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Transcriptional regulation is essential for the correct functioning of cells during

development and in postnatal life. The basic Helix-loop-Helix (bHLH) superfamily of

transcription factors is well conserved throughout evolution and plays critical roles in

tissue development and tissue maintenance. A subgroup of this family, called neural

lineage bHLH factors, is critical in the development and function of the central nervous

system. In this review, we will focus on the function of one subgroup of neural lineage

bHLH factors, the Neurod family. The Neurod family has four members: Neurod1,

Neurod2, Neurod4, and Neurod6. Available evidence shows that these four factors are

key during the development of the cerebral cortex but also in other regions of the central

nervous system, such as the cerebellum, the brainstem, and the spinal cord. We will

also discuss recent reports that link the dysfunction of these transcription factors to

neurological disorders in humans.
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INTRODUCTION

The interest to understand the molecular mechanisms that generate our central nervous system
has never been greater, as the intensive work of clinicians, neurologists, and developmental
biologists demonstrate that several naturally occurring neurological disorders originate from
deficits impairing brain development in humans (Ross and Walsh, 2001; Subramanian et al.,
2019). This can be particularly seen in disorders affecting the development of the cerebral cortex,
which are frequently associated with seizures both in childhood and in adult life (Subramanian
et al., 2019). Furthermore, cognitive disorders ranging from mild to severe intellectual disability
and autism are also concomitant features of cortical neurodevelopmental disorders (Guerrini and
Dobyns, 2014). The advent of novel and powerful human genetics is greatly contributing to the
identification of rare and common disease-causing variants disrupting the normal development
of the nervous system (Ku et al., 2010; McCarthy and MacArthur, 2017; Niemi et al., 2018;
Momozawa and Mizukami, 2021). Many of these underlie the elementary mechanisms acting on
neurogenesis, neuronal differentiation, fate acquisition, dendritogenesis, axonal navigation, and
synapse formation (Cardoso et al., 2019; Wang et al., 2019; Parenti et al., 2020).

Development of the central nervous system in humans, as in many other species,
is an elaborated process that begins during an early fetal stage, for instance in the
third gestational week in humans or by embryonic day 11 in mice (Bayer and Altman,
2007). It initiates with the formation of the neural tube and the differentiation and
specification of neural progenitor cells that, subsequently, lead to the genesis of differentiated
neurons in a process called neurogenesis that culminates in the early postnatal life
in humans, but can span throughout the adult life in other species, such as rodents
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(Altman and Das, 1965; Johnson, 2001; Bayer and Altman,
2007; Stiles and Jernigan, 2010; Silbereis et al., 2016; Sorrells
et al., 2018; Buffalo et al., 2019; Petrik and Encinas, 2019).
The specification of neural progenitor cells and their activation
to self-renew and/or to differentiate in more committed
progenitors and neurons is mediated by extrinsic and intrinsic
molecular mechanisms (Götz and Sommer, 2005; Urbán and
Guillemot, 2014; Götz et al., 2016; Oproescu et al., 2021).
The intrinsic mechanisms that direct neural progenitor cell
progression and differentiation rely on the coordinated function
of multiple transcription factors that determine their identity
and, simultaneously, the suppression of their progenitor cell
programs (Schuurmans et al., 2004; Britz et al., 2006; Hevner
et al., 2006; Davidson, 2010; Hodge and Hevner, 2011; Busskamp
et al., 2014; Ware et al., 2016; Mall et al., 2017; Lee et al., 2019).

In the developing nervous system, proneural basic Helix-
loop-Helix (bHLH) transcription factors are master regulators
of cell proliferation and key in neuronal differentiation and
specification (Dokucu et al., 1996; Sommer et al., 1996; Bertrand
et al., 2002). Among these factors, the Neurod family stands as
a critical regulator of neuronal progenitor cell differentiation
and neuronal specification in the cerebral cortex, as well as in
other regions of the nervous system such as the cerebellum, the
brainstem, and the spinal cord. The Neurod family is composed
of four members, Neurod1, Neurod2, Neurod4, and Neurod6.

In this review, we will discuss on the function of bHLH
factors in neuronal development and particularly focus on
the Neurod family in the development of cerebral cortex
(including neuronal fate specification, dendritogenesis, and
axonal navigation), as well as on the function of these factors in
the development of other areas of the central nervous system.
In addition, we will discuss Neurod disease-causing variants
found in patients presenting with neurological disorders, such as
Alzheimer’s disease.

bHLH TRANSCRIPTION FACTORS AND
THE NEUROD FAMILY

The bHLH superfamily of transcription factors contains
numerous genes crucial for the regulation of gene expression in
most eukaryotic organisms. These factors are classified according
to the similarities in their protein structure and the characteristic
presence of a basic domain that directly binds to chromatin as
well as a Helix-loop-Helix (HLH) domain that comprises of a
non-conserved loop region connecting to alpha-helices (Chien
et al., 1996; Bertrand et al., 2002). The bHLH domain was first
identified by Murre and colleagues using early, but sophisticated,
oligonucleotide screening procedures on lgt11 expression clones
(Murre et al., 1989). The protein sequence characteristic of the
bHLH domain consists of about 60–100 amino acids. bHLH
factors are known to heterodimerize with other bHLH factors,
using their non-conserved loop region, to form a functional DNA
binding unit. Upon forming heterodimers, bHLH transcription
factors are capable to bind to E-box motifs on chromatin,
which display the consensus sequence CANNTG (Longo et al.,
2008). The central ‘‘NN’’ and flanking nucleotides are believed

to confer the DNA-binding specificity shown by bHLH proteins
(Ellenberger et al., 1994; Bertrand et al., 2002).

The bHLH superfamily of transcription factors is well
conserved throughout evolution and was first identified in
animals, although recent investigations have started to reveal
their presence and function in other organisms that range from
yeast to plants (Murre et al., 1994; Zhang T. et al., 2018).
Phylogenetic analysis of the bHLH superfamily using seven
different species (human, mouse, rat, worm, fly, yeast, and plant
Arabidopsis) has revealed over 600 members belonging to this
family (Stevens et al., 2008). Unsurprisingly, the number of
bHLH genes increases with the complexity of the organism, for
instance, the smaller number of bHLH genes, 38, is found in
Caenorhabditis elegans, around 58 in Drosophila melanogaster,
117 in theMusmusculus, and approximately 130 inHomo sapiens

(Ledent et al., 2002; Skinner et al., 2010).
In 1989,Murrey and others first classified bHLH transcription

factors according to their expression pattern into two classes: a
class A (with ubiquitous expression) and a class B (with tissue-
specific expression; Murre et al., 1989). This classification has
been further expanded using large–scale phylogenetic analyses
comparing the bHLH domains (Sun and Baltimore, 1991;
Atchley and Fitch, 1997; Meredith and Johnson, 2000; Dennis
et al., 2019). A more recent phylogenetic classification done
by Skinner and colleagues has related bHLH factors into
five distinct clades, in which clade A contains neural lineage
genes such as Neurod, Neurog1, Ascl1, and Atoh1; or clade C
that contains muscle-specific genes such as Myod1 or Myf5

(Skinner et al., 2010).
Neural lineage bHLH transcription factors participate in

the regulation of cell survival, differentiation, migration,
and fate specification during neural development and in
postnatal life. These factors oftentimes have overlapping
functions but can be further subdivided into: (i) proneural or
determination factors (usually expressed in progenitor cells)
and (ii) differentiation factors [predominantly expressed in
postmitotic neurons (Bertrand et al., 2002)].

(i) Proneural factors. They represent a small subset of the
neural lineage bHLH factors which are preferentially expressed in
multipotent precursor cells. They control and direct progenitor
cell decisions as well as the cellular fate choices to undergo
glial or neuronal differentiation. An interesting trait of these
transcription factors is their pioneering function to remodel
chromatin and their capacity to reprogram non-neuronal
differentiated cells into neurons (Wapinski et al., 2013, 2017;
Pataskar et al., 2016; Guillemot and Hassan, 2017). Members of
this group include the genesNeurod1,Neussrod4,Ascl1,Neurog1,
and Neurog2.

(ii) Differentiation factors. These genes encompass most
of the neural lineage bHLH transcription factors and are
predominantly expressed by differentiated neurons, in
which they regulate fate specification and neuronal identity
maintenance. Members of this group include Neurod1, Neurod2,
Neurod6, Bhlhe22.

The Neurod family contains four closely related proteins:
Neurod1, Neurod2, Neurod4, and Neurod6. The expression
pattern of these genes is highly overlapping but not identical
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FIGURE 1 | Developmental expression of the Neurod family during cortical development of mice. (A) Schematic representation of the cortical development in mice.

(Left) During early cortical development, neural progenitor cells (light green, also called radial glial cells) located in the dorsal ventricular zone (VZ) make early

decisions as to self-renew or differentiate into early born neurons (light blue). (Middle) As cortical development progress, neuronal progenitor cells increase their

choices and can then self-renew or differentiate into more committed progenitors (light orange) that populate an emerging subventricular zone (SVZ) or into

differentiated neurons (light blue). Upon differentiation, neurons radially migrate throughout an intermediate zone (IZ) in order to populate the developing cortical plate

(gray areas), using radial glial fibers as a scaffold. (Right) According to the time of birth, cortical pyramidal neurons (dark blue) settle into their appropriate cortical layer

and start the elaboration of dendritic trees and the elongation or their axonal processes (see text). (B) Schematic display of the expression pattern exhibited by the

different members of the Neurod family during cortical development (see text). (C) Table summarizing the known functions of the different members of the Neurod

family during cortical development (see text). Panel (A) is inspired from Guo et al. (2015).

in the developing cerebral cortex (Figure 1). Expression of
these genes is abundantly present in the neuroepithelium of
the dorsal telencephalon in early development and is sustained
in the adult neocortex, hippocampus, and cerebellum (Schwab
et al., 1998). The expression of Neurod1 can be first detected
around embryonic day 12 in the dorsal ventricular zone (VZ) of
mice (Bormuth et al., 2013). In the developing cerebral cortex,
Neurod1 is also expressed by mitotic and early-postmitotic
neuronal cells that reside in the subventricular zone (SVZ),
which contains transit-amplifying progenitors that contribute
to the generation of most of the excitatory neurons that form
the mature cortex. In the postnatal life, Neurod1 expression is
retained in the cerebral cortex, particularly in most excitatory
pyramidal neurons that form the upper-most layers of the cortex
(Lee et al., 1995; Bormuth et al., 2013; D’Amico et al., 2013).
Neurod4 expression has been reported to be confined to the
ventricular zone of the dorsal telencephalon during development
and can be detected around embryonic day 12/13 inmice (Mattar
et al., 2008). The other two members of the Neurod family,

Neurod2 and Neurod6, display a highly overlapping expression
pattern that appears in the mouse cerebral cortex around
embryonic day 12 (Bormuth et al., 2013). Interestingly, both
transcription factors are abundantly expressed by postmitotic
pyramidal neurons during embryonic development, albeit their
expression levels decline in the postnatal life. Neurod6 seems
to be selectively expressed in a subset of pyramidal neurons,
specifically those residing in the deeper layers of the adult
mouse cortex; whereas Neurod2 is expressed by all cortical
pyramidal neurons irrespectively of their laminar position
(Bormuth et al., 2013).

NEUROD FAMILY IN CORTICAL
DEVELOPMENT AND CORTICAL
FUNCTION

Pyramidal neurons (also known as cortical projection cells)
are generated from progenitor cells located in the ventricular
and subventricular zone of the dorsal telencephalon (see
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Figure 1; reviewed in Götz and Sommer, 2005; Elston and
Fujita, 2014; Agirman et al., 2017). Soon after leaving the
cell cycle, pyramidal neurons initiate a radial migration using
the fibers of neighboring radial glial cells as a scaffold and
cross an intermediate zone (IZ) on their way to reach their
final destination within the developing cortex (reviewed in
Rakic, 1995; Kriegstein and Noctor, 2004; He et al., 2015).
After completing radial migration, pyramidal neurons settle in
the cortical plate (CP) and undergo terminal differentiation
(Gutierrez et al., 2004; Bianchi et al., 2013; Elston and Fujita,
2014). An interesting trait in cortical development is that the
distinct projection neurons that form the mature cerebral cortex
do not develop simultaneously but rather they are generated
and migrate in a temporal order to populate the cortical
plate in an inside-first and outside-last manner (reviewed in
Angevine and Sidman, 1961; Rakic, 1974; Noctor et al., 2001;
Buchsbaum and Cappello, 2019). This means that neurons
residing in the deepest layers of the mature cerebral cortex are
generated first during development and settle in the deepest
part of the developing cortex. After pyramidal neurons form
the deep layers of the cortex, superficially located projection
neurons are generated and radially migrate to populate their
corresponding upper layers (Rakic, 1974, 1995; Noctor et al.,
2001; Kriegstein and Noctor, 2004; He et al., 2015). Once
in the cortical plate, pyramidal neurons initiate dendritic
arborizations and the projection of their axonal processes in a
stereotyped manner, that is, they start with their axon outgrowth,
fasciculation, pathfinding, and targeting of their appropriated
neuronal partners (Figure 1).

bHLH genes cooperate to control transcriptional programs
that select different aspects of neural progenitor cell biology
and effectively determine neuron subtype identity. Proneural
bHLH genes in the telencephalon, such as Neurog1 and
Neurog2, activate transcriptional cascades of gene expression in
progenitor cells that eventually lead to their terminal neuronal
differentiation (Ge et al., 2006). Neurog1 and Neurog2 also
contribute with the dorsalization of the telencephalon by
suppressing the ventralization factor Ascl1 (Fode et al.,
2000). The expression of Neurog 1 and Neurog2 is primarily
restricted to the dorsal ventricular zone, although a few
Neurog2 expressing cells can be observed outside this
area (Ge et al., 2006). An important instructive function
of Neurog2 is to promote a cortical neuron identity in
differentiating cells of the dorsal telencephalon. Neurod4 is
a known target of Neurog2 and dimerizes with it, forming
Neurog2/Neurod4 heterodimers (Mattar et al., 2008).
Neurog2/Neurod4 heterodimers accelerate the expression
of particular transcriptional programs in the cortex that
regulate neurogenesis. Mattar et al. (2008) have also shown that
NeuroD4 and Neurog2 can independently act to regulate gene
expression, albeit with a temporal delay. Similarly, Neurod4 can
also form heterodimers with Neurog1 which are required
for habenular neurogenesis. In the habenula, Neurod4 and
Neurog1 depend on Pax6 expression downstream of Sonic
hedgehog (Halluin et al., 2016).

Interestingly, the phosphorylation of Neurod4 limits its
ability to drive neuronal differentiation during neurogenesis,

which implies that post-transcriptional modifications finely tune
the activity of bHLH transcription factors, such as Neurod4
(Hardwick and Philpott, 2015; Hardwick et al., 2019). In
this context, a phospho-mutant Neurod4 increases its protein
stability and enhances its chromatin binding when compared
to wild-type Neurod4, which results in a transcriptional
up-regulation of a wide range of target genes (Hardwick and
Philpott, 2015). Lastly, Neurod4 has also been reported to be
capable to reprogram human and mouse astrocytes, and when it
is co-expressed with Insm1 it is capable of driving glutamatergic
neuron maturation (Masserdotti et al., 2015).

In the developing neocortex, Neurod1 has been shown
to promote terminal neuronal differentiation in progenitor
cells, although there exists a hierarchy in the sequential
activation of transcription factors that regulate the transition
from precursor cells to differentiated pyramidal neurons
(Hevner et al., 2001, 2006; Muzio et al., 2002a,b; Hodge
et al., 2008; Hodge and Hevner, 2011). Indeed, the sequential
expression of the transcription factors Pax6 → Neurog2 →

Tbr2 → Neurod1 → Tbr1 correlates with the transition
from primary progenitor cells into intermediate progenitors
and ultimately into the generation of newborn glutamatergic
pyramidal neurons. Outside the cerebral cortex, Neurod1 has
also been shown to induce terminal neuronal differentiation. For
instance, Boutin et al. (2010), using the olfactory periglomerular
neuron lineage in vitro, showed that expression of Neurod1

alone suffices to induce terminal differentiation in olfactory
periglomerular progenitor cells (Boutin et al., 2010). In vivo,
Neurod1 overexpression in the periventricular region leads to
the rapid appearance of postmitotic cells with morphological
and molecular characteristics of mature neurons both in the
subventricular zone and rostral migratory stream (Boutin et al.,
2010). The function of Neurod1 in promoting terminal neuronal
differentiation seems to be conserved in evolution and has
been reported even in lower organisms like the worm C. teleta

(Sur et al., 2017). Environmental enrichment also seems to
induce Neurod1 expression in the forebrain and to enhance
neuronal activity. For example, studies in the juvenile Atlantic
salmon (Salmo salar) showed that environmental enrichment
upregulates Neurod1 expression in their forebrain, which
greatly improves their learning abilities (Salvanes et al., 2013).
In mice, environmental enrichment leads to an increase in
hippocampal volume and enhances dorsal-ventral differences in
DNAmethylation, including binding sites recognize by Neurod1,
which seem to greatly promote adult neurogenesis (Zhang T.-Y.
et al., 2018). In adult humans, NEUROD1 expression increases
in the cerebral cortex after a traumatic injury, which might
indicate a protectivemechanism play byNeurod1 in the postnatal
cerebral cortex (Zheng et al., 2013).

Neurog1 and Neurog2 play an important function in
suppressing RhoA expression just as cortical progenitor cells are
about to leave the cell cycle, and this suppression is maintained
in postmitotic neurons by the direct action of Neurod1 (Ge et al.,
2006). The suppression of RhoA is critical for the migration
of pyramidal neurons into the cortical plate (Ge et al., 2006).
On the way to the cortical plate, pyramidal neurons also
require Reelin, a protein secreted by the Cajal-Retzius cells
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that locate in the superficial marginal zone of the developing
cortex. Neurod2 has been shown to control pyramidal neuron
migration and Reelin signaling by direct regulation of Cdk5r1,
Lrp8 and the transcription factor Cux1, which in turn controls
the differentiation of the upper layer (2/3 and 4) neurons
(Bayam et al., 2015).

Neurod2 and Neurod6 are essential regulators of axonal
navigation and axonal fasciculation in the mouse neocortex.
For instance, the anterior commissure and the corpus callosum
fiber tracts, which communicate the two cerebral hemispheres,
are completely absent in Neurod2 and Neurod6 double mutant
mice (Bormuth et al., 2013). Detailed inspections in Neurod2

and Neurod6 double mutant mice showed that callosal axons
defasciculate in the subventricular zone during development
and follow random trajectories into the ipsilateral cortex
rather than growing toward the midline to contralaterally
decussate (Bormuth et al., 2013). These axonal defects have
been correlated with the dysregulation of the cell adhesion
protein Cntn2 and the axonal receptor Robo1 (Bormuth et al.,
2013). Furthermore, Neurod2 mutant mice also exhibit deficits
in their thalamocortical projections to different cortical areas,
such as the somatosensory barrel cortex (Ince-Dunn et al.,
2006). Furthermore, the ablation of Neurod2 and Neurod6 also
results in reduced numbers of functional glutamatergic synapses
and, consequently, in a diminished excitatory cortical network
(Bormuth et al., 2013).

The development of dendrites and synapses is a fundamental
process in the establishment of neuronal polarity and
connectivity. In this regard, Neurod2 has been shown to regulate
the structural and functional maturation of the hippocampal
mossy fiber synapses via the regulation of the synaptic scaffolding
protein PSD95 (Wilke et al., 2012). Neurod1 and Neurod2 can
abrogate GABAergic differentiation directed by Ascl1, a
well-known bHLH transcription factor critical for GABAergic
neuron development. Furthermore, the forced expression
of Neurod2 in progenitor cells of the ventral telencephalon is
sufficient to prevent their normal differentiation into GABAergic
neurons (Roybon et al., 2010). In addition, Neurod2 regulates
calcium signaling and homeostasis of mature neurons by
controlling the expression of the Stim1 gene that encodes for
an ER calcium sensor (Guner et al., 2017). Abnormal dendritic
spine remodeling and turnover from postnatal day 30, and
onwards, was reported in Neurod2 mutant mice, particularly in
apical tuft dendrites of pyramidal layer 5 projection neurons of
the somatosensory cortex (Runge et al., 2020a). Thus, Neurod2 is
a nexus in the gene network that controls spine turnover in the
postnatal cortex (Runge et al., 2020b).

Neural progenitor cells in the dorsal ventricular zone of
the telencephalon also express Neurod6, some of which move
into the subventricular zone and undergo multiple rounds
of symmetrical and/or asymmetrical cell divisions to produce
the set of neurons that reside in the upper cortical layers.
Neurod6 positive progenitor cells in the subventricular zone
are committed to generate glutamatergic neurons and might
have evolved to expand the number of pyramidal neurons in
the mammalian forebrain (Wu et al., 2005). Neurod6 has been
shown to be central in the mitochondrial biogenesis during

the early stages of neuronal differentiation. At these stages,
Neurod6 appears to stimulate a maximal mitochondria mass
accumulation which correlates with the onset of differentiation
and lamellipodia formation in the axonal growth cone, as
well as at the regions of axonal branching. This seems to be
achieved by the transcriptional regulation of Neurod6 on genes
encoding for cytoskeletal proteins, mitochondrial trafficking,
regulators of membrane potential, and mitochondria chaperones
(Uittenbogaard and Chiaramello, 2002, 2004, 2014; Kathleen
Baxter et al., 2009; Uittenbogaard et al., 2010a,b; Baxter et al.,
2012).

Neurod6might also confer cellular tolerance tomitochondrial
stressors and oxidative stress, which is critical to prevent
neurodevelopmental disorders and neurodegenerative diseases,
such as the autism spectrum disorder or Parkinson’s disease.
The long–term consequences of early life stress on adult
pathological states are associated with significant changes
in DNA methylation and deregulation of miRNAs. miR-

30a-5p regulates hundreds of downstream targets, including
Neurod6, which may represent an important biological signature
associated with the risk to develop psychiatric disorders as
a consequence of exposure to early life adversities (Cattaneo
et al., 2020). Neurod1 has also been shown to be critical for
neuronal plasticity and increased levels of Neurod1 expression
are triggered in the murine hippocampus after chronic or mild
stress (Boulle et al., 2014). During neuronal differentiation, DNA
demethylation-reprograming events are also associated with
Neurod2 genome-wide binding (Hahn et al., 2019). In particular,
it has been shown that highly methylated genomic regions in
neuronal progenitor cells become demethylated after the onset of
Neurod2 expression, and this coincides with the transition from
proliferative progenitor state to differentiated neurons (Hahn
et al., 2019). Furthermore, it has also been recently reported that
maternal hyperglycemia increases H3K14 acetylation levels at
Neurog1 and Neurod2 binding sites. Enhanced and premature
expression of Neurog1 and Neurod2 eventually leads to an
earlier differentiation of progenitor cells, which accelerates
the genesis of newborn neurons in the cerebral cortex (Ji
et al., 2019). Therefore, Neurod factors appear to display a
pioneer function in remodeling chromatin. In keeping with
this, Pataskar et al. (2016) recently demonstrated the pioneer
function of Neurod1 in chromatin remodeling (Pataskar et al.,
2016). The pioneer function of Neurod1 seems to be responsible
for the potentiation of mineralocorticoid receptor-mediated
transcription in the hippocampus, which has been suggested to
act as a neuronal protective mechanism against the development
of psychopathologies and, in particular, mood disorders (van
Weert et al., 2019). In addition, Neurod1 has also been shown
to reprogram striatal non-reactive astrocytes into neurons, albeit
the reprogramming function of Neurod1 seems to be less
efficient in cortical non-reactive astrocytes (Agirman et al., 2017;
Liu et al., 2020).

Over two decades ago, Schwab et al. demonstrated that
Neurod1 and Neurod6 are required for terminal neuronal
differentiation in the hippocampus (Schwab et al., 1998,
2000). In Neurod1 and Neurod6 double mutant mice, the
granule cells that are destined to populate the hippocampal
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dentate gyrus can be generated, but they fail to properly
mature and display several phenotypes that include the lack
of normal sodium currents, small dendritic arborization, and
alterations of the entorhinal and commissural axonal projections
(Schwab et al., 2000). Neurod1 has also been reported to play
key functions in the survival and differentiation of newborn
neurons in the subgranular and subventricular zones of the
adult hippocampus (Gao et al., 2009). In keeping with this data,
Roybon and others have also reported a key regulatory role for
the Neurog2 and Neurod1 heterodimer complexes in controlling
neuronal commitment and hippocampal neuroblast formation
both in embryonic and in postnatal neurogenesis (Roybon et al.,
2009). Specifically, Neurog2 and Neurod1 heterodimers control
progenitor cell production and the amplification of granule
neuron progenitors, but they are not required for the acquisition
of their granule cell identity (Roybon et al., 2009). In the
hippocampus, Neurod1 seems to induce the cell cycle exit of
progenitor cells and to promote a rapid neuronal maturation
of their progeny, maturation that seems to be reinforced by the
expression of Neurod2 in differentiated hippocampal neurons
(Roybon et al., 2009).

NEUROD FAMILY IN THE DEVELOPMENT
OF THE POSTERIOR NEURAL TUBE

The Neurod family also plays critical functions in the
development of the posterior nervous system, that is the
cerebellum, brainstem, and the spinal cord. After the onset
of neural induction, the brainstem and spinal cord adopt
their posterior identity by responding to instructive patterning
signals generated from specialized cell centers located within the
neural tube as wells as in surrounding tissues. These patterning
centers produce fibroblast growth factors, bone morphogenetic
proteins, retinoids, and Wnt proteins, which are capable to
diffuse over long distances to carry out their instructive function
(Doniach, 1995; Lumsden and Krumlauf, 1996; Stern, 2005). The
most salient outcome of this early patterning is the generation
of distinct anterior-posterior segments characterized by and
overlapping as well as differential expression of transcription
factors, predominantly members of the Hox family (Philippidou
and Dasen, 2013). In the brainstem, for example, seven units
called rhombomeres (rhombomere 1–7) develop, whereas four
units (cervical, thoracic, lumbar, and sacral) are specified in
the spinal cord of humans and mice (Trainor and Krumlauf,
2000). Each rhombomeric and spinal cord unit is further
patterned along their dorsoventral axis by the action of diffusible
morphogens emanating from a dorsal and a ventral group of
specialized cells that act as organizers, the roof, and floor plate.
These two organizers antagonistically act and exert their function
via the secretion of Sonic hedgehog (by the floor plate) and
bone morphogenic proteins and Wnt proteins (by the roof plate;
Roelink et al., 1995; Liem et al., 1997; Ulloa and Marti, 2010).
These signals diffuse from the roof and floor plate forming
concentration gradients that differentially act upon progenitor
cells located at different distances from the signal source and
along the dorsal-ventral axis of the neural tube. It is thus the
spatial position of progenitor cells within the neural tube that

determines their response to morphogenic signals. Progenitor
cells then respond to these signals, in a dose-dependent manner,
and differentially express particular sets of transcription factors,
among these the Neurod family and several other bHLH factors.

This is the case of the cerebellum that develops from the
dorsal part of rhombomere 1 (known as the cerebellar anlage),
which directly receives instructive signals from the roof plate
(Millet et al., 1996; Broccoli et al., 1999; Chizhikov et al., 2006;
Butts et al., 2014a,b). The cerebellar anlage contains two distinct
germinal zones, the ventricular zone and the rhombic lip, which
produce all GABAergic and glutamatergic cerebellar neurons,
respectively (Hallonet et al., 1990; Alder et al., 1996; Wingate and
Hatten, 1999; Hoshino et al., 2005; Millen et al., 2014; Yamada
et al., 2014). Rhombic lip progenitor cells generate three distinct
neuronal populations in a stereotyped temporal order. The first
generation of glutamatergic neurons occurs between embryonic
days 10.5 and 13.5 (in mice), and during this period deep
cerebellar neurons are generated. A subsequent generation of
glutamatergic neurons occurs between embryonic day 13.5 and
birth, throughout this time external granular cell layer cells
become specified, these cells are the precursors of the granule
cells that develop in the early postnatal life. Lastly, unipolar brush
cells become specified from the rhombic lip between embryonic
day 15.5 and the first day of postnatal life (Ben-Arie et al., 1997;
Gazit et al., 2004; Machold and Fishell, 2005; Englund et al., 2006;
Fink et al., 2006; Machold et al., 2011; Yamada et al., 2014).

The generation of deep cerebellar neurons seems to largely
depend on the action of the bHLH factor Olig3 (Lowenstein
et al., 2021), whereas the production of external granular layer
cells and unipolar brush cells is regulated by the bHLH factor
Atoh1 (Ben-Arie et al., 1997; Gazit et al., 2004; Machold and
Fishell, 2005; Wang et al., 2005). Neurod1 has long been
known to play a critical role in the differentiation of granule
cells, mainly in postnatal life (Gao et al., 2009). Deletion
of Neurod1 greatly disrupts differentiation of these cells by
prolonging the proliferation of their external granular layer
cell progenitors and, in parallel, by inducing apoptosis in the
developing cerebellum (Miyata et al., 1999; Pan et al., 2009).
The extended proliferation and lethality of Neurod1-deficient
external granular layer cell progenitors might result from the
loss of the pioneer and proneural function that Neurod1 exerts
in these progenitor cells by mediating, among other molecular
cascades, the expression of different elements of the Notch
signaling pathway (Pataskar et al., 2016). Indeed, expression of
Neurod1 is known to drive terminal neuronal differentiation in
external granular layer cell progenitor cells both in development
and in the postnatal life of mammals and other vertebrates, such
as in Xenopus (Cho and Tsai, 2004; Boutin et al., 2010; D’Amico
et al., 2013; Butts et al., 2014a; Hanzel et al., 2019). Furthermore,
a recent report shows that elevated levels of Neurod1 expression
are sufficient to drive medulloblastoma cells into granule cell
differentiation, which demonstrates that Neurod1 overrides
oncogenic mutations present in medulloblastoma cells (Cheng
et al., 2020). In spite of the substantial knowledge gained
from the study of Neurod1 function in cerebellar development,
less is known about the function of other members of the
Neurod family in cerebellar development and cerebellar function.
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However, an early study usingNeurod2mutant mice showed that
these mutants correctly develop until about the second week of
postnatal life, after which they began exhibiting ataxia and the
failure to thrive, which seems to be indicative of a cerebellar
dysfunction (Olson et al., 2001). More recently, Pieper and
colleagues (2019) reported on a critical function of Neurod2 in
promoting survival of both granule cells and inhibitory neurons
(particularly basket and stellate cells) that originate from the
ventricular zone (Pieper et al., 2019). The analysis of Neurod2
mutant mice seems to indicate that Neurod2 might have an
important function in cerebellar inhibitory neuron function, as
well as in the axonogenesis and synaptic formation of inhibitory
cerebellar neurons onto Purkinje cells (Pieper et al., 2019).

Work over the last two decades has also shown the great
influence of the Neurod family in other regions of the posterior
nervous system, which include the midbrain, the hindbrain,
and the spinal cord. Progenitor cells in the ventral midbrain
express high levels of Neurod1, and the combinatorial expression
of Neurod1 with other bHLH factors sub-specifies different
neuronal populations emanating from this area, some of which
retain Neurod1 expression (Park et al., 2006; Arimura et al.,
2019; Ásgrímsdóttir and Arenas, 2020; Poulin et al., 2020).
Furthermore, Neurod1 andNeurod6 have been recently reported
to have a critical function in the development of particular
dopaminergic midbrain neurons (Khan et al., 2017). Specifically,
Khan and colleagues analyzed Neurod6 and Neurod1 double
mutant mice, and found that these genes are required for the
survival of dopaminergic midbrain neurons located in the ventral
tegmental area, particularly those that project to the intermediate
and dorsal regions of the septum (Khan et al., 2017).

Unlike the neurogenic function that the Neurod family
has in the developing cortex, cerebellum, and the midbrain;
in the hindbrain and spinal cord Neurod1, Neurod2 and
Neurod6 seem to mainly regulate the correct specification of
discrete subpopulations of inhibitory interneurons (Hernandez-
Miranda et al., 2017). In the hindbrain and spinal cord, Ptf1a-
expressing progenitor cells generate all inhibitory neurons, which
are known to co-express the homeodomain proteins Lbx1, Pax2,
and Lhx1/5. Interestingly, these inhibitory interneurons do not
uniformly maintain the expression of these transcription factors
during their maturation and greatly vary in their expression,
indicating that differential expression of such factors might
reflect distinct subpopulations of inhibitory neurons (Pillai
et al., 2007). Indeed, available evidence illustrates that Neurod1,
Neurod2, and Neurod6 secure the specification of dynorphin+
and galanin+ inhibitory interneurons, whereas Lhx1/5 instruct a
NPY+ inhibitory fate (Bröhl et al., 2008).

NEUROD GENES IN HUMAN
NEUROLOGICAL DISORDERS

The first report of human patients with a mutation on a gene
of the Neurod family came in 2010 by Rubio-Cabezas and
others (Rubio-Cabezas et al., 2010). In this study, the authors
reported on two distinct homozygous mutations in NEUROD1

that were found in two unrelated probands diagnosed with
permanent neonatal diabetes and neurological abnormalities.

The identified mutations correspond to frameshift mutations
that predictably generate truncated proteins, without affecting
their DNA-binding domain. Neurologically, both patients
presented with learning difficulties, cerebellar hypoplasia,
profound sensorineural deafness, and visual impairment due
to severe myopia and retinal dystrophy. Thus, the deficits
observed in NEUROD1-deficient patients resemble those seen
in Neurod1 mutant mice, which include pronounced cortical,
cerebellar, brainstem, and spinal cord impairments (see above).
More recently, Sega and colleagues found de novo mutations
in NEUROD2 in two unrelated children diagnosed with early
infantile epileptic encephalopathy and developmental delay
(Sega et al., 2019). In keeping with this, an early onset of
epilepsy has also been described in Neurod2 deficient mice
(Chen et al., 2016). In this context, Chen et al. suggested
that Neurod2 tightly controls the inhibition/excitation balance
of neuronal transmission in the mature cortex. Furthermore,
deficiencies of Neurod2 function in the mouse brain cause a
decrease in the cell-intrinsic excitability of excitatory pyramidal
neurons (Chen et al., 2016). There are two transcriptional targets
of Neurod2 that may contribute to these processes: gastrin-
releasing peptide (GRP) and the small conductance, calcium-
activated potassium channel, Sk2 (Kcnn2). The expression of
both genes is greatly decreased in Neurod2 mutant mice (Chen
et al., 2016). Very recently, Runge et al. (2020b) described
seven families with pathogenic NEUROD2 mutations causing
a variety of neurological disorders, such as autism spectrum
disorders, intellectual disability, and speech delay. The authors
of this study also suggest that behavioral deficits in social
behavior, which are reminiscent of autistic disorders, can be
found in Neurod2 mutant mice. In addition, Spellman et al.
identified a direct association ofNEUROD2 gene polymorphisms
with changes in cognitive functions present in schizophrenic
patients treated with antipsychotic drugs (Spellmann et al.,
2017). It has also been shown that the lateral and basolateral
amygdala nuclei fail to form in Neurod2 mutant mice, and
that these mice display deficits in emotional learning (Lin
et al., 2005). In particular, Lin et al., found that Neurod2 is
required for amygdala development and the regulation of the
AMPA receptor, the γ subunit of the GABAA receptor, and
the gene Ulip1, which are all involved in emotional learning
(Lin et al., 2005).

The most salient phenotype arising from the loss of
NEUROD1 in humans is epilepsy. In mice, the ablation of
Neurod1 produces an epileptogenic phenotype associated with
a malformation of the hippocampal dentate granule cell layer,
which seems to result from an excessive cell death of the neurons
forming this layer (Liu et al., 2020). Impaired neurogenesis
and decreased expression of NEUROD1/Neurod1 have also
been demonstrated in the hippocampus of the Huntington’s
disease R6/2 mouse model and in differentiated neural cultures
derived from Huntington’s disease patients (Fedele et al.,
2011). NEUROD6 has been recently identified as a possible
biomarker for the diagnosis of Alzheimer’s disease. Indeed, low
expression levels of NEUROD6/Neurod6 have been detected in
postmortem Alzheimer’s patients and in Alzheimer’s mouse
models using RNA sequencing datasets, microarray datasets,
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and meta-analysis (Hokama et al., 2014; Satoh et al., 2014;
Li et al., 2015).

Despite the fact that NEUROD1 expression levels have
been reported not to be significantly changed in Alzheimer’s
patients (Satoh et al., 2014), its overexpression into hippocampal
progenitor cells increases dendritic spine density of hippocampal
newborn neurons and results in a great improvement in spatial
memory in the Alzheimer’s disease mouse model APPxPS1
(Richetin et al., 2015). Further studies by Richetin and others
have also shown that Neurod1 promotes spinogenesis and
mitochondrial availability at the vicinity of mature spines,
and that this improves the integration and survival of adult-
generated hippocampal neurons, which are severely impaired in
the APPxPS1 mouse model (Richetin et al., 2017). These results
provide a potential therapeutic approach to patients affected with
Alzheimer’s disease. The half-life of Neurod1 can be increased
by blocking its ubiquitin-dependent proteasomal degradation,
which enhances the transcriptional programs mediated by
Neurod1 during neuronal differentiation, but also those involved
in neuronal maturation and synaptic transmission (de Wilde
et al., 2016; Lee et al., 2020; Pomeshchik et al., 2020). Neurod1 has
also been used to successfully reprogram reactive glial cells
functional cortical neurons in stab-injured or Alzheimer’s disease
mouse models and in adult non-human primates after ischemic
stroke, which again offers the possibility to develop new
therapeutical approaches for patients affected with Alzheimer’s
disease (Guo et al., 2014; Ge et al., 2020).

CONCLUSION

The bHLH superfamily of transcription factors is well
conserved throughout evolution and plays critical roles in
tissue development and tissue maintenance. Whereas many
bHLH transcription factors display ubiquitous expression, a
small fraction of them has a tissue-specific expression. The
question of how different members of this superfamily were
selected to carry out common and divergent cellular functions
remains to be elucidated. In the developing nervous system, the
subfamily of neural lineage bHLH transcription factors regulates
a variety of biological functions that range from progenitor cell
proliferation and survival to neuronal differentiation, neuronal
migration, fate specification, axonal navigation, dendritic
elongation, and synaptic formation. Some members of this

subfamily (called proneural, including Ascl1, Neurog1, Neurog2,
Neurod1, and Neurod4) have been shown to be able to remodel
chromatin and induce neuronal differentiation in progenitor
cells, but they are also capable of reprogramming differentiated
non-neuronal cells into neurons (Castro et al., 2011; Wapinski
et al., 2013, 2017; Chanda et al., 2014; Treutlein et al., 2016; Rao
et al., 2021). While Ascl1, Neurog1, Neurog2, and Neurod4 are
predominantly expressed in progenitor cells, other factors
like Neurod1, Neurod2, and Neurod6 are expressed both in
progenitors and retained in postmitotic neurons. This raises
the question of whether the function of these factors differs in
progenitor cells and in differentiated neurons. Future research
may elucidate whether post-transcriptional regulations, such as
phosphorylation, on Neurod1, Neurod2, and Neurod6 account
for their functional restriction at different points in the life of
a neuron. Recent work on Ascl1 (in neurons) or Myod1 (in
muscle cells) has shown that these transcription factors have
an oscillatory expression which accounts for the proliferation
of progenitors cells, whereas the sustained expression of
these factors drives cell differentiation (Imayoshi et al., 2013;
Vasconcelos and Castro, 2014; Lahmann et al., 2019; Sueda
et al., 2019; Zhang et al., 2021), whether this oscillatory behavior
is common for all bHLH transcription factors is unknown.
However, the Neurod family offers the possibility to deepen into
the expression dynamics of bHLH factors as they are expressed
both in progenitors and in their progeny. An early diagnosis
of neurological diseases is central in their management. Recent
discoveries suggest that the expression of distinct members of
the NEUROD family could serve as biomarkers at the onset of
various neurological diseases, such as Alzheimer’s disease, and
also serve in the development of patient-oriented gene therapies.
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