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Abstract

Apoptosis resistance is to a large extent a major obstacle leading to chemotherapy failure during cancer treatment.
Bypassing the apoptotic pathway to induce cancer cell death is considered to be a promising approach to
overcoming this problem. Necroptosis is a regulated necrotic cell death modality in a caspase-independent fashion
and is mainly mediated by Receptor-Interacting Protein 1 (RIP1), RIP3, and Mixed Lineage Kinase Domain-Like
(MLKL). Necroptosis serves as an alternative mode of programmed cell death overcoming apoptosis resistance and
may trigger and amplify antitumor immunity in cancer therapy.
The role of necroptosis in cancer is complicated. The expression of key regulators of the necroptotic pathway is
generally downregulated in cancer cells, suggesting that cancer cells may also evade necroptosis to survive;
however, in certain types of cancer, the expression level of key mediators is elevated. Necroptosis can elicit strong
adaptive immune responses that may defend against tumor progression; however, the recruited inflammatory
response may also promote tumorigenesis and cancer metastasis, and necroptosis may generate an
immunosuppressive tumor microenvironment. Necroptosis also reportedly promotes oncogenesis and cancer
metastasis despite evidence demonstrating its antimetastatic role in cancer. In addition, necroptotic
microenvironments can direct lineage commitment to determine cancer subtype development in liver cancer. A
plethora of compounds and drugs targeting necroptosis exhibit potential antitumor efficacy, but their clinical
feasibility must be validated.
Better knowledge of the necroptotic pathway mechanism and its physiological and pathological functions is
urgently required to solve the remaining mysteries surrounding the role of necroptosis in cancer. In this review, we
briefly introduce the molecular mechanism and characteristics of necroptosis, the interplay between necroptosis
and other cell death mechanisms, crosstalk of necroptosis and metabolic signaling and detection methods. We also
summarize the intricate role of necroptosis in tumor progression, cancer metastasis, prognosis of cancer patients,
cancer immunity regulation, cancer subtype determination and cancer therapeutics.
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Background
It is well-established that apoptosis, which is a pro-

grammed cell death mechanism, functions as a natural

barrier that protects against cancer development [1].

However, the evasion of and resistance to apoptosis are

also considered indisputable hallmarks of cancer [1], and

resistance to apoptosis is often responsible for both

tumorigenesis and drug resistance, resulting in chemo-

therapy failure [2]. In addition to overcoming apoptosis

resistance, developing approaches to induce nonapopto-

tic forms of programmed cell death as alternative thera-

peutics in cancer is imperative and attractive.

Apoptosis has historically been believed to be the only

form of programmed cell death (PCD), and necrosis, which

was believed to be an “accidental” type of death not regu-

lated by molecular events [3], was assumed to be the dia-

metrically opposite modality of cell death compared to
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apoptosis until necroptosis was discovered as a novel

programmed form of necrotic cell death that bears a

mechanistic resemblance to apoptosis and a morphological

resemblance to necrosis [4]. Necroptosis is mainly medi-

ated by RIPK1 (receptor-interacting protein [RIP] kin-

ase 1), RIPK3, and MLKL (mixed lineage kinase

domain-like pseudokinase) and characterized to be

inhibited by the necrostatin-1 (Nec-1), which is the

first well-defined necroptosis inhibitor that exclusively

inhibits RIPK1 activity [5].

In addition to its key role in viral infection and devel-

opment, necroptosis has been suggested to play a pivotal

role in the regulation of cancer biology, including onco-

genesis, cancer metastasis, cancer immunity, and cancer

subtypes [6, 7]. As a coalescence of apoptosis and necro-

sis, the following dual effects of necroptosis on cancer

have been demonstrated: on the one hand, the key medi-

ators of the necroptotic pathway alone or combined have

been suggested to promote cancer metastasis and cancer

progression [8–10]; however, on the other hand, necrop-

tosis also reportedly serves as a “fail-safe” mechanism

that protects against tumor development when apoptosis

is compromised [11, 12]. Considering the pivotal role of

necroptosis in cancer biology, necroptosis emerged as a

novel target for cancer therapy, and a growing arsenal of

compounds and multiple therapeutic agents reportedly

defend against cancer by inducing or manipulating

necroptosis [13].

Overview of the molecular mechanism of
necroptosis
Because necroptosis has increasingly been considered im-

portant in cancer, a deeper understanding of the mecha-

nisms of necroptosis is essential for developing a novel

approach to regulate necroptosis in cancer Table 1.

Theoretically, a plethora of different stimuli, including

members of the tumor necrosis factor receptor (TNFR)

superfamily, pattern recognition receptors (PRRs), T cell

receptors (TCRs) and multiple chemotherapeutic drugs,

can activate the necroptotic cell death pathway [25].

Environmental stresses such as hypoxia can also elicit

necroptosis [26], which reportedly may be abolished by

glucose uptake and enhanced anaerobic glycolysis in

cancer cells [26]. Among the various stimuli, the TNFα/

TNFR signaling pathway is considered a prototype and

has been the most intensively investigated [14]. Thus,

the initiation of necroptosis can be epitomized by the

events occurring in the TNF signaling pathway. The

binding of TNF to TNFR1 induces a conformational

change in TNFR1 trimers, leading to the recruitment of

multiple proteins, including RIPK1, TRADD (TNFR-as-

sociated death domain), cIAP1 (cellular inhibitor of

apoptosis protein 1), cIAP2, TRAF2 (TNFR-associated

factor 2) and TRAF5, by TNFR1. This membrane-bound

multimeric protein complex is named complex I [27],

and within this complex, RIPK1, which is a crucial regu-

lator of cell fate [15], is polyubiquitinated by cIAP1/2,

which, in turn, induces the canonical NF-κB (nuclear

factor kappa B) pathway [14], which transactivates cyto-

protective genes and facilitates cell survival [27].

Furthermore, due to the rapid internalization of ligand-

bound TNFR, the proteins in complex I and their post-

translational modification are consequently altered [14].

For instance, RIPK1 is deubiquitinated by the deubiquiti-

nase cylindromatosis (CYLD), which subsequently limits

the sustained activation of NF-κB signaling [20] and leads

to a tendency towards the activation of cell death pathways.

Consequently, a cytoplasmic death-inducing signaling com-

plex comprising RIPK1, TRADD, caspase-8 and FADD

(FAS-associated death domain protein), which is known as

complex II and is also referred to as “Ripoptosome” [28], is

formed, inducing caspase-8 activation [29]. Complex II is

involved in the activation of both apoptotic and necroptotic

pathways. In complex II, active caspase-8 cleaves both

RIPK1 and RIPK3, resulting in their inactivation, and the

proapoptotic caspase activation cascade is initiated, ultim-

ately leading to apoptosis execution [23]. Caspase-8 is also

reported to promote cell survival by cleaving CYLD [21].

However, following the inhibition of caspase-8 due to

pharmaceutical or genetic intervention [27], RIP kinases

cleavage stops, and the cell death pathway is directed to

necroptosis.

Table 1 Key mediators in necroptosis and their key function

Key
Mediators

Function in necroptosis Inhibitors Reference

RIP1 determining the survival or death of cell; recruiting and activating RIPK3 to form necrosome nec-1 [5, 14, 15]

RIPK3 interacting with RIPK1 to form necrosome; phosphorylating MLKL GSK843 and
GSK872

[15, 16]

MLKL phosphorylated by RIPK3; oligomerized and translocated to plasma membrane to execute necroptosis NSA [16]

cIAP1/2 polyubiquitinating RIPK1 to induce NF-κB signaling smac mimetics [14, 19]

CYLD deubiquitinating RIPK1; promoting “Ripoptosome” formation; promoting necrosome formation – [20]

caspase-8 cleaving RIPK1 and RIPK3 and activating apoptosis; inhibiting necrosome formation; cleaving CYLD to
promote cell survival

zVAD-fmk [21, 23,
24]

Gong et al. Molecular Cancer          (2019) 18:100 Page 2 of 17



After the cell death mode is switched, RIPK1 is phos-

phorylated through the autophosphorylation of the serine

residue 161(S161) at its N-termini and is, thus, activated

[5]. Activated RIP1 interacts with RIPK3 through their

RIP homotypic interaction motif (RHIMs) [15], leading to

the formation of a heterodimeric amyloid structure named

the necrosome complex, which is a key molecular signal-

ing platform in necroptosis primarily comprising RIPK1

and RIPK3 [15]. Mitochondrial reactive oxygen species

(ROS) was found to activate RIPK1 autophosphorylation,

leading to RIPK3 recruitment, and ROS induction also re-

quires RIPK3 in necrosome, thus forming a positive feed-

back circuit in which necroptosis is induced effectively

[30]. CYLD was reported to promote necrosome for-

mation and activation by deubiquitinating RIPK1 after

necrosome assembly [22]. Necrosome formation and/

or activation can be blocked by RIPK1 inhibitor

nec-1, MLKL inhibitor necrosulfonamide (NSA) and

multiple RIPK3 inhibitors [31].

In necrosomes, RIPK3 phosphorylates its well- char-

acterized functional substrate MLKL. MLKL is then

oligomerized and translocated to the plasma mem-

brane, thus leading to the execution of necroptosis,

causing necrotic plasma membrane permeabilization

and ultimately cell demise characterized by the swell-

ing of the cell and loss of the cell and organelle integ-

rity [16, 32, 33] (Fig. 1).

The binding of TNF to TNFR1 leading to the recruit-

ment RIPK1, TRADD, cIAP1 and cIAP2, TRAF2 and

TRAF5 and thus the formation of complex I. When

RIPK1 is polyubiquitinated by cIAP1/2, NF-κB pathway

is activated and cell survival prevails. When RIPK1 is

deubiquitinated by CYLD, NF-κB pathway was limited

and complex II composed of RIPK1, TRADD, caspase 8

and FADD was formed. Caspase 8 inactivates RIPK1 and

RIPK3 by proteolytic cleavage, which leads to apoptosis

pathway. When caspase 8 is inhibited, a crucial complex,

necrosome, is formed, in which RIPK3 phosphorylates

Fig. 1 TNF necroptosis signaling mechanism
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its substrate MLKL, leading to the its oligomerization

and its translocation to plasma membrane to execute

necroptosis, causing necrotic plasma membrane

permeabilization and ultimately cell death associated

with loss of cell and organelle integrity.

Comparison of the key features of necroptosis
and apoptosis
While necroptosis is characterized by caspase- inde-

pendence, it bears similarity to and shares a part of

the molecular pathway of apoptosis, particularly the

extrinsic apoptotic pathway; however, necroptosis re-

markably varies in the morphological and immuno-

logical outcomes. Necroptosis exhibits morphological

features similar to necrosis, including the rupture of

the cellular membrane, progressively translucent cyto-

plasm and swelling of organelles [27, 34]. In contrast,

the morphological features of apoptosis are typified by

membrane blebbing, cellular shrinkage, nucleus frag-

mentation and chromatin condensation [35]. The rup-

ture of the plasma membrane in necroptotic cells

leads to the release of cell contents, which can cause

the exposure of damage-associated molecular patterns

(DAMPs) and trigger robust inflammatory responses

[36], indicating that necroptotic cells are markedly

more immunogenic than apoptotic cells where latent

DAMPs are confined to the relatively intact plasma

membrane or are encased in apoptotic bodies [36],

and their corpses are engulfed and dissolved by phago-

cytes, suggesting that apoptosis typically does not in-

duce an immune response as robust as that induced

by necroptosis [37]. Necroptosis was also found to be

involved in the maintenance of T cell homeostasis [36]

because necroptosis has been indicated to clear up ex-

cessive and abnormal T cells in the absence of

caspase-8 [38], which is considered to aid apoptosis by

acting as the major machinery countering the abnor-

mal proliferation of lymphocytes [39].

Interplay among necroptosis, apoptosis and
autophagy
Although the signaling pathways of each of the three cell

death modes have been well elucidated, cell death in vivo

is often characterized by their intricate interplay. Under-

standing the interrelationship among the three forms of

PCD is pivotal for manipulating their synergistic and an-

tagonistic effects in anti-cancer therapies and developing

novel approaches to target the converging point of the cell

death pathways.

In most settings, apoptosis is the default cell death mo-

dality, whereas necroptotic pathway is generally viewed as a

“fail-safe” cell death machinery occurring when key apop-

totic mediators are blocked by pharmacological inhibition

or genetic ablation or in cases in which stressed cells are

unable to undergo apoptosis. However, in the context of

certain viral infections, such as vaccinia virus [40], or when

induced by certain compounds, such as shikonin [41],

necroptosis may predominate as the cell demise mode. Fur-

thermore, studies have indicated that the intracellular ad-

enosine triphosphate (ATP) level may switch the cell death

decision as follows: ATP depletion prevents apoptosis and

induces necrosis, and glucose replenishment in ATP- de-

pleted T cells converts the cell death pathway to apoptosis

because apoptosis is a highly energy-consuming process

principally involving ATP- requiring steps, such as caspase

activation and apoptosome formation [42, 43]. Thus, the

energetic state of cells may also influence the cell death

modality.

Autophagy is a “self-eating” process that provides nu-

trients and energy under various stresses, including star-

vation, cellular and tissue remodeling, and cell death, by

degrading cytoplasmic proteins and organelles within ly-

sosomes [44, 45] and is also regulated by cellular energy

availability [46]. Autophagy reportedly saves ATP- de-

pleted cells from necrosis/necroptosis by restoring energy,

and the inhibition of autophagy may incur a metabolic cri-

sis and promote necroptosis [46, 47]. Necroptosis has also

been reported to promote autophagy. For instance, the high

level of reactive oxygen species (ROS) generated during

necroptosis may cause the induction of autophagy, which is

responsible for degrading damaged organelles and proteins.

Moreover, RIPK1 has been suggested to play a significant

role in the modulation of autophagic signaling, which is in-

dependent of necroptosis [48].

Similarly, in most cases, autophagy inhibits the initiation

of apoptosis, and the activation of caspases in the apop-

totic pathway leads to the cleavage of key pro- autophagic

mediators [49]. In some cases, autophagy may also pro-

mote apoptosis by eliminating endogenous inhibitors of

apoptosis or creating a platform for capsapse-8 activation

via autophagosome formation [49]. Goodall et al. showed

that in the background of Map3k7 deletion, the autopha-

gic pathway may switch the cell death mode to from apop-

tosis to necroptosis by acting as a scaffold allowing the

necrosome to be more efficiently activated, which is medi-

ated by the p62-dependent recruitment of RIPK1 to the

autophagic machinery [50]. When the mechanism is

blocked, the cell may die through apoptosis [50].

Evidently, the interplay among apoptosis, necroptosis

and autophagy is profoundly intricate and requires fur-

ther exploration.

Crosstalk of necroptosis and metabolic signaling
Necroptotic pathway and its key regulators have been im-

plicated in metabolic signaling. RIPK3 has been reported to

activate key enzymes in metabolic pathways, including

glycogen phosphorylase (PYGL) [51], a vital enzyme in util-

izing reserved glycogen as an energy source, and pyruvate
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dehydrogenase (PDH) [52], the key enzyme that links gly-

colysis to aerobic respiration, resulting in enhancement of

glycolysis and aerobic respiration and eventually leading to

increased ROS generation. Furthermore, the increase of

aerobic respiration mediated by RIPK3 in necrosome posi-

tively feeds back on necrosome formation via ROS [53].

Moreover, RIPK3 can also promote the activity of

glutamate-ammonia ligase (GLUL) and glutamate de-

hydrogenase 1 (GLUD1), two enzymes involved in gluta-

minolysis, which may as well contribute to elevated ROS

generation [51]. RIPK1 was shown to downregulate the

activity of adenine-nucleotide translocators (ANT) [54], a

mitochondrial enzyme responsible for the trading ADP

for ATP [55], suggesting the increased RIPK1 activity dur-

ing necroptosis may also augment the production of ROS.

Huang et al. have reported that GLUT-dependent glu-

cose uptake and glycolytic metabolism may inhibit resist-

ance to hypoxia-induced RIPK signaling and necrotic

features in colorectal carcinoma cells, and that glycolytic

pyruvate can revert hypoxia-induced necroptosis probably

through mitochondrial ROS scavenging [26]. The study

further highlighted the interrelationship between necrop-

tosis and metabolism, and indicated that potential target-

ing therapeutics glucose and pyruvate may overcome the

barrier caused by enhanced angiogenesis and metastasis

driven by hypoxic stress in cancer treatment [26].

McCaig et al. [56] has recently reported that hypergly-

cemia may cause an shift from extrinsic apoptosis to

RIP1-dependent necroptosis in both human primary T

cells and monocytes, which is dependent on glycolysis

and its production of mitochondrial ROS. This work has

demonstrated that hyperglycemia may incline cells to

undergo necroptotic pathway in spite of the initial acti-

vation of apoptosis, and has further elucidated the role

of metabolic condition in regulating cell death mode.

Identification of necroptosis
Because no specific molecular markers for necroptosis

detection are available to date, identification of necrop-

tosis often requires a combination of methods of detec-

tion. In cultured cells, transmission electron microscopy

(TEM) can be used to identify the necrotic morphology

[57]. The detection of necroptosis via biomarkers has

been principally focused on the key molecular events in-

volved in necroptosis [58], including the activation of

RIPK1, RIPK3 and MLKL, the formation of the necro-

some, and MLKL oligomerization and membrane trans-

location [58].

The biomarkers used to detect the activation of RIPK1,

RIPK3, and MLKL in necroptosis include phosphorylated

RIPK1/3 and MLKL at their phosphorylation site, which

are detected mainly by using their corresponding anti-

phospho-ser/thr antibodies in a western blot analysis (WB)

[59]. The biomarker used to detect the necrosome

formation is the RIP1/RIP3 complex, which is an amyl-

oid- like structure and is detected by immunoprecipita-

tion [51] and electron microscopy image analysis [59].

MLKL oligomerization and membrane translocation are

detected by WB and immunostaining analyses, respect-

ively [33, 60].

Several pharmacological inhibitors, such as the RIPK1

inhibitor necrostatin-1 (Nec-1), the MLKL kinase inhibi-

tor necrosulfonamide (NSA) [16] and the RIPK3 inhibitor

GSK843 and GSK872 [16–18], antagonize the necroptotic

pathway and can recue cells from necroptotic cell death;

these inhibitors have also been used to detect necroptosis.

Necroptosis identification in vivo is also problematic. The

induction of necroptosis in vivo is indicated by elevated

mRNA or protein levels of RIPK1, RIPK3 or MLKL [61]. In

transgenic animal models in which RIPK1, RIPK3 or MLKL

are genetically knocked out or following blockade using re-

spective chemical inhibitors, necroptosis can be identified

by reduced cell demise or tissue injury [61].

Furthermore, recent evidence suggests that in some

cases, RIPK1 is not required for the necroptotic pathway.

For instance, Kaiser et al. [62] demonstrated that Toll like

receptor 3/4 (TLR-3/4) induced necroptosis in certain

cells is independent of RIPK1 but still depends on both

RIPK3 and MLKL. These findings suggest that RIPK3 and

MLKL are more specific molecule biomarkers for necrop-

tosis identification.

Relevance of necroptosis in Cancer
Necroptosis has been reported to be both a friend and a

foe of cancer; its dual effects of promoting and reducing

tumor growth have been found in different types of can-

cer. As a fail-safe form of cell death occurring in cells in

which apoptosis fails to be induced, necroptosis can pre-

vent tumor development. Nevertheless, as a necrotic cell

death modality, necroptosis can trigger inflammatory re-

sponses and reportedly promotes cancer metastasis and

immunosuppression [63, 64].

Expression of Necroptotic factors and its influence on

prognosis in Cancer

The downregulation of the expression of numerous key

molecules in necroptotic signaling pathways has been found

in different types of cancer cells, suggesting that cancer cells

may evade necroptosis to survive (Table 2).

RIPK3 expression is absent or decreased in numerous

cancer cell lines [65, 69]; specifically, the loss of RIPK3

protein expression was found in two-thirds of the 60+

cancer cell lines tested [65]. A decreased RIPK3 expres-

sion has also been reported in samples from human pa-

tients with cancer, such as breast cancer [7, 65], colorectal

cancer [12, 66], acute myeloid leukemia (AML) [11, 68]

and melanoma [69]. Moreover, Hockendorf et al. [11]

reported that leukemogenesis was markedly accelerated
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following the knockout of RIPK3 in mice transplanted

with bone marrow cells bearing a mutated AML driver

gene and that the survival of the RIPK3 knockout mice

was poorer than that of the wild-type mice. In addition,

the tumor-suppressing effects of RIPK3 have been docu-

mented in colorectal cancer. In a cohort study involving

more than one hundred patients, low RIPK3 expression

was found to independently prognosticate a reduced DFS

(disease-free survival) and OS (overall survival) [12]. Fur-

thermore, RIPK3 knockout mice were reportedly at a

higher risk of developing colitis-associated colorectal can-

cer and producing a higher number of pro-inflammatory

or tumor-promoting factors [77]. Similarly, low RIPK3 ex-

pression indicates a worse prognosis in patients with

breast cancer [65]. These studies suggest that RIPK3 might

play an anti-inflammatory and antitumor role in cancer.

Furthermore, reports indicate that genomic methylation

and/or hypoxia may play a pivotal role in silencing RIPK3

expression in many cancer cell lines [26, 65, 66].

Consistent with these observations, McCormick et al. [9]

reported that RIPK1 expression is downregulated in head

and neck squamous cell carcinoma as well; this downregu-

lation was proven to be correlated with disease progression.

The authors suggested that the downregulation of RIPK1

expression promoted by epigenetic changes during tumor

progression enables tumor cells to evade anoikis, which

may stimulate tumorigenesis by enhancing the metastatic

abilities of the tumor cells [9]. In addition, the expression of

CYLD, which is a deubiquitinating enzyme that is a key

mediator in the necroptotic pathway, was found to be de-

creased in chronic lymphocytic leukemia (CLL) [71] and

malignant melanoma [70]. In CLL, low CYLD expression

identifies a subgroup of patients with worse OS [71]. In

melanoma, the repression of CYLD by the transcription

factor Snail1 contributes to cell proliferation and cancer in-

vasiveness in vitro and tumor progression and metastasis in

vivo [78]. However, because CYLD is also involved in the

NF-kB pathway, which mediates inflammation and tumor

growth [79], the effects of CYLD downregulation may not

only be associated with necroptosis.

Collectively, these studies implicate the antitumor role

of the necroptosis pathway in cancer. However, the

downregulation of necroptotic factors does not appear

to occur in all cancers; the expression of necroptotic fac-

tors has been found to be upregulated in some cancers.

For example, in glioblastoma, RIPK1 is commonly over-

expressed, and the upregulation of RIPK1 expression is

correlated with a poorer prognosis [10]. Similarly, RIPK1

expression is markedly elevated in both human lung

cancer samples and mouse lung tumor models, and

RIPK1 has been suggested to play an oncogenic role

[72]. Notably, the expression of RIPK1, RIPK3, FADD

and MLKL is elevated in pancreatic ductal adenocarcin-

oma (PDA) [64], which is accompanied by accelerated

oncogenesis.

Interestingly and counterintuitively, according to Col-

bert et al. [73] the decreased expression of MLKL was

correlated with a decreased OS in patients with early-

stage resected pancreatic adenocarcinoma. Moreover,

the reduced level of MLKL was markedly correlated with

the reduced OS in gastric cancer [74], ovarian carcinoma

[75], cervical squamous cell carcinoma [76] and colon

cancers [67], probably because MLKL can affect the

modulation of local tumor microenvironment

Table 2 Expression of necroptotic factors in cancer and its influence on cancer prognosis

Cancer Type Expression of Necroptotic Factors The Influence on Prognosis Reference

Breast Cancer decreased RIPK3 expression worse prognosis [7, 65]

Colorectal Cancer decreased RIPK3 expression; decreased
MLKL expression

reduced DFS and OS; reduced OS [12, 66,
67]

Acute Myeloid Leukemia decreased RIPK3 expression accelerated leukemogenesis and worse survival [11, 68]

Melanoma decreased RIPK3 expression;
decreased CYLD expression

not mentioned; enhanced tumor progression and
metastasis

[69, 70]

Head and Neck Squamous
Cell Carcinoma

decreased RIPK1 expression enhanced tumorigenesis [9]

Chronic Lymphocytic
Leukemia

decreased CYLD expression reduced OS [71]

Glioblastoma increased RIPK1 expression worse prognosis [10]

Lung Cancer increased RIPK1 expression promoted oncogenesis [72]

Pancreatic Cancer increased expression of RIPK1, RIPK3, FADD and
MLKL

promoted oncogenesis [64, 73]

Gastric Cancer decreased MLKL expression reduced OS [74]

Ovarian Cancer Decreased MLKL expression reduced OS [75]

Cervical Squamous Cell
Carcinoma

decreased MLKL expression reduced OS [76]
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immunosurveillance. These findings suggest that MLKL

is a candidate prognostic biomarker in those cancers.

Necroptosis and Cancer Immunosurveillance

The immunosurveillance of cancer refers to the process by

which the immune system identifies and eliminates cancer-

ous and/or precancerous cells based on tumor-specific anti-

gens (TSAs) or tumor-associated antigens (TAAs) [80]

before these cells constitute a threat to our health [81]. This

process is mediated by innate and adaptive immune cells

and effector molecules, including dendritic cells (DC), cyto-

toxic T cells, M1 macrophages, natural killer (NK) cells,

natural killer T (NKT) cells and their corresponding cyto-

kines [81, 82]. RIPK3 has been found to be required in the

regulation of cytokine expression in DCs, which are crucial

sentinels that regulate immune homeostasis by expressing

modulatory cytokines and interlinking the innate and adap-

tive immune systems [83]. Additionally, despite evidence

indicating that RIPK3 signaling may not play a role in the

regulation of the activation of T lymphocytes, B lympho-

cytes and macrophages [84], RIPK3 has been suggested to

regulate NKT cell function and promote the NKT cell-

mediated anti-tumor immune response by activating

mitochondrial phosphatase phosphoglycerate mutase 5

(PGAM5) through a process that is independent of the

necroptosis pathway [85]. Additionally, while the function

of apoptosis in the maintenance of central tolerance has

been well defined, several reports have indicated that

necroptosis plays a regulatory role in the antigen-induced

proliferation of T cells mainly via the elimination of exces-

sive T cells, which is essential for maintaining homeostasis

in peripheral T cells and the survival of T cells when they

are activated by stimuli, and necroptosis-dependent process

is negatively regulated by caspase-8 [86]. Necroptosis re-

portedly occurs during the late stage of T-cell proliferation

and necroptotic signaling is markedly intensified in T cells

absent in FADD, suggesting that FADD may negatively

regulate necroptosis mediated by T cell receptors [87].

In addition to the direct interactions with immune

cells, necroptosis initiates adaptive immune responses by

releasing DAMPs into the tissue microenvironment [37],

and after necroptotic cells are phagocytosed, phagocytic

cells, such as DCs and macrophages, can release pro- in-

flammatory cytokines that increase stimulating mole-

cules and amplify cross-presentation, incurring strong

immune responses [36, 88]. Necroptotic cells can pro-

vide both antigens and inflammatory cytokines to DCs

for antigen cross-priming which activates cytotoxic CD8

+ T lymphocytes [89–91]. Yatim et al. demonstrated that

RIPK1 expression and NF-κB activation during pro-

grammed cell death are essential for initiating CD8+ T

cell adaptive immunity and that CD8+ T cells activated

by immune responses that necroptotic cells incurred re-

leased various effector cytokines, demonstrating in vivo

cytolytic effects and defended mice against tumorigen-

esis [89]. Werthmöller et al. reported that the use of a

combination of the pan-caspase inhibitor zVAD-fmk,

which has been demonstrated to induce necroptosis, and

other therapeutics, including radiotherapy, chemother-

apy and hyperthermia, for the treatment of melanoma

remarkably reduced tumor growth by reducing the

tumor infiltration of regulatory T cells (Tregs) and in-

creasing DC and CD8+ T-cell infiltration in the tumor

microenvironment [24]. Schmidt et al. [92] showed that

necroptotic cervical cancer cells induced by PolyI:C,

which is a viral dsRNA analog that triggers necroptosis in

cervical cancer cells, produced interleukin-1α (IL-1α),

which is essential for the activation of DCs to release

IL-12, which is a cytokine pivotal for antitumor effects,

and that the expression level of RIPK3 in cervical carcin-

oma cells may predict the efficacy of PolyI:C-induced im-

munotherapy; therefore, immunotherapeutic treatment

should be customized according to the RIPK3 level.

Despite the role of necroptosis in the induction and

amplification of cancer immunity, multiple lines of evi-

dence indicate that the immune inflammatory cells re-

cruited by necrosis/necroptosis can promote tumor

development by fostering angiogenesis, promoting can-

cer cell proliferation, and accelerating cancer metastasis

[1, 93]. Additionally, necrotic/necroptotic cells can re-

lease regulatory cytokines, such as IL-1α, which can dir-

ectly stimulate the proliferation of neighboring cells and

potentially facilitate neoplastic progression [1, 93]. Acti-

vated inflammatory cells may also release reactive nitro-

gen intermediates (RNI) and ROS that can damage DNA

and lead to genomic instability, thereby facilitating

tumorigenesis [93] (Fig. 2).

Through the release of DAMPs into the tissue micro-

environment, necroptotic tumor cells may provide both

antigens and inflammatory cytokines to DCs for antigen

cross-priming which activates cytotoxic CD8+ T lympho-

cytes, resulting in tumor cell elimination. However,

DAMPs released by necroptotic cells may also recruit im-

mune inflammatory cells and incur inflammation, which

can promote tumor development by fostering angiogen-

esis, promoting cancer cell proliferation, and accelerating

cancer metastasis. Activated inflammatory cells may also

release reactive nitrogen intermediates (RNI) and ROS

that can damage DNA and lead to genomic instability,

thereby facilitating tumorigenesis. Moreover, RIPK1 ex-

pression and NF-κB activation during programmed cell

death are essential for initiating CD8+ T cell adaptive im-

munity, and RIPK3 has been suggested to regulate NKT

cell function and promote the NKT cell-mediated

anti-tumor immune response by activating mitochondrial

phosphatase phosphoglycerate mutase 5 (PGAM5).

Necroptosis has also been shown to generate an im-

munosuppressive tumor microenvironment in vivo in
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PDA and, thus, promote the oncogenesis of pancreatic

cancer [64]. In RIPK3 knockout p48Cre;KrasG12D pan-

creases, the percentages of B cells and T cells were ele-

vated, the percentages of peritumoral myeloid-derived

suppressor cells (MDSCs) and tumor-associated macro-

phages (TAMs), both of which can not only inhibit anti-

tumor immune reactions but also stimulate tumor

growth and metastasis [94, 95], were reduced and the

expression of programmed death-ligand 1(PD-L1), a lig-

and which negatively regulates T cell antigen receptor

signaling through interacting with its receptor PD-1

[96], in macrophages was decreased. Furthermore, the

blockade of necroptosis may expand and activate T cells,

which is a promising avenue for ameliorating the unsat-

isfactory efficacy of checkpoint-based immunotherapeu-

tics in pancreatic cancer [64].

Mechanisms of necroptosis promoting tumor progression

and the role of necroptosis in Cancer metastasis

As mentioned above, necroptosis has been shown to per-

form antitumor functions in cancer; however, mounting

evidence suggests that as a pathway triggering inflamma-

tory responses, necroptosis may also play a tumor- promot-

ing role, suggesting that the necroptosis pathway is a

double-edged sword in cancer.

For instance, a study conducted by Liu et al. [17] demon-

strated that in several breast cancer cell lines, the knockout

of the RIPK1, RIPK3, or MLKL genes in cancer cells mark-

edly reduced their tumorigenicity and appeared to sensitize

breast cancer cells to radiotherapy. Moreover, in a xenograft

model, the necroptosis inhibitor NSA (necrosulfonamide)

greatly delayed tumor growth [17]. Additionally, the authors

also reported that the higher phosphorylation levels of

MLKL were correlated with a poorer prognosis and shorter

survival in human patients with colon and esophageal can-

cer, indicating that necroptotic genes play a critical role in

tumor promotion [17]. Furthermore, Seifert et al. [64] re-

ported that the in vivo deletion of RIPK3 or RIPK1 attenu-

ated tumor progression and immunosuppression in mice

and explained these results by suggesting that necroptosis

promoted pancreatic oncogenesis because CXCL1 (che-

mokine (C-X-C motif) ligand 1), which is a chemokine at-

tractant, and Mincle signaling induced by necroptosis

promotes the induction of adaptive immunosuppression

by myeloid cells. Collectively, these studies indicate that

the necroptosis pathway may increase the risk of tumor

progression. The mechanisms underlying this seemingly

paradoxical phenomenon may be related to the inflamma-

tory response triggered by necroptosis, which may provide

a tumor- promoting inflammatory microenvironment or

elevated reactive oxygen species (ROS) production, which

is correlated with genomic instability [97], ultimately ac-

celerating malignant transformation and cancer progres-

sion [98, 99].

Metastasis is the primary cause of resultant mortality

in cancer patients and involves the dissemination of can-

cer cells from the primary site to distant organs through

the circulatory system.

The role of necroptosis in metastasis also exhibits dual-

ity. Fu et al. reported that in an in vivo osteosarcoma

model, not only primary tumors but also lung metastases

were markedly reduced by shikonin, which is a

Fig. 2 Role of necroptosis in cancer immunity
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component used in Chinese herbal medicine, probably by

inducing RIPK1- and RIPK3-dependent necroptosis [100].

One possible mechanism underlying the antimetastatic

role of necroptosis may be its function in the regulation of

ROS production, which involves necroptosis in extracellu-

lar matrix (ECM) detachment and metabolism and, ultim-

ately, in cancer metastasis [101]. Indeed, RIPK3 has been

demonstrated to regulate the production of downstream

ROS [101, 102] and could activate multiple metabolic en-

zymes to modulate TNF-induced ROS production [51]

during the process of necroptosis, which jointly induces a

considerable production of ROS, thus enabling necropto-

sis to kill metastatic cancer cells by incurring ROS bursts.

Accordingly, necroptosis may be a critical pathway inhibit-

ing tumor metastasis.

However, contrasting evidence indicates that under cer-

tain circumstances, necroptosis may promote cancer cell

metastasis. Extravasation, which is the process of tumor

cell exit from the blood vessels and entry into a secondary

site, is a crucial step in metastasis. Strilic et al. reported

that tumor cells can induce necroptotic endothelial cell

death to promote tumor cell extravasation and cancer me-

tastasis via the activation of DR6 (death receptor 6) [63].

That study demonstrated that when cocultured with

tumor cells, endothelial cells undergo necroptotic cell

death. Similarly, after treatment with metastatic tumor

cells, murine lung epithelial cells demonstrated necropto-

tic features. Moreover, the binding of DR6 to its ligand

APP (amyloid precursor protein) promoted endothelial

cell death and cancer cell extravasation. Strilic et al. ex-

plained that endothelial cells subjected to necroptotic

death provide a tunnel through which tumor cells can

pass and start to extravasate and/or the DAMP (dama-

ge-associated molecular pattern) molecules generated by

necroptotic cells exert effects on tumor cells and adjacent

endothelial cells, thus promoting the extravasation and

metastasis of cancer cells. Thus, the authors suggested

that therapies targeting DR6-mediated endothelial cell

necroptosis may represent a new approach for preventing

cancer metastasis.

In summary, the net effect of necroptosis on oncogen-

esis and cancer metastasis remains undefined because

the specific role of necroptosis may not be universal and

may vary according to the different biological traits or

tumor microenvironments of each cancer type. Whether

necroptosis facilitates or suppresses tumor growth and

metastasis cannot be conclusively determined.

Necroptosis and Cancer subtypes

Recently, Seehawer et al. coincidently found that of the

two major subtypes of liver cancer, i.e., hepatocellular

carcinoma (HCC) and intrahepatic cholangiocarcinoma

(ICC), the type that animal models develop is deter-

mined by the gene-delivery technique, i.e., HCC via

hydrodynamic tail-vein injection (HDTV) and ICC via in

vivo electroporation, and that the cancer-promoting

genes that they transferred were the same [6].

These confounding results were deciphered by the follow-

ing findings: HDTV triggered apoptosis in the microenvir-

onment, whereas electroporation triggered necroptosis, and

the electroporated livers showed higher levels of phosphory-

lated MLKL and elevated mRNA expression of RIPK3 [6],

which are biomarkers of necroptosis. The authors explained

that necroptotic cells may release DAMPs that can shape

the microenvironment via cytokines released by immune

cells with pattern recognition receptors (PRRs) and that the

necroptotic microenvironment may direct the lineage com-

mitment of liver cancer, causing the switch from HCC to

ICC development; this process is independent of the onco-

genic drivers but may be involved in the epigenetic regula-

tion of the genes Tbx3 and Prdm5 [6]. Additionally, the

pharmacological or genetic inhibition of necroptosis reverts

the necroptosis-dominated microenvironment and converts

ICC to HCC [6], which further substantiates the role of

necroptosis in determining liver cancer subtypes. The

study provides a revolutionary insight into how tumor

microenvironment may be shaped by a specific cell death

modality and may eventually regulate lineage commitment

in liver tumorigenesis and thus determine cancer sub-

types, and further investigations are warranted to explore

the role of necroptosis on other types of cancer and the

fundamental mechanisms behind.

Necroptosis in Cancer therapies

Inducing and/or manipulating necroptosis in anti-cancer

therapies represent a promising therapeutic approach for

bypassing acquired or intrinsic apoptosis-resistance, serv-

ing as an alternative way to eliminate apoptosis- resistant

cancer cells. A growing arsenal of compounds and mul-

tiple chemotherapeutic agents have been reported to trig-

ger necroptosis in cancer cells (Table 3).

Natural compounds
Shikonin, which is a naturally occurring naphthoquinone,

was the first reported small molecule to induce necropto-

sis, and shikonin-induced necroptosis was found to bypass

the resistance to cancer drugs mediated by drug trans-

porters or antiapoptotic Bcl-2 proteins in human leukemia

cell lines [138]. Subsequent studies have suggested that

multiple shikonin analogs could also bypass drug resist-

ance via the induction of necroptosis [41]. Fu et al. [100]

reported that in osteosarcoma models, both the size of the

primary tumor and metastasis to the lung were signifi-

cantly reduced by shikonin and that the OS in the model

with lung metastasis was increased. These findings high-

light the profound antitumor role played by shikonin in

both primary and metastatic sites in osteosarcoma, and

this role is likely mediated by RIPK1- and RIPK3-
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dependent necroptosis. Recently, Chen et al. reported that

in addition to inducing apoptosis, shikonin could induce

necroptosis in pancreatic cancer by modulating RIPK1

and RIPK3 expression [103]. Shikonin also reportedly pro-

voked mitochondrial ROS production of triple negative

breast cancer cells, which disrupted breast cancer cells ei-

ther by necroptosis or apoptosis [104]. Analogously, shi-

konin was demonstrated to cause cell death in glioma

cells via the induction of necroptosis [105].

Staurosporine (STS), which is an alkaloid originally ex-

tracted from the bacterium Streptomyces staurosporeus

[139, 140], has long been used in vitro to trigger apoptosis

in many different cell types [106] and has been reported to

induce RIPK1 and MLKL-dependent necroptotic cell death

in leukemia cells when caspase activation is compromised

[107]. The enzymatic role of poly(ADP-ribose)polymerase

(PARP) was found to be dispensable for STS-induced

necroptosis [107].

Neoalbaconol (NA), which is a constituent isolated

from the fungus Albatrellus confluens, was reported

to induces necroptosis by remodeling cellular energy

metabolism in cancer cells [108]. NA has been shown

to initiate necroptosis by promoting the autocrine se-

cretion of TNFα via the regulation of the RIPK/

NF-κB signaling pathway and RIPK3-dependent ROS

production [109].

Table 3 Compounds that induce necroptosis in cancer therapy

Compounds
and Agents

Category Mechanisms of Necroptosis Induction Cancer Type Reference

Shikonin naphthoquinone ROS production; RIPK1/RIPK3 necrosome
formation

leukemia;
osteosarcoma;
pancreatic cancer; glioma

[100, 104,
103, 105]

Staurosporine alkaloid RIPK1/MLKL dependent leukemia [106, 107]

Neoalbaconol albatrellus confluens
extract

autocrine secretion of TNFα; remodeling
cellular energy metabolism

nasopharyngeal carcinoma [108, 109]

Resibufogenin bufadienolide upregulating RIPK3 and MLKL protein colorectal cancer [110]

Radiotherapy radiation inhibition of caspase-8 activation thyroid cancer; adrenocortical cancer;
colorectal cancer cells; glioblastoma

[111]

5-FU chemotherapeutic
agent

TNF-α production; RIPK1 activation colorectal cancer [114]

B12536 polo-like kinase
inhibitor

leading to mitotic catastrophe prostate cancer [115]

Compound C AMP-activated protein
kinase inhibitor

Calpain/Cathepsin-mediated glioma [116]

Sorafenib multikinase inhibitor ROS production; RIPK1 activation multiple myeloma; Hodgkin’s lymphoma [117]

Aurora Kinase A
Inhibitor

Aurora Kinase Inhibitor facilitating necrosome activation pancreatic cancer [120]

TRAIL death receptor ligand TNFR1 signaling; RIPK1/RIPK3
dependent;ROS production

colon cancer; liver cancer; pancreatic cancer [121, 122]

CD95L death receptor ligand CD95 signalling; regulation of cIAPs pancreatic cancer [123]

Oncolytic viruses virus exposure of immunogenic molecules glioma; ovarian cancer [124]

Hemagglutinating
virus

virus calcium-calmodulin kinase II dependent neuroblastoma [127]

Silver
nanoparticles

metal nanoparticle RIPK1/RIPK3/MLKL dependent pancreatic cancer [128]

Selenium
nanoparticles

metal nanoparticle RIPK1 dependent prostate cancer [131]

Smac mimetics IAP antagonist ROS production; cIAP inhibition; TNFα
dependent

leukemia; pancreatic cancer [132]

MG132 and
bortezomib

proteasome inhibitors RHIM-dependent leukemia [135]

Obatoclax Bcl-2 inhibitor Atg5-dependent necrosome assembly on
autophagosomes

rhabdomyosarcoma; ALL [136]

PolyI:C viral dsRNA analog RIPK3 dependent; TLR3/TLR4 activation cervical cancer; colon cancer [92]

ZZW-115 NUPR1 inhibitors inducing mitochondrial
metabolism rupture

pancreatic cancer [137]
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Resibufogenin, a member of bufadienolide family, is a

bioactive compound extracted from toad venom [141]. It

has been shown to exhibit anti-proliferative effects in

multiple cancer cells [142–144]. Recently, Han et al.

[110] have reported that resibufogenin was shown to

suppress the growth and metastasis of colorectal cancer

by inducing RIPK3 necroptosis both in vitro and in vivo

through upregulating RIPK3 and MLKL protein at

Ser358. The study also demonstrated that resibufogenin

may activate three key metabolic enzymes, including

glycogen phosphorylase (PYGL), glutamine synthetase

(GLUL), and glutamate dehydrogenase (GLUDl) in a

RIPK3 dependent manner, and resibufogenin was also

found to suppress liver metastasis of colorectal cancer in

mouse models [110].

Radiotherapy and chemotherapeutic agents
In addition to natural compounds that induce necroptosis,

radiation and chemotherapy can trigger necroptotic cell

death [111–113].

In anaplastic thyroid cancer (ATC) and adrenocortical

cancer (ACC) cell subjected to radiotherapy, in addition to

apoptosis, necroptotic cell death was demonstrated to play

a role in the induction of cell demise [111]. The RIPK1 in-

hibitor Nec-1 and caspase inhibitor zVAD synergistically in-

creased cellular survival as the dosage of radiotherapy

increased, highlighting the crucial role of apoptosis and

necroptosis in the radiation-induced cell death of ATC and

ACC [111]. This study indicated that pronecroptotic agents

might enhance the antitumor effects of radiotherapy while

reducing the dosage of radiation and attendant damage. In

human colorectal cells, radiotherapy in combination with

hyperthermia has been found to trigger necroptosis [113].

Moreover, in glioblastoma, high doses of radiation may in-

hibit the activation of caspase-8, leading to the necrosome

formation, and thus, necroptosis is executed, but in re-

sponse to low-dose radiation, active caspase-8 induces

apoptosis [112].

Regarding chemotherapeutic agents, necroptotic cell

death was identified as a vital mechanism of antitumor

activity mediated by 5-FU. Pan-caspase inhibitors were

found to facilitate TNF-α-dependent necroptosis in-

duced by 5-FU. In an in vivo colorectal cancer xenograft

model, a pan-caspase inhibitor was found to synergize

with 5-FU to suppress tumor growth [114].

Kinase inhibitors
Necroptosis has been found to be involved in the antitu-

mor role of various kinase inhibitors.

Bl2536, which is a small molecule inhibitor of the mi-

totic kinase polo-like kinase 1 (Plk1), was demonstrated

to inhibit Plkl during mitotic progression and lead to mi-

totic catastrophe, resulting in necroptotic cell death in

androgen-insensitive prostate cancer cells [115].

Compound C, which is also named dorsomorphin, is a

small molecule widely used as a selective AMP-activated

protein kinase inhibitor and has been reported to kill gli-

oma cells by multiple mechanisms, including autophagy

and necroptosis [116].

Under conditions of inefficient caspase activation, sorafe-

nib, which is a multikinase inhibitor, induces cell death by

necroptosis in multiple myeloma cells [117]. Furthermore,

the combinatorial treatment of sorafenib and the histone

deacetylase inhibitor Givinostat was shown to synergistic-

ally induce ROS-dependent necroptosis, which mediated

the anti-tumor effects, in relapsed/refractory Hodgkin’s

lymphoma cell line xenografts [118]. In addition, sorafenib

has been suggested to kill cancer cells by necroptosis during

defective or inefficient autophagy, which may cause the ac-

cumulation of p62 protein levels, which may serve as a sig-

naling platform for the initiation of necroptosis when

undergoing cellular damage or stress. In contrast, sorafenib

was demonstrated to protect acute lymphoblastic leukemia

cells from necroptosis induced by multiple necroptosis- in-

ducing drugs [119].

Aurora kinase A inhibitor, whose antitumor activity

has been wide reported [145], was shown to markedly

inhibit PDA growth both in vitro and in vivo via the in-

duction of necroptosis by inhibiting Aurora kinase A

(AURKA), which was found to inhibit the activation of

necrosome [120].

Death receptor ligand
TRAIL (tumor necrosis factor (TNF)-related apoptosis in-

ducing ligand) is a death receptor ligand that reportedly

induces necroptosis instead of apoptosis in colon and liver

cancer cells under conditions of acidic extracellular pH,

and PARP-1 is an active effector downstream of RIPK1/

RIPK3 initiators [121]. TRAIL was also found to induce

necroptosis in human pancreatic cancer cells, which is

regulated by ROS and caspase-9/− 2 [122].

CD95 Ligand (CD95L), which is also known as Fas lig-

and, is a death receptor ligand known to induce apoptosis

upon binding its receptor, i.e., CD95. CD95L has been re-

ported to induce necroptosis upon the downregulation of

cIAPs [123], which polyubiquitinate RIPK1 to steer the

pathway towards NF-κB signaling [14]. A study conducted

by Pietkiewicz et al. demonstrated that the combined

treatment of CD95L and gemcitabine simultaneously in-

duced apoptosis and necroptosis in pancreatic carcinoma

cells and that gemcitabine significantly switched CD95-

induced cell death into necroptosis when combined with

CD95L in pancreatic carcinoma cells [146].

Viruses

Oncolytic viruses (OVs) are novel anticancer agents whose

antitumor activities are attributed to oncolysis and induced

antitumor immunity [147]. OVs induce mostly
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immunogenic cancer cell death (ICD), which includes

necroptosis, through exposure to calreticulin and the

release of ATP, high-mobility group box 1 (HMGB1),

DAMP, and PAMP, which may activate dendritic cells and

incur adaptive antitumor immunity [124, 147]. These vi-

ruses also encode certain genes to regulate ICDs, including

necroptosis, which according to the authors, can be genet-

ically modified to elicit a certain desired modality of ICD in

the cancer cells infected by the viruses [124]. For instance,

in ovarian cancer cells, vaccinia virus can cause necroptosis

[125]. In glioma, ICD induced by newcastle disease virus

occurred in a caspase-independent fashion and was blocked

by nec-1, implicating the contribution of necroptosis [126].

Hemagglutinating virus of Japan-envelope (HVJ-E)

also triggers necroptosis in xenograft model of human

neuroblastoma cells, which is triggered by elevated level

of cytoplasmic calcium activating calcium-calmodulin

kinase II (CaMK II) [127].

Metal nanoparticles
Silver nanoparticles (AgNPs) are metal nanoparticles

known to induce apoptosis in cancer cells [128] that

have gained increasing attention as promising anticancer

agents because of their unique abilities to penetrate cell

membranes and easily cross biological barriers [129,

130]. According to a study conducted by Zielinska et al.,

in PANC-1 cells, AgNPs could induce both necroptosis

and apoptosis and substantially increase the levels of

both the tumor suppressor p53 protein and proteins re-

lated to necroptosis and autophagy, including RIP-1,

RIP-3, MLKL and LC3-II. AgNPs were found to inhibit

the proliferation and decrease the viability of PANC-1

cells; moreover, pancreatic cancer cells were markedly

more sensitive than nontumor pancreatic cells to

AgNP-induced cytotoxicity [129].

Selenium nanoparticles (SeNPs) were found to induce

ROS-mediated necroptosis in a prostate adenocarcinoma

cell line, which was observed to be dependent on RIP1

but was found not to require RIP3 and MLKL activation

and, thus, independent of necrosome formation [131].

Other metal nanoparticles, such as ZnO, have also

been demonstrated to induce necroptosis in cancer cells,

mostly leading to increased levels of ROS [148, 149].

Other necroptosis inducers
Smac mimetics

Smac mimetics are small molecule mimics of second mito-

chondrial activator of caspases (Smac), which is an en-

dogenous protein that promotes apoptosis by inhibiting

cIAPs [19]. Smac mimetics have been recognized as emer-

ging anticancer agents [150]. Similar to shikonin, a Smac

mimetic was reported to permit cells to bypass apoptosis

resistance via the necroptotic pathway [132]. Laukens et al.

demonstrated that in leukemia cells, a Smac mimetic

augmented TNFα-induced cell death via necroptosis in the

absence of FADD or caspase-8 in apoptosis-resistant cells

or via apoptosis in apoptosis-proficient cells, suggesting

that Smac mimetics may be developed as novel chemother-

apeutics to promote necroptosis as an alternative pro-

grammed cell death process to overcome apoptosis

resistance [132]. Furthermore, ROS were found to be re-

quired for the regulation of Smac mimetic/TNFα-induced

necroptotic signaling, specifically in the enhancement of

RIPK1/RIPK3 necrosome stabilization when stimulated by

a Smac mimetic/TNFα [133]. Recently, Hannes et al. [134]

reported that the Smac mimetic BV6 alone or combined

with TNFα could induce necroptosis in pancreatic cancer

cells in which apoptosis was blocked by inducing the for-

mation of the RIPK1/RIPK3 necrosome.

Proteasome inhibitors

The ubiquitin-proteasome system is the major mechanism

by which cells selectively degrade unneeded or damaged

cellular proteins by proteolysis and thus, has an essential

role in many cellular processes including cell cycle and cell

demise [151]. Proteasome inhibitors have therefore been

deemed as a promising anti-cancer agent clinically. For in-

stance, a classic proteasome inhibitor, bortezomib, has been

a success in treating multiple myeloma [152]. Recently,

Moriwaki et al. [135] reported that proteasome inhibitors

MG132 and bortezomib can trigger the RIPK3/MLKL

dependent necroptosis in both fibroblasts in mouse models

and human leukemia cells. Notably, proteasome- inhibitor-

induced necroptotic pathway is independent of caspase in-

hibition, yet still requires intact RIP homotypic interaction

motif (RHIM) [135]. The study has indicated that the

ubiquitin-proteasome system may be a potential regulatory

pathway for RIPK3-dependent necroptosis and that prote-

asome inhibitors can be developed as an anti-cancer agent

targeting necroptotic pathway.

Obatoclax

Obatoclax (GX15–070), which is a small-molecule Bcl-2

inhibitor of antiapoptotic Bcl-2 proteins, was recently re-

ported to trigger necroptosis by assembling the necro-

some onto autophagosomes; this process links the

induction of autophagy to cell death via necroptosis [136].

PolyI:C

Polyinosinic:polycytidylic acid (PolyI:C), which is a viral

dsRNA analog, was reported to trigger necroptosis in cer-

vical cancer, which strictly depended on the expression of

RIPK3. Necroptotic cervical cancer cells produce IL-1α,

which was essential for activating DCs to release IL-12,

which is a cytokine crucial for antitumor activities [92]. In

colon carcinoma cell lines, in addition to inducing im-

mune or macrophage activation, PolyI:C can trigger

necroptosis alone or combined with the pan-caspase
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inhibitor zVAD, supporting tumor retardation mediated

by immune effectors in vivo [57].

NUPR1 inhibitors

NUPRI1 is a member of intrinsically disordered proteins

(IDPs), which engages in various cancer-related pro-

cesses including cell-cycle regulation, apoptosis [153],

cancer metastasis [154], DNA repair response [155] and

etc. It has recently drawn remarkable attention because

it has been shown to promote progression and develop-

ment of pancreatic cancer [137], making it a promising

anti-cancer therapeutic target. A newly synthesized

NUPR1 inhibitor, named ZZW-115 was reported to in-

hibit the growth pancreatic xenografted tumors in vivo

dose-dependently via the induction of necroptosis by in-

ducing mitochondrial metabolism rupture, and there

was no evidence of off-target effects [156]. The study

suggested that ZZW-115 is a promising therapeutic

agent for treating various cancers due to its effectiveness

in targeting NUPR1.

Selectivity of Pronecroptotic therapy

Since necroptosis may also occur under various physio-

logical conditions, one major concern about pronecropto-

tic therapy is whether necroptosis can be selectively

induced in cancer cells yet cause no harm to normal cells.

In fact, multiple agents and chemotherapeutic drugs that

have been granted for marketing or in clinical trials have

been recognized as selective necroptosis inducer in cancer

cells in specific cancer types, including shikonin and its

analogs [41, 157], TRAIL [16], obatoclax [158], metal

nanoparticles [148] et cetera. The safety of those com-

pounds and drugs in vivo have been verified, suggesting

triggering necroptosis in cancer cells is not necessarily in-

jurious to normal cells [159]. However, to further improve

the selectivity of the agents and drugs targeting necropto-

sis, future therapeutics can combine necroptosis inducers

to tumor-guiding agents or tumor-targeting antibodies.

Conclusion and perspectives
Necroptosis is a necrotic programmed cell death with po-

tent immunogenicity that engages in complex interplay with

autophagy and apoptosis. Accumulating evidence suggests

that necroptosis plays a vital role in the prognosis of cancer

patients, cancer progression and metastasis, cancer immu-

nosurveillance and cancer subtypes. Targeting necroptosis

via various drugs, compounds and agents inducing or ma-

nipulating the necroptotic pathway has also emerged as a

novel approach for bypassing apoptosis- resistance and sup-

porting antitumor immunity in cancer therapy.

The general downregulation of the expression of key

proteins in the necroptotic pathway suggested that cancer

cells may also evade necroptosis to survive; however, in

some types of cancer, such as PDA, the expression level of

key mediators has been shown to be elevated. Necroptosis

can induce robust immune responses through the release

of DAMPs and various immunoregulatory cytokines that

activate DCs and enhance antitumor immunity; however,

the recruited inflammatory cells may foster angiogenesis

and cancer invasiveness and generate an immunosuppres-

sive tumor microenvironment. Necroptosis also reportedly

promotes oncogenesis and cancer metastasis despite evi-

dence of its antimetastatic role in cancer. In addition,

necroptosis can direct lineage commitment to determine

the cancer subtypes in certain cancers. A plethora of com-

pounds and agents have been found to trigger or manipu-

late necroptosis and exhibit promising antitumor efficacy.

However, most studies investigating the therapeutics tar-

geting necroptosis are based on in vitro experiments and/

or animal models, thus the feasibility of the clinical use of

these compounds and anticancer agents still needs to be

assessed in vivo and clinical trials. Further, the off-target

effects of the necroptosis-targeting therapeutics should be

scrutinized, and novel approaches that conjugate necrop-

tosis inducers and tumor-guiding agents should be devel-

oped to enhance safety and selectivity.

In conclusion, the exact role of necroptosis in cancer

remains to be fully elucidated. Although various reports

support the antitumor functions of necroptosis, mount-

ing evidence indicates that necroptosis also promotes

tumor progression and metastasis, suggesting that the

specific role of the necroptosis pathway in cancer should

be contextualized in different types of cancers. The

current knowledge and evidence are inadequate to deter-

mine whether necroptosis generally promotes or sup-

presses tumor cell growth and/or cancer metastasis. The

diametrical conclusions drawn from different studies in-

vestigating the relevance of necroptosis in cancer may

be attributed to the lack of specific markers of necropto-

sis, the pleiotropic role of necroptotic mediators, and

the distinct tumor microenvironment of each type of

cancer. Consequently, the discovery of a specific necrop-

tosis marker for the identification of necroptosis, a thor-

ough investigation of the molecular mechanism and

physiological and pathological roles of necroptosis and a

clarification of its crosstalk with other cell death ma-

chineries and its interaction with the immune system

are urgently needed to decipher the mystery of the rele-

vance of necroptosis in cancer and further develop anti-

tumor therapeutics targeting.
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