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Abstract

In this paper, we explore the role of con-

stituent properties in English and Ger-

man noun-noun compounds (corpus fre-

quencies of the compounds and their con-

stituents; productivity and ambiguity of

the constituents; and semantic relations

between the constituents), when predict-

ing the degrees of compositionality of the

compounds within a vector space model.

The results demonstrate that the empirical

and semantic properties of the compounds

and the head nouns play a significant role.

1 Introduction

The past 20+ years have witnessed an enormous

amount of discussions on whether and how the

modifiers and the heads of noun-noun compounds

such as butterfly, snowball and teaspoon influence

the compositionality of the compounds, i.e., the

degree of transparency vs. opaqueness of the com-

pounds. The discussions took place mostly in psy-

cholinguistic research, typically relying on read-

ing time and priming experiments. For example,

Sandra (1990) demonstrated in three priming ex-

periments that both modifier and head constituents

were accessed in semantically transparent En-

glish noun-noun compounds (such as teaspoon),

but there were no effects for semantically opaque

compounds (such as buttercup), when primed ei-

ther on their modifier or head constituent. In con-

trast, Zwitserlood (1994) provided evidence that

the lexical processing system is sensitive to mor-

phological complexity independent of semantic

transparency. Libben and his colleagues (Libben

et al. (1997), Libben et al. (2003)) were the first

who systematically categorised noun-noun com-

pounds with nominal modifiers and heads into four

groups representing all possible combinations of

modifier and head transparency (T) vs. opaque-

ness (O) within a compound. Examples for these

categories were car-wash (TT), strawberry (OT),

jailbird (TO), and hogwash (OO). Libben et al.

confirmed Zwitserlood’s analyses that both se-

mantically transparent and semantically opaque

compounds show morphological constituency; in

addition, the semantic transparency of the head

constituent was found to play a significant role.

From a computational point of view, address-

ing the compositionality of noun compounds (and

multi-word expressions in more general) is a cru-

cial ingredient for lexicography and NLP appli-

cations, to know whether the expression should

be treated as a whole, or through its constituents,

and what the expression means. For example,

studies such as Cholakov and Kordoni (2014),

Weller et al. (2014), Cap et al. (2015), and Salehi

et al. (2015b) have integrated the prediction of

multi-word compositionality into statistical ma-

chine translation.

Computational approaches to automatically

predict the compositionality of noun compounds

have mostly been realised as vector space mod-

els, and can be subdivided into two subfields:

(i) approaches that aim to predict the meaning

of a compound by composite functions, relying

on the vectors of the constituents (e.g., Mitchell

and Lapata (2010), Coecke et al. (2011), Baroni

et al. (2014), and Hermann (2014)); and (ii) ap-

proaches that aim to predict the degree of compo-

sitionality of a compound, typically by comparing

the compound vectors with the constituent vec-

tors (e.g., Reddy et al. (2011), Salehi and Cook

(2013), Schulte im Walde et al. (2013), Salehi et

al. (2014; 2015a)). In line with subfield (ii),

this paper aims to distinguish the contributions

of modifier and head properties when predicting

the compositionality of English and German noun-

noun compounds in a vector space model.
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Up to date, computational research on noun

compounds has largely ignored the influence of

constituent properties on the prediction of compo-

sitionality. Individual pieces of research noticed

differences in the contributions of modifier and

head constituents towards the composite functions

predicting compositionality (Reddy et al., 2011;

Schulte im Walde et al., 2013), but so far the

roles of modifiers and heads have not been distin-

guished. We use a new gold standard of German

noun-noun compounds annotated with corpus fre-

quencies of the compounds and their constituents;

productivity and ambiguity of the constituents; and

semantic relations between the constituents; and

we extend three existing gold standards of German

and English noun-noun compounds (Ó Séaghdha,

2007; von der Heide and Borgwaldt, 2009; Reddy

et al., 2011) to include approximately the same

compound and constituent properties. Relying on

a standard vector space model of compositional-

ity, we then predict the degrees of compositional-

ity of the English and German noun-noun com-

pounds, and explore the influences of the com-

pound and constituent properties. Our empirical

computational analyses reveal that the empirical

and semantic properties of the compounds and the

head nouns play a significant role in determining

the compositionality of noun compounds.

2 Related Work

Regarding relevant psycholinguistic research on

the representation and processing of noun com-

pounds, Sandra (1990) hypothesised that an asso-

ciative prime should facilitate access and recog-

nition of a noun compound, if a compound con-

stituent is accessed during processing. His three

priming experiments revealed that in transparent

noun-noun compounds, both constituents are ac-

cessed, but he did not find priming effects for the

constituents in opaque noun-noun compounds.

Zwitserlood (1994) performed an immediate

partial repetition experiment and a priming exper-

iment to explore and to distinguish morpholog-

ical and semantic structures in noun-noun com-

pounds. On the one hand, she confirmed San-

dra’s results that there is no semantic facilitation of

any constituent in opaque compounds. In contrast,

she found evidence for morphological complex-

ity, independent of semantic transparency, and that

both transparent and also partially opaque com-

pounds (i.e., compounds with one transparent and

one opaque constituent) produce semantic prim-

ing of their constituents. For the heads of seman-

tically transparent compounds, a larger amount of

facilitation was found than for the modifiers. Dif-

ferences in the results by Sandra (1990) and Zwit-

serlood (1994) were supposedly due to different

definitions of partial opacity, and different prime–

target SOAs.

Libben and his colleagues (Libben et al. (1997),

Libben (1998), and Libben et al. (2003)) were the

first who systematically categorised noun-noun

compounds with nominal modifiers and heads

into four groups representing all possible com-

binations of a constituent’s transparency (T) vs.

opaqueness (O) within a compound: TT, OT, TO,

OO. Libben’s examples for these categories were

car-wash (TT), strawberry (OT), jailbird (TO),

and hogwash (OO). They confirmed Zwitserlood’s

analyses that both semantically transparent and se-

mantically opaque compounds show morphologi-

cal constituency, and also that the semantic trans-

parency of the head constituent was found to play

a significant role. Studies such as Jarema et al.

(1999) and Kehayia et al. (1999) to a large ex-

tent confirmed the insights by Libben and his col-

leagues for French, Bulgarian, Greek and Polish.

Regarding related computational work, promi-

nent approaches to model the meaning of a com-

pound or a phrase by a composite function include

Mitchell and Lapata (2010), Coecke et al. (2011),

Baroni et al. (2014), and Hermann (2014)). In this

area, researchers combine the vectors of the com-

pound/phrase constituents by mathematical func-

tions such that the resulting vector optimally rep-

resents the meaning of the compound/phrase. This

research is only marginally related to ours, since

we are interested in the degree of compositional-

ity of a compound, rather than its actual meaning.

Most closely related computational work in-

cludes distributional approaches that predict the

degree of compositionality of a compound regard-

ing a specific constituent, by comparing the com-

pound vector to the respective constituent vector.

Most importantly, Reddy et al. (2011) used a stan-

dard distributional model to predict the compo-

sitionality of compound-constituent pairs for 90

English compounds. They extended their predic-

tions by applying composite functions (see above).

In a similar vein, Schulte im Walde et al. (2013)

predicted the compositionality for 244 German

compounds. Salehi et al. (2014) defined a cross-
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lingual distributional model that used translations

into multiple languages and distributional simi-

larities in the respective languages, to predict the

compositionality for the two datasets from Reddy

et al. (2011) and Schulte im Walde et al. (2013).

3 Noun-Noun Compounds

Our focus of interest is on noun-noun compounds,

such as butterfly, snowball and teaspoon as well

as car park, zebra crossing and couch potato in

English, and Ahornblatt ‘maple leaf’, Feuerwerk

‘fireworks’, and Löwenzahn ‘dandelion’ in Ger-

man, where both the grammatical head (in English

and German, this is typically the rightmost con-

stituent) and the modifier are nouns. We are inter-

ested in the degrees of compositionality of noun-

noun compounds, i.e., the semantic relatedness be-

tween the meaning of a compound (e.g., snowball)

and the meanings of its constituents (e.g., snow

and ball). More specifically, this paper aims to

explore factors that have been found to influence

compound processing and representation, such as

• frequency-based factors, i.e., the frequencies

of the compounds and their constituents (van

Jaarsveld and Rattink, 1988; Janssen et al.,

2008);

• the productivity (morphological family size),

i.e., the number of compounds that share a

constituent (de Jong et al., 2002); and

• semantic variables as the relationship be-

tween compound modifier and head: a teapot

is a pot FOR tea; a snowball is a ball MADE

OF snow (Gagné and Spalding, 2009; Ji et

al., 2011).

In addition, we were interested in the effect of am-

biguity (of both the modifiers and the heads) re-

garding the compositionality of the compounds.

Our explorations required gold standards of

compounds that were annotated with all these

compound and constituent properties. Since most

previous work on computational predictions of

compositionality has been performed for English

and for German, we decided to re-use existing

datasets for both languages, which however re-

quired extensions to provide all properties we

wanted to take into account. We also created a

novel gold standard. In the following, we describe

the datasets.1

1The datasets are available from http://www.ims.

uni-stuttgart.de/data/ghost-nn/.

German Noun-Noun Compound Datasets As

basis for this work, we created a novel gold stan-

dard of German noun-noun compounds: GhOST-

NN (Schulte im Walde et al., 2016). The new

gold standard was built such that it includes a rep-

resentative choice of compounds and constituents

from various frequency ranges, various productiv-

ity ranges, with various numbers of senses, and

with various semantic relations. In the follow-

ing, we describe the creation process in some de-

tail, because the properties of the gold standard are

highly relevant for the distributional models.

Relying on the 11.7 billion words in the web

corpus DECOW14AX2 (Schäfer and Bildhauer,

2012; Schäfer, 2015), we extracted all words that

were identified as common nouns by the Tree Tag-

ger (Schmid, 1994) and analysed as noun com-

pounds with exactly two nominal constituents by

the morphological analyser SMOR (Faaß et al.,

2010). This set of 154,960 two-part noun-noun

compound candidates was enriched with empiri-

cal properties relevant for the gold standard:

• corpus frequencies of the compounds and the

constituents (i.e., modifiers and heads), rely-

ing on DECOW14AX;

• productivity of the constituents i.e., how

many compound types contained a specific

modifier/head constituent;

• number of senses of the compounds and the

constituents, relying on GermaNet (Hamp

and Feldweg, 1997; Kunze, 2000).

From the set of compound candidates we extracted

a random subset that was balanced3 for

• the productivity of the modifiers: we cal-

culated tertiles to identify modifiers with

low/mid/high productivity;

• the ambiguity of the heads: we distinguished

between heads with 1, 2 and >2 senses.

For each of the resulting nine categories (three

productivity ranges × three ambiguity ranges),

we randomly selected 20 noun-noun compounds

2http://corporafromtheweb.org/decow14/
3We wanted to extract a random subset that at the same

time was balanced across frequency, productivity and am-
biguity ranges of the compounds and their constituents, but
defining and combining several ranges for each of the three
criteria and for compounds as well as constituents would have
led to an explosion of factors to be taken into account, so we
focused on two main criteria instead.
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from our candidate set, disregarding compounds

with a corpus frequency < 2,000, and disregard-

ing compounds containing modifiers or heads with

a corpus-frequency < 100. We refer to this dataset

of 180 compounds balanced for modifier produc-

tivity and head ambiguity as GhOST-NN/S.

We also created a subset of 5 noun-noun com-

pounds for each of the 9 criteria combinations, by

randomly selecting 5 out of the 20 selected com-

pounds in each mode. This small, balanced sub-

set was then systematically extended by adding

all compounds from the original set of compound

candidates with either the same modifier or the

same head as any of the selected compounds. Tak-

ing Haarpracht as an example (the modifier is

Haar ’hair’, the head is Pracht ’glory’), we added

Haarwäsche, Haarkleid, Haarpflege, etc. as well

as Blütenpracht, Farbenpracht, etc.4 We refer to

this dataset of 868 compounds that destroyed the

coherent balance of criteria underlying our ran-

dom extraction, but instead ensured a variety of

compounds with either the same modifiers or the

same heads, as GhOST-NN/XL.

The two sets of compounds (GhOST-NN/S and

GhOST-NN/XL) were annotated with the seman-

tic relations between the modifiers and the heads,

and compositionality ratings. Regarding seman-

tic relations, we applied the relation set sug-

gested by Ó Séaghdha (2007), because (i) he

had evaluated his annotation relations and anno-

tation scheme, and (ii) his dataset had a similar

size as ours, so we could aim for comparing re-

sults across languages. Ó Séaghdha (2007) him-

self had relied on a set of nine semantic rela-

tions suggested by Levi (1978), and designed and

evaluated a set of relations that took over four

of Levi’s relations (BE, HAVE, IN, ABOUT)

and added two relations referring to event partici-

pants (ACTOR, INST(rument)) that replaced

the relations MAKE, CAUSE, FOR, FROM,

USE. An additional relation LEX refers to lexi-

calised compounds where no relation can be as-

signed. Three native speakers of German anno-

tated the compounds with these seven semantic

relations.5 Regarding compositionality ratings,

eight native speakers of German annotated all

868 gold-standard compounds with compound–

4The translations of the example compounds are hair
washing, hair dress, hair care, floral glory, and colour glory.

5In fact, the annotation was performed for a superset of
1,208 compounds, but we only took into account 868 com-
pounds with perfect agreement, i.e. IAA=1.

constituent compositionality ratings on a scale

from 1 (definitely semantically opaque) to 6 (def-

initely semantically transparent). Another five na-

tive speakers provided additional annotation for

our small core subset of 180 compounds on the

same scale. As final compositionality ratings, we

use the mean compound–constituent ratings across

the 13 annotators.

As alternative gold standard for German noun-

noun compounds, we used a dataset based on a

selection of noun compounds by von der Heide

and Borgwaldt (2009), that was previously used

in computational models predicting composition-

ality (Schulte im Walde et al., 2013; Salehi et al.,

2014). The dataset contains a subset of their com-

pounds including 244 two-part noun-noun com-

pounds, annotated by compositionality ratings on

a scale between 1 and 7. We enriched the existing

dataset with frequencies, and productivity and am-

biguity scores, also based on DECOW14AX and

GermaNet, to provide the same empirical infor-

mation as for the GhOST-NN datasets. We refer

to this alternative German dataset as VDHB.

English Noun-Noun Compound Datasets

Reddy et al. (2011) created a gold standard for

English noun-noun compounds. Assuming that

compounds whose constituents appeared either

as their hypernyms or in their definitions tend

to be compositional, they induced a candidate

compound set with various degrees of compound–

constituent relatedness from WordNet (Miller et

al., 1990; Fellbaum, 1998) and Wiktionary. A

random choice of 90 compounds that appeared

with a corpus frequency > 50 in the ukWaC

corpus (Baroni et al., 2009) constituted their

gold-standard dataset and was annotated by

compositionality ratings. Bell and Schäfer (2013)

annotated the compounds with semantic relations

using all of Levi’s original nine relation types:

CAUSE, HAVE, MAKE, USE, BE, IN,

FOR, FROM, ABOUT. We refer to this dataset

as REDDY.

Ó Séaghdha developed computational models

to predict the semantic relations between modi-

fiers and heads in English noun compounds (Ó

Séaghdha, 2008; Ó Séaghdha and Copestake,

2013; Ó Séaghdha and Korhonen, 2014). As

gold-standard basis for his models, he created a

dataset of compounds, and annotated the com-

pounds with semantic relations: He tagged and

parsed the written part of the British National Cor-
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Language Dataset #Compounds
Annotation

Frequency/Productivity Ambiguity Relations

DE

GhOST-NN/S 180 DECOW GermaNet Levi (7)

GhOST-NN/XL 868 DECOW GermaNet Levi (7)

VDHB 244 DECOW GermaNet –

EN
REDDY 90 ENCOW WordNet Levi (9)

OS 396 ENCOW WordNet Levi (6)

Table 1: Noun-noun compound datasets.

pus using RASP (Briscoe and Carroll, 2002), and

applied a simple heuristics to induce compound

candidates: He used all sequences of two or more

common nouns that were preceded or followed by

sentence boundaries or by words not representing

common nouns. Of these compound candidates,

a random selection of 2,000 instances was used

for relation annotation (Ó Séaghdha, 2007) and

classification experiments. The final gold standard

is a subset of these compounds, containing 1,443

noun-noun compounds. We refer to this dataset as

OS.

Both English compound datasets were enriched

with frequencies and productivities, based on the

ENCOW14AX6 containing 9.6 billion words. We

also added the number of senses of the con-

stituents to both datasets, using WordNet. And we

collected compositionality ratings for a random

choice of 396 compounds from the OS dataset

relying on eight experts, in the same way as the

GhOST-NN ratings were collected.

Resulting Noun-Noun Compound Datasets

Table 1 summarises the gold-standard datasets.

They are of different sizes, but their empirical and

semantic annotations have been aligned to a large

extent, using similar corpora, relying on WordNets

and similar semantic relation inventories based on

Levi (1978).

4 VSMs Predicting Compositionality

Vector space models (VSMs) and distributional in-

formation have been a steadily increasing, integral

part of lexical semantic research over the past 20

years (Turney and Pantel, 2010): They explore

the notion of “similarity” between a set of tar-

get objects, typically relying on the distributional

hypothesis (Harris, 1954; Firth, 1957) to deter-

mine co-occurrence features that best describe the

words, phrases, sentences, etc. of interest.

6http://corporafromtheweb.org/encow14/

In this paper, we use VSMs in order to model

compounds as well as constituents by distribu-

tional vectors, and we determine the semantic re-

latedness between the compounds and their mod-

ifier and head constituents by measuring the dis-

tance between the vectors. We assume that the

closer a compound vector and a constituent vec-

tor are to each other, the more compositional (i.e.,

the more transparent) the compound is, regard-

ing that constituent. Correspondingly, the more

distant a compound vector and a constituent vec-

tor are to each other, the less compositional (i.e.,

the more opaque) the compound is, regarding that

constituent.

Our main questions regarding the VSMs are

concerned with the influence of constituent prop-

erties on the prediction of compositionality. I.e.,

how do the corpus frequencies of the compounds

and their constituents, the productivity and the am-

biguity of the constituents, and the semantic rela-

tions between the constituents influence the qual-

ity of the predictions?

4.1 Vector Space Models (VSMs)

We created a standard vector space model for

all our compounds and constituents in the vari-

ous datasets, using co-occurrence frequencies of

nouns within a sentence-internal window of 20

words to the left and 20 words to the right of

the targets.7 The frequencies were induced from

the German and English COW corpora, and trans-

formed to local mutual information (LMI) values

(Evert, 2005).

Relying on the LMI vector space models, the

cosine determined the distributional similarity

between the compounds and their constituents,

which was in turn used to predict the degree

7In previous work, we systematically compared window-
based and syntax-based co-occurrence variants for predicting
compositionality (Schulte im Walde et al., 2013). The current
work adopted the best choice of co-occurrence dimensions.
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of compositionality between the compounds and

their constituents, assuming that the stronger the

distributional similarity (i.e., the cosine values),

the larger the degree of compositionality. The vec-

tor space predictions were evaluated against the

mean human ratings on the degree of composition-

ality, using the Spearman Rank-Order Correlation

Coefficient ρ (Siegel and Castellan, 1988).

4.2 Overall VSM Prediction Results

Table 2 presents the overall prediction results

across languages and datasets. The mod column

shows the ρ correlations for predicting only the

degree of compositionality of compound–modifier

pairs; the head column shows the ρ correlations

for predicting only the degree of compositional-

ity of compound–head pairs; and the both col-

umn shows the ρ correlations for predicting the

degree of compositionality of compound–modifier

and compound–head pairs at the same time.

Dataset mod head both

DE
GhOST-NN/S 0.48 0.57 0.46
GhOST-NN/XL 0.49 0.59 0.47
VDHB 0.65 0.60 0.61

EN
REDDY 0.48 0.60 0.56
OS 0.46 0.39 0.35

Table 2: Overall prediction results (ρ).

The models for VDHB and REDDY represent

replications of similar models in Schulte im Walde

et al. (2013) and Reddy et al. (2011), respectively,

but using the much larger COW corpora.

Overall, the both prediction results on VDHB

are significantly8 better than all others but REDDY;

and the prediction results on OS compounds are

significantly worse than all others. We can also

compare within-dataset results: Regarding the two

GhOST-NN datasets and the REDDY dataset, the

VSM predictions for the compound–head pairs are

better than for the compound–modifier pairs. Re-

garding the VDHB and the OS datasets, the VSM

predictions for the compound–modifier pairs are

better than for the compound–head pairs. These

differences do not depend on the language (ac-

cording to our datasets), and are probably due to

properties of the specific gold standards that we

did not control. They are, however, also not the

main point of this paper.

8All significance tests in this paper were performed by
Fisher r-to-z transformation.

4.3 Influence of Compound Properties on

VSM Prediction Results

Figures 1 to 5 present the core results of this paper:

They explore the influence of compound and con-

stituent properties on predicting compositionality.

Since we wanted to optimise insight into the influ-

ence of the properties, we selected the 60 maxi-

mum instances and the 60 minimum instances for

each property.9 For example, to explore the in-

fluence of head frequency on the prediction qual-

ity, we selected the 60 most frequent and the 60

most infrequent compound heads from each gold-

standard resource, and calculated Spearman’s ρ

for each set of 60 compounds with these heads.

Figure 1 shows that the distributional model

predicts high-frequency compounds (red bars) bet-

ter than low-frequency compounds (blue bars),

across datasets. The differences are significant for

GhOST-NN/XL.

Figure 1: Effect of compound frequency.

Figure 2 shows that the distributional model

predicts compounds with low-frequency heads

better than compounds with high-frequency heads

(right panel), while there is no tendency regarding

the modifier frequencies (left panel). The differ-

ences regarding the head frequencies are signifi-

cant (p = 0.1) for both GhOST-NN datasets.

Figure 3 shows that the distributional model

also predicts compounds with low-productivity

heads better than compounds with high-

productivity heads (right panel), while there

is no tendency regarding the productivities of

modifiers (left panel). The prediction differences

regarding the head productivities are significant

for GhOST-NN/S (p < 0.05).

9For REDDY, we could only use 45 maximum/minimum
instances, since the dataset only contains 90 compounds.
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Figure 2: Effect of modifier/head frequency.

Figure 3: Effect of modifier/head productivity.

Figure 4: Effect of modifier/head ambiguity.
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Figure 4 shows that the distributional model

also predicts compounds with low-ambiguity

heads better than compounds with high-ambiguity

heads (right panel) –with one exception (GhOST-

NN/XL)– while there is no tendency regarding the

ambiguities of modifiers (left panel). The predic-

tion differences regarding the head ambiguities are

significant for GhOST-NN/XL (p < 0.01).

Figure 5 compares the predictions of the dis-

tributional model regarding the semantic rela-

tions between modifiers and heads, focusing on

GhOST-NN/XL. The numbers in brackets refer to

the number of compounds with the respective re-

lation. The plot reveals differences between pre-

dictions of compounds with different relations.

Figure 5: Effect of semantic relation.

Table 3 summarises those differences across

gold standards that are significant (where filled

cells refer to rows significantly outperforming

columns). Overall, the compositionality of

BE compounds is predicted significantly better

than the compositionality of HAVE compounds

(in REDDY), INST and ABOUT compounds (in

GhOST-NN) and ACTOR compounds (in GhOST-

NN and OS). The compositionality of ACTOR

compounds is predicted significantly worse than

the compositionality of BE, HAVE, IN and

INST compounds in both GhOST-NN and OS.

HAVE INST ABOUT ACTOR

BE REDDY GhOST GhOST GhOST, OS

HAVE OS GhOST, OS

IN GhOST, OS

INST GhOST, OS

Table 3: Significant differences: relations.

5 Discussion

While modifier frequency, productivity and am-

biguity did not show a consistent effect on the

predictions, head frequency, productivity and

ambiguity influenced the predictions such that

the prediction quality for compounds with low-

frequency, low-productivity and low-ambiguity

heads was better than for compounds with high-

frequency, high-productivity and high-ambiguity

heads. The differences were significant only for

our new GhOST-NN datasets. In addition, the

compound frequency also had an effect on the pre-

dictions, with high-frequency compounds receiv-

ing better prediction results than low-frequency

compounds. Finally, the quality of predictions

also differed for compound relation types, with

BE compounds predicted best, and ACTOR com-

pounds predicted worst. These differences were

ascertained mostly in the GhOST-NN and the OS

datasets. Our results raise two main questions:

(1) What does it mean if a distributional model

predicts a certain subset of compounds (with

specific properties) “better” or “worse” than

other subsets?

(2) What are the implications for (a) psycholin-

guistic and (b) computational models regard-

ing the compositionality of noun compounds?

Regarding question (1), there are two options

why a distributional model predicts a certain sub-

set of compounds better or worse than other sub-

sets. On the one hand, one of the underlying gold-

standard datasets could contain compounds whose

compositionality scores are easier to predict than

the compositionality scores of compounds in a

different dataset. On the other hand, even if

there were differences in individual dataset pairs,

this would not explain why we consistently find

modelling differences for head constituent proper-

ties (and compound properties) but not for modi-

fier constituent properties. We therefore conclude

that the effects of compound and head properties

are due to the compounds’ morphological con-

stituency, with specific emphasis on the influences

of the heads.

Looking at the individual effects of the com-

pound and head properties that influence the dis-

tributional predictions, we hypothesise that high-

frequent compounds are easier to predict because

they have a better corpus coverage (and less
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sparse data) than low-frequent compounds, and

that they contain many clearly transparent com-

pounds (such as Zitronensaft ‘lemon juice’), and

at the same time many clearly opaque compounds

(such as Eifersucht ‘jealousy’, where the literal

translations of the constituents are ‘eagerness’ and

‘addiction’). Concerning the decrease in predic-

tion quality for more frequent, more productive

and more ambiguous heads, we hypothesise that

all of these properties are indicators of ambiguity,

and the more ambiguous a word is, the more diffi-

cult it is to provide a unique distributional predic-

tion, as distributional co-occurrence in most cases

(including our current work) subsumes the con-

texts of all word senses within one vector. For ex-

ample, more than half of the compounds with the

most frequent and also with the most productive

heads have the head Spiel, which has six senses

in GermaNet and covers six relations (BE, IN,

INST, ABOUT, ACTOR, LEX).

Regarding question (2), the results of our distri-

butional predictions confirm psycholinguistic re-

search that identified morphological constituency

in noun-noun compounds: Our models clearly dis-

tinguish between properties of the whole com-

pounds, properties of the modifier constituents,

and properties of the head constituents. Further-

more, our models reveal the need to carefully bal-

ance the frequencies and semantic relations of tar-

get compounds, and to carefully balance the fre-

quencies, productivities and ambiguities of their

head constituents, in order to optimise experiment

interpretations, while a careful choice of empirical

modifier properties seems to play a minor role.

For computational models, our work provides

similar implications. We demonstrated the need to

carefully balance gold-standard datasets for multi-

word expressions according to the empirical and

semantic properties of the multi-word expressions

themselves, and also according to those of the con-

stituents. In the case of noun-noun compounds,

the properties of the nominal modifiers were of

minor importance, but regarding other multi-word

expressions, this might differ. If datasets are not

balanced for compound and constituent properties,

the qualities of model predictions are difficult to

interpret, because it is not clear whether biases in

empirical properties skewed the results. Our ad-

vice is strengthened by the fact that most signifi-

cant differences in prediction results were demon-

strated for our new gold standard, which includes

compounds across various frequency, productivity

and ambiguity ranges.

6 Conclusion

We explored the role of constituent properties

in English and German noun-noun compounds,

when predicting compositionality within a vec-

tor space model. The results demonstrated that

the empirical and semantic properties of the com-

pounds and the head nouns play a significant role.

Therefore, psycholinguistic experiments as well as

computational models are advised to carefully bal-

ance their selections of compound targets accord-

ing to compound and constituent properties.

Acknowledgments

The research presented in this paper was funded

by the DFG Heisenberg Fellowship SCHU 2580/1

(Sabine Schulte im Walde), the DFG Research

Grant SCHU 2580/2 “Distributional Approaches

to Semantic Relatedness” (Stefan Bott), and the

DFG Collaborative Research Center SFB 732

(Anna Hätty).

References

Marco Baroni, Silvia Bernardini, Adriano Ferraresi,
and Eros Zanchetta. 2009. The WaCky Wide Web:
A Collection of Very Large Linguistically Processed
Web-Crawled Corpora. Language Resources and
Evaluation, 43(3):209–226.

Marco Baroni, Raffaella Bernardi, and Roberto Zam-
parelli. 2014. Frege in Space: A Program for Com-
positional Distributional Semantics. Linguistic Is-
sues in Language Technologies, 9(6):5–110.

Melanie J. Bell and Martin Schäfer. 2013. Semantic
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