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Abstract

N6-methyladenosine (m6A), the most abundant modification in eukaryotic cells, regulates RNA transcription,

processing, splicing, degradation, and translation. Circular RNA (circRNA) is a class of covalently closed RNA

molecules characterized by universality, diversity, stability and conservatism of evolution. Accumulating evidence

shows that both m6A modification and circRNAs participate in the pathogenesis of multiple diseases, such as

cancers, neurological diseases, autoimmune diseases, and infertility. Recently, m6A modification has been identified

for its enrichment and vital biological functions in regulating circRNAs. In this review, we summarize the role of

m6A modification in the regulation and function of circRNAs. Moreover, we discuss the potential applications and

possible future directions in the field.
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Background

Circular RNA (circRNA) is a class of single-stranded co-

valently closed RNA molecules that was first discovered

in pathogens by Sanger et al. in 1976 [1]. It is now gen-

erally accepted that circRNA is generated by a process

named back-splicing [2], and increasing studies have

demonstrated that circRNA plays important roles in the

occurrence, development and prognosis of various dis-

eases, including tumorigenesis [3–5], neurodevelopmen-

tal processes [6] autoimmune responses [7], and

infertility [8]. However, studies on how circRNA is regu-

lated before exerting specific biological functions are still

limited [9].

To date, over 160 types of chemical modifications have

been identified in RNA molecules, of which methylation

is the most common type [10]. The methods of methyla-

tion modifications of RNA include N6-methyladenosine

(m6A), 5-methylcytosine (m5C), N1-methyladenosine

(m1A), 5-hydroxymethylcytosine (5hmC), N6, 2′-O-

dimethyladenosine (m6Am), 7-methylguanine (m7G),

etc. [11], of which m6A modification is the most abun-

dant type in eukaryotic cells [12]. Previous studies have

shown that m6A modification is a dynamic and revers-

ible process and regulates RNA transcription, processing,

splicing, degradation, and translation [13–17]. The oc-

currence and development of many diseases, such as tu-

mours [18], obesity [19], infertility [20], autoimmune

disease [21] and neurological disease [22], are closely re-

lated to alteration of m6A modification.

Although research on the regulatory mechanism of

m6A modification of mRNA has made great progress

[23], for some non-coding RNAs, especially circRNAs,

the regulatory network of m6A has not been fully eluci-

dated [24]. In this review, we summarize the role of m6A

modification in circRNA regulation and function. Fur-

thermore, we discuss the potential applications and pos-

sible future directions in this field.

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: detaoyin@zzu.edu.cn; 1999liujb@163.com;

zqsun82@csu.edu.cn
†Lele Zhang and Chaofeng Hou contributed equally to this work.
3Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou

University, Zhengzhou 450052, Henan, China
1Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou

University, Zhengzhou 450052, Henan, China

Full list of author information is available at the end of the article

Zhang et al. Molecular Cancer          (2020) 19:105 

https://doi.org/10.1186/s12943-020-01224-3

http://crossmark.crossref.org/dialog/?doi=10.1186/s12943-020-01224-3&domain=pdf
http://orcid.org/0000-0001-5926-2716
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:detaoyin@zzu.edu.cn
mailto:1999liujb@163.com
mailto:zqsun82@csu.edu.cn


M6A writers, erasers, and readers

The regulation function of m6A is mainly accomplished

by three homologous factors referred to as “writers”,

“erasers” and “readers”. M6A “writers” are proteins in-

volved in the formation of the methyltransferase com-

plex, including methyltransferase-like 3 and 14 proteins

(METTL3 and METTL14) and their cofactors WT1 as-

sociated protein (WTAP), RNA-binding motif protein

15/15B (RBM15/15B), Vir-like m6A methyltransferase

associated (VIRMA), and zinc finger CCCH-type con-

taining 13 (ZC3H13); METTL3, as the earliest identified

and most well-known component [25], is an S-

adenosylmethionine (SAM) binding protein and is highly

conserved in various eukaryotic species [26, 27]. Notably,

except for the above readers that function in a form of

complexes, a homologue of METTL3 (METTL16) has

been identified as a novel independent RNA methyl-

transferase that regulates cellular SAM levels and meth-

ylates U6 small nuclear RNA [28].

The dynamic and reversible m6A process (Fig. 1) also

relies on some demethylases (erasers). Fat mass and

obesity-associated protein (FTO), the first protein identi-

fied to catalyse m6A demethylation [29], works together

with a homologue of itself (ALKBH5, [30] to maintain

the balance of m6A levels in the transcriptome [31].

ALKBH3 is a recently discovered demethylase that pre-

fers to perform its demethylation function on tRNA ra-

ther than on mRNA or rRNA [32]. In addition, ALKBH3

is also a generally accepted DNA repair enzyme and has

the potential to be a molecular marker for tumours [33].

M6A-modified RNA requires a class of variable RNA-

binding proteins (readers) to perform specific biological

functions. Proteins of the YT521-B homology (YTH) do-

main family, including YTHDC1, YTHDC2, YTHDF1,

YTHDF2 and YTHDF3 [34], were the first five charac-

terized m6A readers in humans that have a conserved

m6A-binding domain. The heterogeneous nuclear ribo-

nucleoprotein (HNRNP) family is another group of

RNA-binding proteins (RBPs) that serves as m6A

readers. Heterogeneous nuclear ribonucleoprotein A2/

B1 (HNRNPA2B1) specifically recognizes m6A-modified

RNA and acts as a mediator in m6A-dependent nuclear

Fig. 1 Dynamic and reversible m6A process. The installation, removal and identification of m6A are conducted by writers, readers, and erasers,

respectively. Writers refer to the m6A complex, including METTL3, METTL14, WTAP, RBM15/15B, VIRMA and ZC3H13. Besides, METTL16 is a novel

independent RNA methyltransferase. Erasers are proteins that own demethylases activity, including FTO, ALKBH5, ALKBH3. Readers are proteins

that recognize the m6A modification and perform multiple functions in RNA metabolism, some of which identified so far are YTH family, HNRNP

family, eIF3, IGF2BPs and Prrc2a
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RNA processing [35]. In contrast, HNRNPC and

HNRNPG cannot directly bind to the m6A site, but they

can mediate the selective splicing process of transcripts

containing m6A modification by identifying and binding

to the m6A-dependent structural switches [36]. Transla-

tion initiation factor 3 (eIF3) initiates the translation

procedure by binding to the m6A site in the 5′-UTR of

mRNA, while the family of insulin-like growth factor 2

mRNA-binding proteins (IGF2BPs, including IGF2BP1/

2/3) makes the target gene and the corresponding trans-

lation more stable [37]. Moreover, proline rich coiled-

coil 2 A (Prrc2a) is a novel m6A reader that stabilizes

mRNA expression by binding to a consensus GGACU

motif in the coding sequence (CDS) in an m6A-

dependent manner [38].

The dynamic reversibility of m6A modification is closely

associated with the normal physiological activities of the

organism. Studies have revealed that m6A-modified

mRNA or non-coding RNA (mainly miRNA and lncRNA)

plays crucial roles in spermatogenesis [39], T cell homeo-

stasis [40], Drosophila sex determination [41], heat shock

responses [42], reprogramming and pluripotency [43], as

well as other processes. Considering the significance of

m6A modification in the regulation of gene expression

and various biological functions, dysregulation of m6A

levels contributes to diverse diseases, especially for some

cancers. Recent studies have indicated that both aberrant

m6A modification and abnormal expression of m6A regu-

latory proteins can both be detected in acute myeloid leu-

kaemia (AML) [44], hepatocellular carcinoma (HCC) [45],

glioblastoma stem cells (GSCs) [46], breast cancer [47],

obesity [19], infertility [20], autoimmune disease [21] and

neurological disease [22].

Characteristics, regulatory mechanisms and biological

functions of circRNA

According to their origin, circRNAs can be classified

into four broad categories, exonic circRNAs

(ecircRNAs), intronic circRNAs (ciRNAs), exon-intron

circRNAs (EIciRNAs) and others, ranging from virus,

tRNA, rRNA, snRNA [48]. In general, circRNAs can

be detected in most organisms, including archaea

[49], plants [50], parasites [51], and most mammals

[52]. Previous studies have shown that there are more

than 25,000 different RNAs that generate correspond-

ing circRNAs in human fibroblasts [53]. Different cir-

cRNAs can also be produced by the same gene

through alternative circularization [54], which causes

the diversity of circRNAs. Another important charac-

teristic of circRNAs is that they cannot be degraded

by exonucleases and are therefore more stable than

linear circRNAs [55]. Homology studies between dif-

ferent species have shown that circRNAs are highly

conserved in evolution between species. The level of

homology of circRNA in mice and humans reaches

20% or more [56], while that in pigs and mice is be-

tween 15 and 20% [57]. The last but most practical

characteristic of circRNAs is that their expression

levels vary according to different tissues and different

growth stages, which is an essential characteristic for

an ideal disease biomarker. Expression profiles of dif-

ferent tissues in humans and mice show that nerve

tissue (especially brain tissue) contains more circRNA

than other tissues [58], and the expression level of

circRNA is gradually upregulated with the develop-

ment of the brain.

Based on adequate studies on the characteristics of cir-

cRNA, an increasing number of studies have focused on

its regulatory function [59, 60] (Table 1). The most clas-

sical network in which circRNA exerts a specific function

occurs through acting as competing endogenous RNA

(ceRNA). CircRNAs with a miRNA response element

(MRE) can bind specific miRNAs to negatively regulate

their activity, so circRNAs can also be considered “miRNA

sponges”. The first circRNA defined as an “miRNA

sponge” was ciRS-7, and it was first identified in human

Table 1 Roles of circRNA in different cancers

Functions CircRNA Cancer Dysregulation References

MiRNA sponge circ_0026134 Lung cancer Up [61]

circ_0005963 Colorectal cancer Up [62]

circ_000684 Gastric cancer Up [63]

circ_0051443 Hepatocellular cancer Down [64]

Binding to protein circ-Amotl1 Breast cancer Up [65]

circ-Foxo3 Breast cancer Down [66]

circ-ZKSCAN1 Hepatocellular cancer Down [67]

Translation template circ-FBXW7 Glioblastoma Down [68]

circ-SHPRH Glioblastoma Down [69]

circ-PPP1R12A Colon cancer Up [70]

circ-β-catenin Liver cancer Up [71]
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and mouse brains by Thomas B et al. in 2013 [72]. In

addition, circRNAs can also perform specific physiological

functions by interacting with some RBPs. In most cases,

these circRNAs act as a “separant” to inhibit the function

or transport of RBPs. CircEIF3J and circPIAP2, which are

predominantly detected in the nucleus, can interact with

U1 snRNP and promote transcription of their parental

genes [73]. Interestingly, some circRNAs located in the

cytoplasm have similar protein binding abilities. Cir-

cFoxo3 interacts with inhibitor of DNA binding 1 (ID-1),

E2F transcription factor 1 (E2F1), focal adhesion kinase

(FAK), and hypoxia inducible factor 1 subunit α (HIF1-α)

so that these components are retained together in the

cytoplasm [74]. Moreover, recent studies have shown that

some circRNAs could be translated into proteins [75, 76].

In the absence of a dissociative 5′ end, the translation of

circRNAs cannot be initiated by traditional cap-dependent

regulatory elements and therefore requires an internal

ribosome entry site (IRES) or other elements to activate a

cap-independent pathway. To support this claim, Wang

et al. engineered an IRES in a circRNA and then corre-

sponding protein translated by this circRNA was detected

in 293 T cells [77]. Recently, another study found that

m6A modification was abundant in many circRNAs, and

this kind of methylation modification could drive circRNA

translation in a manner similar to IRES [78].

Although still in its infancy, circRNAs have been found

to be closely related to the occurrence, development and

prognosis of various diseases (Fig. 2). Recent studies have

demonstrated that the dysregulation of circRNAs exists in

different cancers, neuropsychological diseases, autoimmune

diseases, infertility, diabetes, nephropathy, arthritis, etc., but

few of these circRNAs have been verified to have biological

functions. Some studies considered that it might be related

to the epigenetic modification of circRNA [79, 80], and

m6A modification is the first role that comes into sight.

Role of m6A methylation in the regulation of circRNAs

Current studies have identified that dysregulation of

m6A modification contributes to various diseases, espe-

cially for some cancers. Generally, m6A functions as a

double-edged sword. In most cases, aberrant m6A modi-

fication contributes to tumorigenesis and tumour pro-

gression. However, recent studies revealed that

abnormal m6A level can also cause tumour suppression

[81]. Since m6A functions via affecting RNA metabolism

primarily, researchers have focused their attention on

m6A-modified mRNA in recent years. Currently, m6A-

modified ncRNAs, especially m6A-modified circRNAs,

remain to be further explored. Here, we summarize the

role of m6A modification in circRNA regulation and

function.

M6A modification regulates circRNA translation

Recent studies have shown that some circRNAs have

protein-coding potential [75, 82], and the translation

process can be driven by m6A [78]. In general, the trans-

lation of RNA in eukaryotic cells requires a eukaryotic

translation initiation factor 4F (eIF4F) complex, which is

composed of three initiation factors, eIF4A (a helicase

protein), eIF4E (a m7G reader) and eIF4G (a scaffold

protein) [83]. On mRNA, these transcription initiation

Fig. 2 Role of circRNA and m6A modification in various diseases. Three major biological functions of circRNAs are shown on the left. Three

homologous factors involved in the regulatory function of m6A are listed on the right
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elements are located on the cap structure of the 5′ end,

so here we define it as a cap-dependent pathway [84].

However, this traditional cap-dependent pathway does

not work in a closed circular transcript in the absence of

a dissociative 5′ end. Therefore, some cap-independent

translation initiation mechanisms, such as the IRES-

dependent pathway and m6A-dependent pathway (Fig. 3),

have been proposed to explain the protein-coding ability

of some circRNAs. IRESs are sequences that mediate the

binding between ribosomes and RNA, thus initiating

translation. The reported protein-coding circRNAs

driven by IRES include circZNF609 in myogenesis [75],

circMbL in fly head extracts [82], circSHPRH and

circFBXW7 in glioma tumorigenesis [68, 69], and circβ-

catenin in liver cancer growth [71].

However, a recent study conducted by Yang et al.

broadens our horizons on the coding landscape of the

human transcriptome. An m6A-driven translation path-

way was proposed and verified in cellular responses to

environmental stress [78]. In this study, circRNAs

containing m6A motifs were detected to be translated,

and the efficiency of translation was validated to be

modulated by the m6A level. Mechanistically, this m6A-

driven translation was initiated by factor eIF4G2 and

m6A reader YTHDF3, enhanced by methyltransferase

METTL3/14, and inhibited by demethylase FTO. More-

over, the m6A level of some endogenous circRNAs was

tested, and the results showed that the m6A motif was

abundant in circRNAs. In terms of the whole human

transcriptome, m6A-modified circRNAs with coding po-

tential are not rare [85, 86]. Finally, 33 endogenous pep-

tides encoded by the back-splice junctions of circRNAs

were chosen for functional analysis. However, regret-

tably, no functional enrichment was detected despite the

translation of these circRNAs being indeed elevated

when facing cellular stress.

Notably, these two cap-independent translation path-

ways might not function independently. Legnini et al. rea-

nalysed m6A-Seq and immunoprecipitation data [15] and

combined the data with other m6A immunoprecipitation

Fig. 3 M6A modification regulates circRNA translation and degradation. The translation of circRNAs requires m6A modification or IRES, which is

different from the traditional cap-dependent pathway of linear RNAs. M6A-modified circRNAs are endoribonuclease-cleaved via the YTHDF2-

HRSP12-RNase P/MRP axis
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(IP) results in myoblasts alone [75]. The results showed

that a high m6A methylation level was detected in the

IRES-activated protein-coding circRNA circZNF609, sug-

gesting a possible connection between these two cap-

independent pathways.

M6A modification facilitates circRNA degradation

Due to their closed circular structure, circRNAs are nat-

urally more stable than their parental linear RNAs, as

they are not the primary targets of foreign chemicals or

exonucleases. This has been validated by many studies

related to the characterization of circRNAs [59, 79]. Cir-

cRNAs are rarely degraded prior to the corresponding

parental linear circRNAs in Actinomycin D and RNase

R treatment. However, how circRNA is degraded and

what factors contribute to the surveillance pathway re-

main largely unknown.

A previous study reported that circRNAs with near

perfect complementary miRNA target sites could be de-

graded in an Ago2-slicer-dependent manner, but for

those circRNAs without miRNA sponge function or spe-

cific microRNA target sites, this method does not work

[87]. Another study found that the depletion of GW182

(a key component of the P-body and RNAi machine) re-

sulted in the accumulation of endogenous circular tran-

scripts. However, the depletion of other P-body

components or RNAi complex factors did not have simi-

lar effects, indicating that GW182, not the P-body or

RNAi machine, affected the degradation of circRNAs

[88]. Regrettably, GW182 shows little effect on the nu-

clear export of circRNAs, and its functions in the cyto-

plasm has not been fully elucidated, so other studies are

needed to explain the degradation of circRNA.

The endoribonucleolytic cleavage pathway is one of

the pathways by which m6A-modified RNAs are de-

graded. As a new star in the field of non-coding RNA

research, m6A-modified circRNAs were also found to

be endoribonuclease-cleaved via a YTHDF2-HRSP12-

RNase P/MRP axis [89] (Fig. 3). HRSP12 is an

adaptor protein that bridges YTHDF2 (m6A reader

protein) and RNase P/MRP (endoribonucleases) to

form a YTHDF2-HRSP12-RNase P/MRP complex, for

which YTHDF2 is the guide. When an m6A-modified

circRNA is recognized by YTHDF2, regardless of

whether it occupies an HRSP12-binding site, RNase

P/MRP always performs its endonuclease function.

The only difference is that the existence of the

HRSP12 binding site greatly improves the efficiency

of endoribonucleolytic cleavage. Subsequently, the

m6A-modified circRNA is selectively downregulated.

What follows is a change in the biological function of

circRNAs. Thus, we can conclude that one of the

ways that m6A modification regulates the biological

function of circRNAs is to affect their degradation.

M6A modified circRNA in innate immunity

Innate immunity (also named non-specific immunity) is

the natural immune defence function formed by the

body in the process of development and evolution. It

plays a decisive role in controlling and resolving the in-

flammatory response to tissue damage [90]. A recent

study found that innate immunity can be activated dif-

ferently by exogenous and endogenous RNAs [91].

All transcripts directly generated by RNA polymer-

ase II bear an m7G cap, and RIG-I (also known as

DDX58) senses a triphosphate at the 5′ end [92];

these are essential elements for immune monitoring.

Due to the closed circular structure, circRNAs are

supposed to be able to escape from the end monitor-

ing system. However, recent studies showed that the

invasion of some exogenous circRNAs still leads to

potent induction of innate immunity genes and con-

fers protection against viral infection [93], while en-

dogenous circRNAs form some 16–26 bp imperfect

RNA duplexes to resist the double-stranded RNA

(dsRNA)-activated protein kinase (PKR) in innate im-

munity [94] (Fig. 4). One of the explanations was

found to describe how the immune system defined

endogenous versus foreign circRNA as m6A

modification.

A study conducted by Y. Grace et al. found that a cir-

cRNA generated by ZKSCAN1 introns (circSELF), but

not autocatalytic splicing (circFOREIGN), is associated

with WTAP and KIAA1429 (m6A writers) as well as

YTHDF2 and HNRNPC (m6A readers) [80]. Further re-

search found that different levels of m6A modification

were detected in these two circRNAs, and m6A modifi-

cation marked circRNA as “SELF”. CircSELF can escape

innate immunological surveillance via YTHDF2-

mediated suppression, which is consistent with a recent

study showing that m6A-modified RNAs could be re-

cruited by YTHDF proteins and induced into phase-

separated condensates via their N-terminal disordered

domains [95]. These results suggest that human cir-

cRNAs may be marked by the covalent m6A modifica-

tion, which is essential for the recognition function of

innate immunity.

M6A-modified circRNA in tumours

Since m6A and circRNAs are both closely related to tu-

mours, it is natural to speculate that m6A modification

might regulate the function of circRNAs in various tu-

mours. Herein, we briefly review recent studies of m6A-

modified circRNAs associated with tumours.

As the third most prevalent and the second most

deadly malignancy worldwide, colorectal cancer is still a

major threat to human health, especially in China [96].

Clinically, the liver metastasis of colorectal cancer is the

most common organ metastasis and leads to poor
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prognosis beyond 5 years [97]. Recently, Chen et al.

found that m6A modification of circNSUN2 promotes

the liver metastasis of colorectal cancer by facilitating

cytoplasmic export and forming a circNSUN2/IGF2BP2/

HMGA2 RNA-protein ternary complex to stabilize

HMGA2 mRNA [79] (Fig. 4). HMGA2, a high mobility

group AT-hook 2, is already widely believed to be re-

lated to the progression of colorectal cancer [98, 99].

These results illuminate how m6A modification affects

the interaction between circRNA and RBP.

Cervical cancer is a prevalent gynaecological cancer with

a relatively poor prognosis [100], and almost all cervical

cancers are caused by oncogenic types of human papillo-

mavirus (HPV) [101]. CircE7 is an oncoprotein-encoding

circRNA generated by HPV that is closely related to the

growth of CaSki cervical carcinoma cells both in vitro and

in vivo. Interestingly, m6A modification is detected and

verified to be an essential motif for the protein-coding

ability of circE7 [102], which is consistent with the ideas

mentioned above that m6A modification facilitates cir-

cRNA translation and helps foreign circRNAs escape im-

mune monitoring. Moreover, circE7 is not a special case

that is specifically expressed or modified by m6A. Another

study identified more than 1 thousand m6A-modified cir-

cRNAs in human embryonic stem cells (hESCs) and

showed that m6A circRNAs are also abundant in HeLa

cells [103], which expands our understanding of the

breadth and regulatory aspects of m6A modification.

Fig. 4 M6A-modified circRNAs in innate immunity and tumours. M6A modification defines endogenous versus foreign circRNA in innate

immunity. M6A modification of circNSUN2 promotes the liver metastasis of colorectal cancer by facilitating cytoplasmic export and forming a

circNSUN2/IGF2BP2/HMGA2 RNA-protein ternary complex to stabilize HMGA2 mRNA
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In addition to modifying circRNA directly, m6A can also

affect the function of circRNA via changing the methyla-

tion state of downstream molecules. As one of the main

response factors downstream of the Hippo pathway, YAP

is closely related to the occurrence and development of

various tumours [104, 105]. In hepatocellular cancer, circ_

104075 can absorb miR-582-3p to stimulate tumorigenesis

via YAP [106]. M6A modification in the 3′-UTR of YAP

induces the interaction with miR-382-5p and subsequently

leads to the inhibition of YAP. Then, the promoting effect

of circRNA_104075 on hepatocellular cancer is inhibited.

In addition, a combinative bioinformatics prediction of

m6A level, IRES and open reading frame (ORF) could in-

dicate the protein-coding potential of circPVRL3 in gastric

cancer [107].

Applications and future directions

Considering the stability and conserved nature of their

structure, the potential of circRNAs as diagnostic bio-

markers and therapeutic targets is unquestionable and is

supported by the growing number of circRNA-related

studies in recent years [108]. However, the relationship

between epigenetic modification and circRNA functions

is still largely unknown. As one of the most abundant

RNA modifications, m6A provides us with an intermedi-

ate mechanism by which circRNAs are regulated by up-

stream molecules and allows us to predict and interfere

with disease progression caused by the dysregulation of

circRNAs. There is no doubt that it would greatly ex-

pand our understanding of circRNA and drive its

applications.

Notably, no specific biological functions have been de-

tected in the majority of already discovered circRNAs,

which is also one of the reasons that circRNAs were

regarded as by-products of splicing when first discovered

[109]. Considering the ubiquitous m6A modification in

annotated functional circRNAs, we speculate that it

might be related to the tissue and developmental stage

specificity of circRNA. That is, specific circRNAs present

differential expression only if they have been activated

by specific molecular mechanisms, such as m6A, in spe-

cific tissues, developmental stages and subcellular loca-

tions. To test this conjecture, a combination analysis of

the m6A Hi-Res chip and RNA-seq would be helpful for

our future research on the biological function and clin-

ical application of m6A-modified circRNAs.

Conclusions

With the broad application of high-throughput sequen-

cing technology and bioinformatics analysis in scientific

research, increasing numbers of m6A-modified circRNAs

will be found and tested. By then, our understanding of

how m6A modification regulates circRNA will not be

confined to the four limited aspects of translation,

degradation, immunity, and tumours. Other effects of

m6A on circRNA, such as processing or splicing effects,

and the biological functions of m6A-modified circRNAs

in other non-neoplastic diseases could be further

investigated.

Since the current understanding of m6A-modified cir-

cRNAs is only at the tip of the iceberg, there is still a

long way to go to reveal its further regulatory mecha-

nisms and subsequent biological functions in diseases.

At this stage, we propose that more m6A regulated cir-

cRNAs could be developed to diagnostic biomarkers and

therapeutic targets in the future. With the existing tech-

nical advancements, it is no longer a technical problem

to identify the characterization, localization, transport

and degradation of circRNAs in living cells. We antici-

pate that methods for simplifying the detection of m6A

levels of specific circRNAs and for effectively extracting

circRNAs with low abundance in limited samples, such

as exosomal circRNAs, will progress in the field.
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