, hyperviscosity at small scales. We present these budgets

averaged azimuthally in wavenumber space and over time.

The extraction of potential energy from the mean is dominated by the largest, most energetic

eddies (Fig. 9a). The extraction is independent of depth, because q = 0 and therefore

0 = Re v̂∗q̂ = Re
∂

∂z

(

f

N2
v̂∗b̂

)

, (4.6)
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where it was used that the term involving advection of relative vorticity vanishes. Potential energy

is transferred downscale by triadic interactions and deposited near the deformation radius as well

as in wedges near the surface and the bottom that reach to much smaller scales (Fig. 9b). Where

potential energy is deposited by scale interactions, it is converted into kinetic energy (Fig. 9c).

Near the mesoscale deformation radius, this conversion is due to the mesoscale instability that

produces vertical buoyancy fluxes. In the wedges near the surface and bottom, the conversion is

due to frontogenesis and secondary instabilities present in the surface QG cascades, which occur

independently at the surface and the bottom (Roullet et al. 2012). The kinetic energy thus created

is transferred back to large scales (Fig. 9d). The bulk of the energy is dissipated through hypovis-

cosity at the scales of the largest, most energetic eddies (Fig. 9e). The energy dissipation through

hyperviscosity is small, which reflects the fundamental property of geostrophic turbulence that

energy is trapped at large scales and viscous energy dissipation vanishes in the limit of infinite

resolution and zero (hyper-)viscosity (Kraichnan 1967; Charney 1971).

4.2. Mixed layer only

We now turn our attention to the nonlinear dynamics of the submesoscale mixed-layer instability

and compare its turbulent dynamics to the surface QG turbulence of the thermocline-only case.

We study the case with an infinitely deep thermocline, which allows an accurate representation

of the submesoscale instability, while eliminating the thermocline instability (Fig. 5c,f).

The submesoscale instability grows to finite amplitude and the flow becomes turbulent. There

is a turbulent spin-up phase, in which the eddies, which are initially of the size of the instabil-

ity, grow larger until they reach a statistical equilibrium with hypoviscosity. The flow is host

of numerous coherent vorticies embedded in a filamentary sea with strong buoyancy gradients

(Fig. 7c). A snapshot of surface buoyancy appears quite different from the thermocline-only case,

but this visual difference is due mostly to the smaller size of the most energetic eddies.

The energy spectra reflect the nearly frontal structure at the surface (Fig. 10). The kinetic

energy spectra fall off slightly more steeply than 〈Kkh
〉 ∼ kh

−5/3 in the scale range of the linear

instability and like 〈Kkh
〉 ∼ kh

−5/3 at scales smaller than the linear short-wave cutoff, both at the

surface and at the base of the mixed layer at 100 m depth (Fig. 10a). The mixed layer instabilities

energize the entire depth of the mixed layer. This is in sharp contrast to the thermocline-only

simulation, in which surface QG turbulence energizes a thin wedge close to the surface only.

The equilibrated flow in the mixed-layer-only case is much more energetic than in the thermocline-

only case and more energetic than is realistic. While the equilibration by hypoviscosity is unre-

alistic, we will see that the enhanced energy levels are due to more efficient extraction of mean

potential energy in the weakly stratified mixed layer, which is a dynamical property of the system

that does not depend on how the flow is equilibrated. We will discuss possible reasons for these

unrealistically high energy levels in Section 5.

Below the base of the mixed layer, the potential energy spectra are the same as the kinetic

energy spectra (Fig. 10c). In the mixed layer, the potential energy spectra are significantly flatter

than the kinetic energy spectra. This is in contrast to observations that show rough equipartition

between kinetic and potential energy (Callies & Ferrari 2013; Callies et al. 2015). We currently

do not understand the reason for this difference.

The vertical structure of energy shows that the mixed layer instabilities also energize the ther-

mocline below (Fig. 10b,d). At the instability scale, the flow does not reach much into the ther-

mocline. But as the horizontal scale of the flow increases, so does the vertical scale. The flow

exhibits the familiar property of geostrophic turbulence and barotropizes as it increases its hori-

zontal scale (Charney 1971; Smith & Vallis 2001).

The energy transfer into the thermocline is best examined through the spectral energy budget

(Fig. 11). Potential energy is extracted at the scale of the largest, most energetic eddies, but the

extraction is confined to the mixed layer (Fig. 11a). Potential energy is transferred from the ex-
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FIGURE 10. Wavenumber spectra of kinetic and potential energy from the mixed-layer-only simulation.
(a) Kinetic and (b) potential energy spectra at the surface and 100 m depth (just below mixed layer base),
spectral density of (c) kinetic and (d) potential energy in the wavenumber–depth plane. In panels (c) and
(d), no values below 10−3 m3 s−2 are shown. Reference lines with slopes −3 and −5/3 are shown in gray.

traction scale to the scale of the mixed layer instability (Fig. 11b). The mixed layer instability

converts potential energy into kinetic energy in the mixed layer, at the instability scale (Fig. 11c).

The kinetic energy created by the instability undergoes an inverse cascade, in which energy is not

only transferred to large horizontal scales, but also vertically into the thermocline (Fig. 11d). The

deposition of kinetic energy at the scale of the largest eddies is well distributed across the mixed

layer and upper thermocline. The vertical distribution of the energy sink through hypoviscosity

confirms that the flow extends below the mixed layer at the scale of the largest eddies, where

hypoviscosity acts (Fig. 11e). Hyperviscosity acts only at the smallest resolved scales (Fig. 11f).

While small, it does affect the other terms in the budget. We do not discuss its effects any fur-

ther, because they are expected to disappear if the resolution is increased and the hyperviscosity

coefficient decreased.

These energy pathways are reminiscent of the phenomenology of two-layer baroclinic turbu-

lence. The turbulent dynamics of a two-layer system can be understood in terms of a dual cascade

(Rhines 1977; Salmon 1978). Baroclinic energy is extracted from the mean at the scale of the

largest, most energetic eddies. The barotropic flow dominates at these scales and transfers the

baroclinic energy downscale. The baroclinic mode behaves like a passive tracer at these scales.

Around the deformation radius, the instability converts baroclinic energy into barotropic energy.



20 J. Callies, G. Flierl, R. Ferrari and B. Fox-Kemper

FIGURE 11. Spectral energy budget for the mixed-layer-only simulation. The terms are (a) potential energy
extraction from the mean, (b) spectral potential energy flux divergence, (c) potential to kinetic energy con-
version, (d) kinetic energy flux divergence, including spectral flux and pressure flux, (e) hypoviscosity on
both kinetic and potential energy, and (f ) hyperviscosity on both kinetic and potential energy. All terms are
multiplied by the wavenumber to compensate for logarithmic shrinking.

The barotropic energy then enters an inverse cascade, which is arrested at some scale by drag or

hypoviscosity. The forward cascade of baroclinic energy is compensated by the inverse cascade

of barotropic energy, such that no spectral transfer of total energy occurs. This is consistent with

the phenomenology that all sources and sinks of total energy occur at the scale of the largest,

most energetic eddies—no energy is dissipated at small scales.

Can the turbulent dynamics induced by mixed layer instabilities be understood in similar

terms? To pursue the analogy, we must first introduce a modal decomposition of the eddy en-

ergy. In our system, the vertically integrated total energy can be written entirely in terms of the

quantities at the surface and interface:

Ek,l = −1

2
ψ̂

†
θ̂ = −1

2
ψ̂

†
Lψ̂, (4.7)

where the conjugate transpose is denoted with a dagger. Since L is real and symmetric, it can be
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diagonalized through a unitary matrix S,

L = S
†
DS, (4.8)

where D is diagonal and consists of the real eigenvalues of L, Djj = λj . The energy can now be

written as

Ek,l = −1

2
(Sψ̂)†D(Sψ̂) = −1

2

∑

j

λj |(Sψ̂)j |2. (4.9)

This defines the modes (Sψ̂)j that are orthogonal with respect to the energy norm, i.e. the energy

can be partitioned into contributions Ej
k,l from these modes. The structure of the modes depends

on wavenumber, because L and therefore S does.

For the mixed-layer-only case, with L given by (3.10), the eigenvalues of L are

λ0,1 = fkh





cothµm

Nm

+
1

2Nt

±
√

csch2 µm

N2
m

+
1

4N2
t



 (4.10)

and we obtain the eigenvectors as the columns of S,

S =
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sinhµm

)

2
] 1
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1
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)

2
] 1
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(
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] 1
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coshµm+
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. (4.11)

For large scales, kh ≪ f/Nth or µm ≪ Nm/Nt, this reduces to

λ0 = − fkh
2Nt

, λ1 = − 2f2

N2
mh

. (4.12)

and simply

S =
1√
2

(

1 1
1 −1

)

. (4.13)

Equation (4.13) indicates that at large scales the first mode is barotropic in the mixed layer. It

behaves like a surface QG mode penetrating into the thermocline. The streamfunction is propor-

tional to kh times the conserved quantity (Held et al. 1995),

(Sψ̂)0 = − fkh
2Nt

(Sθ̂)0. (4.14)

The second mode at large scales is baroclinic in the mixed layer. The relation between the stream-

function and the conserved quantity is

(Sψ̂)1 = − 2f2

N2
mh

(Sθ̂)1, (4.15)

which is independent of kh, as expected for a baroclinic mode. These are the same modes as

those found in the linear stability analysis for large scales (Fig. 5f).

This description of the orthogonal modes as barotropic and baroclinic mixed layer modes only

applies at large scales. At smaller scales, the modes have a more complicated vertical structure

(Fig. 12). At scales smaller than the mixed layer deformation radius, they morph into modes that

are decoupled and localized in the vertical at the surface and at the interface. But for the cascade

dynamics to be discussed, the mode structure at large scales is what is most important.

We can now consider the energy budget of these modes. We start from the vertically inte-

grated spectral energy budget, written in terms of the conserved quantities and corresponding
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FIGURE 12. Vertical structure of the streamfunction corresponding to orthogonal modes in the mixed-lay-
er-only case for different wavenumbers kh = 2π/λ, with the wavelength λ given in the panel titles. For
panels (a), (b), and (c), the modes are normalized to unity at the interface at 100 m depth; for panel (d), the
modes are normalized to have a maximum value of unity. Mode 0 is shown in blue, mode 1 in red. In panels
(a), (b), and (c), the two modes coincide below the interface.

streamfunctions at the surface and interface:

∂Ek,l

∂t
= −Re ψ̂

† ∂θ̂

∂t
. (4.16)

Using the unitary matrix S, we can rewrite this as

∂Ek,l

∂t
= −Re (Sψ̂)†

∂

∂t
(Sθ̂) = −Re

∑

j

(Sψ̂)∗j
∂

∂t
(Sθ̂)j (4.17)

and thus split the energy budget into its modal components:

∂Ej
k,l

∂t
= −Re (Sψ̂)∗j

∂

∂t
(Sθ̂)j . (4.18)

The terms on the right-hand side of this budget can be obtained by substituting in the spectral

form of the evolution equation (4.1). To separate out the advective interactions of the modes

with themselves and with each other, we further expand the nonlinear terms in (4.1), using the

distributive property of the Jacobian operator, into

J(ψ,θ) = J(ψ0,θ0) + J(ψ0,θ1) + J(ψ1,θ0) + J(ψ1,θ1). (4.19)

Here we split the vectors holding the streamfunction and the conserved quantities at the surface

and interface into their modal components,

ψ̂
j
= S

†
PjSψ̂, θ̂

j
= S

†
PjSθ̂, ψ =

∑

j

ψj , θ =
∑

j

θj , (4.20)

where Pj are the projections onto the respective modes,

P0 =

(

1 0
0 0

)

, P1 =

(

0 0
0 1

)

. (4.21)

The first term in (4.19) represents the advection of the barotropic mode by the barotropic mode,

to use the naming convention introduced above. The second term represents the advection of the

baroclinic mode by the barotropic mode, and so on.
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FIGURE 13. Modal energy budget for the mixed-layer-only case. The advective terms correspond to the
contributions from the four terms in (4.19). The energy tendencies are multiplied by wavenumber to com-
pensate for logarithmic shrinking.

In terms of the orthogonal modes, the energy budget is very similar to that of a baroclinic two-

layer system (Fig. 13, cf. Larichev & Held 1995). The extraction of potential energy from the

mean flow is concentrated at the scale of the largest, most energetic eddies and creates mostly

baroclinic energy (Fig. 13b). The dominant sink is by hypodiffusion, which also acts on the

largest, most energetic eddies. Barotropic energy dominates at these scales, so hypodiffusion

takes out mostly barotropic energy (Fig. 13a). The transfer of energy from the baroclinic mode

to the barotropic mode occurs through a dual cascade in the submesoscale range. The baroclinic

and barotropic energy components are cascaded in opposite directions so as to yield a vanishing

spectral transfer of total energy. Baroclinic energy is transferred down to the instability scale,

achieved by the advection of the baroclinic mode by the barotropic mode (Fig. 13b). The en-

ergy deposited around the instability scale is transferred to the barotropic mode by interactions

between the two modes, which represents baroclinic instability (Fig. 13b). This energy enters

the barotropic budget rather less localized in wavenumber space (Fig. 13a). An upscale spectral

transfer of barotropic energy closes the budget, taking energy from the instability scale to the

scale of the largest, most energetic eddies, where hypodiffusion acts (Fig. 13a). Energy loss by

hyperdiffusion again enters the budget, but is neglected in this discussion, because it is an artifact

of finite resolution.

This model thus exhibits a dual cascade analogous to the classic two-layer system. Baroclinic

energy is transferred downscale through advection by the barotropic mode, baroclinic instability

converts baroclinic into barotropic energy, and barotropic energy is

transferred back upscale in an inverse cascade. The difference is that the barotropic mode at

large scales behaves like a surface QG mode, instead of a truly barotropic or two-dimensional

mode. The inverse cascade is therefore expected to yield a 〈Ekh
〉 ∼ kh

−1 surface energy spec-

trum (Blumen 1978), which we find to emerge if the inertial range is wide enough (not shown).

More importantly, the surface-QG-like behavior implies that in the inverse cascade, energy is

transferred to successively larger vertical scales. This provides a pathway for mixed layer insta-

bilities to energize the thermocline below.

4.3. Full model

We now consider the case with both mesoscale and submesoscale instabilities present. This full

model allows us to address how mesoscale thermocline instabilities modify the energy cycle
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FIGURE 14. Wavenumber spectra of kinetic and potential energy from the full model simulation. (a) Kinetic
and (b) potential energy spectra at the surface and 100 m depth (just below mixed layer base), spectral
density of (c) kinetic and (d) potential energy in the wavenumber–depth plane. In panels (c) and (d), no
values below 10−3 m3 s−2 are shown. Reference lines with slopes −3 and −5/3 are shown in gray.

induced by submesoscale mixed layer instabilities. Furthermore, we pursue a one-to-one com-

parison between surface-QG dynamics and the dynamics modified by mixed layer instabilities,

with a focus on vertical energy distribution and vertical velocities.

The linear growth rate of the mixed layer instability is much larger than that of the thermocline

instability (Fig. 5a), so during the initial transient of the nonlinear simulations the mixed layer

instability grows to finite amplitude first. The evolution in the mixed layer is very similar to that

of the mixed-layer-only case: the eddies grow in size until they come into statistical equilibrium

with hypoviscosity.

The equilibrated state of the full model is also very similar to that of the mixed-layer-only case

in the mixed layer and upper thermocline (Fig. 14). The energy levels and spectra at the surface

and the base of the mixed layer are very similar. Near the bottom, a wedge in wavenumber–depth

space is energized in the full model, just like in the thermocline-only case. This is due to surface

QG turbulence at the bottom level.

The energy budget is similar to the mixed-layer-only case (Fig. 15). The main energy pathway

is again extraction of potential energy in the mixed layer, transfer to the mixed layer instability

scale, conversion to kinetic energy, transfer back to large scales and into the thermocline, and

dissipation by hypoviscosity. There is additional energy extraction in the thermocline, but that



Mixed layer instabilities 25

FIGURE 15. Spectral energy budget for the full model simulation. The terms are (a) potential energy ex-
traction from the mean, (b) spectral potential energy flux divergence, (c) potential to kinetic energy con-
version, (d) kinetic energy flux divergence, including spectral flux and pressure flux, (e) hypoviscosity on
both kinetic and potential energy, and (f ) hyperviscosity on both kinetic and potential energy. All terms are
multiplied by the wavenumber to compensate for logarithmic shrinking.

is weak compared to the extraction in the mixed layer. The dominant dynamics are therefore

those described for the mixed-layer-only case. Interaction with the bottom level is possible, but

of secondary importance in the parameter regime of relevance.

A different picture emerges when the horizontal buoyancy gradient and the associated geostrophic

shear in the mixed layer is (unrealistically) reduced. We choose the mixed layer shear such

that the growth rates of the two instabilities are comparable, which from Eady scaling occurs

if Λm/Nm = Λt/Nt and we set Λm = 2.5× 10−5 s−1. The horizontal scales of the instabilities

and the overall structure of the dispersion curves are the same as those in Fig. 5a,d.

This system with reduced mixed layer shear equilibrates to much lower energy levels than

the constant shear case. The energy levels are comparable to the thermocline-only case and thus

allow a one-to-one comparison of the dynamics with and without a mixed layer. The vertical

structure of energy in this case with a mixed layer is quite different from the thermocline-only

case, because the energy pathway enabled by the mixed layer instability is still present—mixed
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FIGURE 16. Profiles of root mean square vertical velocity for the thermocline-only simulation and the full
model simulation with reduced mixed layer shear.

layer instabilities are—on average—not suppressed by the mesoscale strain field (cf. Bishop

1993a,b; Spall 1997; McWilliams et al. 2009). The mixed layer instability, while not significantly

increasing the mesoscale energy levels, does energize the mixed layer at the submesoscales.

This difference between mixed layer dynamics and surface QG turbulence is also reflected in

vertical velocities that are produced by the instabilities (Fig. 16). While the available potential

energies are the same and the resulting surface energy levels comparable between this reduced

mixed layer shear case and the thermocline-only case, there are much larger vertical velocities in

the presence of a mixed layer. These enhanced vertical velocities extend significantly below the

base of the mixed layer. The largest vertical velocities are located near fronts in the filamentary

sea (Fig. 17). Coherent vortices, while associated with the large buoyancy gradients, induce rela-

tively weak vertical motion. The large vertical velocities appear instead to be associated with the

filamentary structure generated by mixed layer instabilities.

The enhancement of vertical velocities in the presence of mixed layer instabilities can be

understood by considering the omega equation (Hoskins et al. 1978):

N2∇2w + f2
∂2w

∂z2
= −2∇ ·Q, (4.22)

where

Q =

(

∂u

∂x
· ∇b, ∂u

∂y
· ∇b

)

. (4.23)

The vertical velocities can be written as a convolution of the Green’s function of (4.22) with

the forcing term on the right of (4.22). While the forcing term is not changing much between

the cases with and without the mixed layer, the Green’s functions do. The reduced stratification

in the mixed layer enhances the response to the forcing term there (Thomas et al. 2008). The

enhancement of vertical velocities in our simulation with mixed layer can thus be attributed to

the reduced stratification. Such a reduction of stratification is always associated with a mixed

layer instability, however, so the enhanced vertical velocities are inextricably linked to mixed

layer instabilities.

The forcing term on the right of (4.22) is of the same order in our two cases, because by design

the mean states have the same available potential energy and similar submesoscale energy levels
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FIGURE 17. Concurrent surface buoyancy and vertical velocity snapshots from the full model simulation
with reduced mixed layer shear: (a) surface buoyancy equivalent to Fig. 7 and (b) vertical velocity at 47 m,
the depth of the maximum root mean square vertical velocity.

are produced. It should be kept in mind, however, that the forcing term does likely increase in

the real ocean when mixed layers become deep and mixed layer instabilities energize the sub-

mesoscale range. The more energetic submesoscale turbulence in the wintertime mixed layer is

expected to be associated with stronger submesoscale strains than are present in summer (Cal-

lies et al. 2015). In the wintertime mixed layer, vertical velocities are then enhanced by both a

decreased stratification and an increased forcing term on the right of (4.22). Mixed layer instabil-

ities in the real ocean thus most likely drive an even more dramatic increase in vertical velocities

in winter than is present in our simulations with and without mixed layer.

The root mean square vertical velocities (Fig. 16) are similar in structure to those found in

primitive equation models (Capet et al. 2008b). A careful comparison is necessary to establish

whether the QG dynamics described here reproduce the magnitude of the vertical velocities or

whether non-QG effects significantly enhance or reduce them (cf. Mahadevan & Tandon 2006).

Such a comparison is beyond the scope of this paper.

The interface between mixed layer and thermocline is located at z = −h + η, where the

interface displacement η is determined by requiring the total buoyancy field to be continuous at

the interface,

N2
mη + b(−h+) = N2

t η + b(−h−), (4.24)

where the total buoyancy was linearized around z = −h, consistent with QG scaling. The inter-

face is material in the sense that

∂η

∂t
+ J(ψ, η) = w. (4.25)

To leading order, there is therefore no exchange of fluid between mixed layer and thermocline. If

non-QG effects are taken into account, however, thermocline waters can be folded into the mixed

layer (Garner et al. 1992), where atmospherically forced small-scale turbulence can transform

them into mixed layer waters. It thus seems likely that mixed layer instabilities enhance the

exchange between mixed layer and thermocline, but future work will have to investigate what

sets the rate of exchange.
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5. Comparison to observations

A prominent feature of observed (Callies et al. 2015) and modeled (Mensa et al. 2013; Sasaki

et al. 2014) submesoscale flows is their seasonal modulation: they are much more energetic in

winter than in summer. This is consistent with an energization of the submesoscale by baroclinic

mixed layer instabilities. Given that these instabilities grow on time scales of order 1 day, they

can quickly release large amounts of available potential energy stored in lateral buoyancy gradi-

ents in deep winter mixed layers and energize the submesoscale range. Mixed layer instabilities

are instead weak in summer, when mixed layers are shallow and little potential energy is avail-

able for release. Mesoscale-driven surface frontogenesis, on the other hand, is not expected to

drive a seasonal cycle in submesoscale turbulence, because the mesoscale eddies that generate

submesoscale filaments through frontogenesis are about as strong in winter as they are in summer

(or even slightly stronger in summer, Qiu 1999; Qiu & Chen 2004; Sasaki et al. 2014).

Submesoscale flows observed in the wintertime Gulf Stream region (Callies et al. 2015) are

energetic throughout the deep mixed layer and decay rapidly below. The energy spectra roll off

roughly like k−2 in the mixed layer and transition to roughly k−3 below. This spectral and ver-

tical distribution of energy resembles that produced by our simple model of baroclinic mixed

layer instabilities, which similarly has spectra that roll off roughly like k−2 in the mixed layer

and more steeply in the thermocline (Fig. 14). The equilibrated turbulent flow produced by baro-

clinic mixed layer instabilities in this model is thus qualitatively consistent with the energetic

wintertime submesoscale flows observed in the Gulf Stream region. In summer, on the other

hand, submesoscale flows in the Gulf Stream region are weak. The spectral roll-off is a rapid

k−3, even close to the surface. This lack of submesoscale energy is expected from the lack of

energy input from baroclinic mixed layer instabilities.

There is so far no observational evidence for submesoscale flows that are governed by mesoscale-

driven surface frontogenesis as described by surface QG turbulence. The spectral slope of surface

kinetic energy may be consistent with the predictions of surface QG theory (e.g. Le Traon et al.

2008), but the subsurface structure is not. The observations from the Gulf Stream region (Callies

et al. 2015) show that the spectral and vertical distribution of submesoscale energy is different

from that produced by surface QG turbulence (Fig. 8), in both summer and winter. In winter,

submesoscale flows are observed to be energetic throughout the mixed layer—not just in a thin

surface layer as predicted by surface QG turbulence. In summer, when baroclinic mixed layer

instabilities are not active and mesoscale-driven surface frontogenesis could dominate, subme-

soscale flows are observed to be weak—there is no surface-trapped enhancement as predicted by

surface QG turbulence. This suggests that these weak summertime submesoscale flows are in-

stead dominated by deep modes generated by mesoscale thermocline instabilities. Observations

from Drake Passage also show no signature of mesoscale-driven surface frontogenesis (Rocha

et al. 2015). Whether it dominates the energization of submesoscale flows elsewhere remains

an open question. It may be expected to dominate outside the major current systems, where

thermocline instabilities depend on surface buoyancy gradients and can more effectively drive a

surface QG cascade (Charney 1947; Tulloch et al. 2011; Roullet et al. 2012), but observations are

lacking. Balanced submesoscale flows can also be masked by internal waves, especially where

mesoscale eddies—and consequently any balanced submesoscale flows—are weak (Richman

et al. 2012; Callies & Ferrari 2013; Bühler et al. 2014; Rocha et al. 2015).

Spectra that are observed to fall off like k−3 in the seasonal thermocline in summer and in

the permanent thermocline throughout the year (Callies et al. 2015) cannot be reproduced by

the model formulated in this study. These steep spectra are likely the result of deep Phillips-type

instabilities (Phillips 1954) and the potential enstrophy cascade of interior quasi-geostrophic tur-

bulence (Charney 1971). Such a cascade is not present in our model, which collapses the interior

PV gradients into delta sheets at the interface between mixed layer and thermocline and at the
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rigid bottom at the base of the thermocline. Our model does capture, however, the steepening of

energy spectra below the winter mixed layer—it only lacks the appropriate thermocline dynamics

to yield k−3 spectra.

The cascade dynamics of our simple QG representation of baroclinic mixed layer instabilities

show that the mesoscale can effectively be energized by baroclinic mixed layer instabilities. This

would suggest that not only submesoscale but also mesoscale eddies are more energetic in winter

than in summer. Altimetry observations (Qiu 1999; Qiu & Chen 2004) and realistic model sim-

ulations (Sasaki et al. 2014), however, suggest that there is not a large modulation of mesoscale

energy levels—mesoscale eddies are even slightly stronger in summer than in winter. This lack

of wintertime energization of the mesoscale may result from a coupling with unbalanced motions

that is not captured by QG dynamics.

The QG model makes the baroclinic mixed layer instabilities very effective in energizing the

entire turbulent flow, because there is no forward energy cascade resulting in small-scale energy

dissipation. If non-QG effects were allowed, a fraction of the energy extracted from the mean

in the mixed layer would be dissipated at small scales (Capet et al. 2008d). This energy leak to

small scales is likely as Rossby and Froude numbers become order 1 at scales of order 1 km.

The possibility of an energy leak to small scales was demonstrated by Molemaker et al. (2010),

who studied an Eady instability with Ro = Fr = 0.5, using the full Boussinesq equations. While

much of the energy extracted from the mean is still trapped at large scales, as predicted by QG

dynamics, some is lost to dissipation at small scales. A small leak of energy in the instability

may make a big difference in the cascade dynamics, because that energy is not transferred back

to mesoscales, where it would further enhance the extraction of potential energy from the mean.

Such an effect could be parameterized in our QG model, but is beyond the scope of this study.

An additional sink occurs if the balanced flow interacts with ageostrophic instabilities in the

mixed layer. In the presence of geostrophic shear, convective motions forced by the atmosphere

are the result of symmetric rather than gravitational instabilities and are slantwise rather than up-

right (e.g. Emanuel 1994; Haine & Marshall 1998; Thomas & Lee 2005). Symmetric instabilities

can extract kinetic energy from the geostrophic shear, so they can drain energy from the balanced

flow and increase dissipation (Taylor & Ferrari 2010; Thomas et al. 2013). This is another way

to render the inverse cascade less effective.

Additional sinks for energy in balanced flows in the mixed layer can be the interaction with

externally forced near-inertial waves (e.g. Whitt & Thomas 2015; Xie & Vanneste 2015) and

the interaction with surface gravity waves (McWilliams & Fox-Kemper 2013; Hamlington et al.

2014). Both may drain enough energy out of the balanced flow to prevent an effective inverse

cascade of submesoscale kinetic energy to mesoscales.

QG dynamics further do not allow for a feedback of eddies on the mean stratification of the

mixed layer (e.g. Fox-Kemper et al. 2008), so that no restratification can occur. In the real ocean,

the restratification through baroclinic mixed layer instabilities is opposed by convective and me-

chanical mixing that is driven by atmospheric forcing. The fixed mean stratification in the QG

model assumes that this forced vertical mixing is in balance with restratification. It is unclear

whether and how vertical mixing alters the energy budget of the balanced flow in the mixed

layer. It is also unclear what the effect of an unsteady atmospheric forcing is, which upsets the

balance between vertical mixing and restratification.

Another possible explanation for the lack of a wintertime energization of the mesoscale by

baroclinic mixed layer instabilities is that it takes a few months for the kinetic energy injected

by submesoscale mixed layer instabilities to arrive at the mesoscale (Sasaki et al. 2014). This

could also explain the (weak) summer maximum in mesoscale energy (Qiu 1999; Qiu & Chen

2004). This time dependence is not addressed in our simple model of baroclinic mixed layer

instabilities, in which we prescribe perpetual winter conditions. If the time scale of turbulent

equilibration is not much shorter than the seasonal time scale, it is likely that submesoscale—
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and possibly mesoscale—flows are not in statistical equilibrium. It remains to be investigated

how a seasonally modulated mixed layer modifies the inverse cascade and the energization of the

mesoscale by baroclinic mixed layer instabilities.

Realistic high-resolution simulations of the type employed by Shcherbina et al. (2013); Sasaki

et al. (2014); Gula et al. (2015) may be able to address these caveats and bridge the gap be-

tween observations and the idealized QG dynamics described here. These primitive equation and

Boussinesq simulations can provide insights into how non-QG effects modify the submesoscale

dynamics induced by mixed layer instabilities. An exploration of non-QG effects in more ide-

alized setups may also prove useful. Primitive equation and Boussinesq simulations can also

address how non-QG effects modify mesoscale-driven surface frontogenesis and allow an esti-

mate of the importance of corrections to surface QG turbulence (cf. Hakim et al. 2002; Capet

et al. 2008c; Klein et al. 2008; Roullet et al. 2012; Badin 2012), providing another stepping

stone for understanding observations.

6. Conclusions

The simple model formulated in this paper sharpens our understanding of how baroclinic

mixed layer instabilities can energize submesoscale turbulence and how this mechanism differs

from mesoscale-driven surface frontogenesis. Our analysis suggests that the presence of a mixed

layer has a profound effect on submesoscale turbulence. Lateral buoyancy gradients, combined

with the low stratification in the mixed layer, provide a large amount of available potential energy

that can be extracted by baroclinic instabilities in the mixed layer. The extraction of available po-

tential energy from the large-scale mean is dominated by mesoscale eddies, but potential energy

is subsequently transferred downscale to the deformation radius of the mixed layer, where baro-

clinic instability converts it into kinetic energy. In the QG dynamics considered here, the energy

lost to small scales is negligible. The entire energy extracted from the mean in the mixed layer is

converted to kinetic energy around the deformation radius of the mixed layer and subsequently

transferred back to larger scales in an inverse cascade that also energizes the thermocline below.

Through this process, baroclinic mixed layer instabilities can energize the submesoscale range

and even the mesoscale eddy field.

These turbulent dynamics follow a dual cascade similar to that present in two-layer QG flow

(Rhines 1977; Salmon 1978; Larichev & Held 1995) and in idealized continuously stratified QG

flows (Smith & Vallis 2002)—but with mixed layer modes. The energy in the baroclinic mode,

which is baroclinic in the mixed layer and does not reach much into the thermocline, is transferred

downscale through advection by the barotropic mode, which is barotropic in the mixed layer and

decays surface-QG-like in the thermocline. Around the deformation radius of the mixed layer,

baroclinic instability transforms baroclinic into barotropic energy, which then enters an inverse

cascade.

The dynamics resulting from baroclinic mixed layer instabilities substantially differ from

mesoscale-driven surface frontogenesis, as described by surface QG turbulence forced by a

mesoscale eddy field, which is often invoked to explain energetic submesoscales. Surface QG

turbulence can only energize a thin surface layer. Mixed layer instabilities, instead, energize the

entire depth of the mixed layer. Vertical velocities are drastically enhanced in the presence of

baroclinic mixed layer instabilities compared to surface QG flows of similar energy levels.

The enhancement of submesoscale energy throughout the mixed layer and the decay below its

base, as generated by baroclinic mixed layer instabilities, are consistent with wintertime obser-

vations from the Gulf Stream region (Callies et al. 2015). These observations as well as models

(Mensa et al. 2013; Sasaki et al. 2014) also show that submesoscale flows are most energetic in

winter, when baroclinic mixed layer instabilities are active. This evidence points to the impor-

tance of baroclinic mixed layer instabilities in energizing the submesoscale.
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It remains to be investigated how deviations from QG dynamics affect submesoscale flows

when a mixed layer is present. The restratification by mixed layer instabilities, the formation of

buoyancy discontinuities, ageostrophic instabilities, and forced mixed layer turbulence all have

the potential to modify the leading-order balanced dynamics described here. For example, it

remains unclear how much of the submesoscale kinetic energy generated by baroclinic mixed

layer instabilities is cascaded to mesoscales, how vertical velocities are modified by non-QG

effects, and how the enhancement of vertical velocities by mixed layer instabilities translates

into an exchange of fluid between mixed layer and thermocline.

It is hoped that the model and dynamics discussed here in an oceanographic context are of

interest in a broader geophysical fluid dynamics context. Atmospheres often display layers of

different stratification, which likely induce similar dynamics. These have partly been explored for

the terrestrial atmosphere and it seems likely that similar dynamics also occur in the atmospheres

of other planets.

Much of this work was conducted at the Geophysical Fluid Dynamics Summer School at the

Woods Hole Oceanographic Institution. We gratefully acknowledge the NSF’s support of this

program and the fruitful interactions we had with staff and visitors.

Appendix A

A QG system of n layers of constant PV, of thickness hj and stratification Nj , consists of

n + 1 conserved quantities that are advected by the geostrophic flow at their respective levels.

Compared to the two-layer model considered in the main text, additional interface quantities

analogous to θ1 are present. The linear operator in the inversion relation (2.9) has tridiagonal

structure:
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(A 1)

where µj = Njkhhj/f . It may be more efficient to solve the inversion relation numerically

instead of calculating the inverse of this matrix, which will generally be full.

One can also include a PV gradient due to differential rotation. This can be done using a trick

described by Lindzen (1994): instead of using linear shear and constant stratification in the layers,

one can use parabolic shear or a modified stratification profile, which allows cancellation of the

contribution from the β-effect and retaining constant PV within the layers. The PV gradient due

to β is then included in the PV sheets at the interfaces.
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Appendix B

If there is a buoyancy jump g′ at the interface, the matching conditions must be modified. To

ensure a continuous pressure at the interface at z = −h+ η, we require

ψ(−h+)− ψ(−h−) = −g
′

f
η. (B 1)

Here, η is the perturbation of the interface between the constant-PV layers. The buoyancy equa-

tions (2.2) and (2.3) can be combined with the kinematic condition

w =
∂η

∂t
+ J(ψ, η), (B 2)

applied at z = −h+ and z = −h−, to give

∂θ1
∂t

+ J(ψ1, θ1) = 0,
∂θ2
∂t

+ J(ψ2, θ2) = 0, (B 3)

where

θ1 = f
b(−h+)
N2

m

+ fη, θ2 = f
b(−h−)
N2

t

+ fη, ψ1 = ψ(−h+), ψ2 = ψ(−h−).
(B 4)

Together with the conservation of surface and bottom buoyancy,

θ0 = −f b(0)
N2

m

, θ3 = f
b(−H)

N2
t

, (B 5)

and the inversion relation obtained by solving (2.10) with the matching conditions above, the

model is complete. It now consists of four conserved quantities.
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BÜHLER, OLIVER, CALLIES, JÖRN & FERRARI, RAFFAELE 2014 Wave–vortex decomposition of one-
dimensional ship-track data. J. Fluid Mech. 756, 1007–1026.
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