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The role of neutrophils in immune
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Abstract

Critically ill post-surgical, post-trauma and/or septic patients are characterised by severe inflammation. This immune
response consists of both a pro- and an anti-inflammatory component. The pro-inflammatory component
contributes to (multiple) organ failure whereas occurrence of immune paralysis predisposes to infections.
Strikingly, infectious complications arise in these patients despite the presence of a clear neutrophilia. We
propose that dysfunction of neutrophils potentially increases the susceptibility to infections or can result in the
inability to clear existing infections. Under homeostatic conditions these effector cells of the innate immune
system circulate in a quiescent state and serve as the first line of defence against invading pathogens. In severe
inflammation, however, neutrophils are rapidly activated, which affects their functional capacities, such as chemotaxis,
phagocytosis, intra-cellular killing, NETosis, and their capacity to modulate adaptive immunity. This review provides an
overview of the current understanding of neutrophil dysfunction in severe inflammation. We will discuss the possible
mechanisms of downregulation of anti-microbial function, suppression of adaptive immunity by neutrophils and the
contribution of neutrophil subsets to immune paralysis.

Background
Severe inflammation induced by trauma, sepsis or ische-

mia/reperfusion injury is known to contribute to devas-

tating complications such as acute respiratory distress

syndrome (ARDS) and (multiple) organ failure [1]. This

has been attributed to microvascular dysfunction, tissue

damage and dysregulation of metabolism caused by

severe inflammation [2]. In recent years, however, it

has been recognised that severe systemic inflammation

can also result in a profound ‘compensatory’ down-

regulation of immune responses, rendering the host

susceptible to infections or unable to clear existing in-

fections [3]. Although conceivably an evolutionarily

preserved response to protect the host from immune-

mediated tissue damage, downregulation of anti-

microbial immunity creates an unwanted consequence:

susceptibility to bacterial infections such as caused by

Staphylococcus aureus, Pseudomonas aeruginosa and

Escherichia coli as well as opportunistic fungal infections

such as (disseminated) candidiasis [4–6]. In addition, re-

activation of viruses such as cytomegalovirus are found in

critically ill patients [7]. These findings clearly indicate

that both the innate and the adaptive immune system are

dysfunctional in these patients. Nosocomial infections in

critically ill patients are associated with an increased

length of hospital stay, increased health care costs and

profound additional morbidity and mortality [8].

Neutrophils, effector cells of the innate immune

system, are abundantly present in the circulation and

comprise up to 50–70 % of total circulating leukocytes

in humans. The enhanced frequency and severity of bac-

terial and fungal infections in patients with congenital

neutrophil disorders demonstrate that neutrophils are

indispensable for adequate protection against microbes

[9]. Patients suffering from leucocyte adhesion deficiency

(LAD)-I are at risk for development of necrotizing infec-

tions and sepsis because of inadequate neutrophil trans-

endothelial migration to the site of infection [10]. The

Chediak-Higashi syndrome and chronic granulomatous

disease (CGD) underscore the eminent importance of

intracellular bacterial killing by neutrophils. Chediak-

Higashi syndrome is caused by a mutation in the LYST

gene, which encodes a lysosomal trafficking regulator

[11]. The mutation leads to the absence of a proper
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formation of phagolysosomes. Patients suffering from

Chediak-Higashi are extremely susceptible to pyogenic

infections and this syndrome is usually fatal before the

age of 10 [11]. CGD is characterised by a defect in pro-

duction of the bactericidal reactive oxygen species (ROS)

due to defective NADPH oxidase and results in recur-

rent infections, reducing life-expectancy significantly

[12]. In murine models of sepsis, knockout of essential

neutrophil antimicrobial functions leads to rapid death.

For instance, mice lacking the neutrophil granule pro-

teins myeloperoxidase or elastase die more rapidly from

sepsis [13, 14]. Apart from the severe phenotypes seen

in patients with inborn errors and murine knockout

models, more subtle effects were seen in a murine sepsis

model where rapid death coincided with inadequate

phagosomal acidification of neutrophils after phagocyt-

osis [15]. These studies highlight the generally accepted

importance of neutrophils in antimicrobial defence in

acute inflammatory models. In addition, they demon-

strate disturbances in the anti-microbial functionality of

these cells during severe inflammation.

In this review we will discuss neutrophil functions

required for adequate microbial defence and the

mechanisms leading to neutrophil-mediated immune

dysfunction.

Functions of neutrophils associated with
anti-microbial defence
Chemotaxis

The controlled process of phagocytosis and killing of mi-

crobes by neutrophils firstly requires chemotaxis to-

wards the site of infection. Chemotaxis is the propensity

of cells to migrate in the direction of gradients of

chemotactic stimuli [16]. The ability to adequately sense

chemotactic gradients is one of the final capabilities ac-

quired by neutrophils during maturation in the bone

marrow and this functionality appears to be the most

sensitive to perturbations in vivo and in vitro [17]. Im-

pairment of chemotaxis has been described in a wide

variety of diseases associated with increased susceptibil-

ity to infections: diabetes mellitus, viral infections

(influenza), cytomegalovirus, HIV and tropical diseases

(malaria) [18–22]. In sepsis, chemotaxis of neutrophils is

impaired through various mechanisms [23–25]. Interleu-

kin (IL)-33 limits this impairment by preventing down-

regulation of CXCR2 and improves outcome in a murine

model [26]. In humans, extensive research has focused

on the chemotactic capacity of neutrophils from burn

patients. It has been shown that neutrophils from ther-

mally injured subjects are characterised by impaired

chemotaxis, both in vivo in the tissue and in vitro, to-

wards the bacterial peptide fMLF, which is believed to

contribute to the increased susceptibility to infections in

this group of patients [27, 28].

Intracellular killing

Once neutrophils have found and recognised a pathogen,

phagocytosis can take place and subsequent bacterial

killing occurs in the phagolysosome. Neutrophils possess

two separate but intercalating anti-microbial mecha-

nisms, one dependent on oxygen and the other

independent of it. Although categorisation of killing

mechanisms in this manner creates a comprehensive un-

derstanding, it does not reflect the in vivo situation in

which both systems operate simultaneously. Further-

more, it is likely that the individual significance of both

killing mechanisms shifts during the course of inflam-

mation. This is due to fluxes in oxygen demand and sup-

ply caused by dynamic tissue perfusion and oxygenation

during the inflammatory response [29].

The oxygen-dependent mechanisms are mediated by

ROS downstream of O2
− formed by the NADPH oxidase

complex [30]. In short, upon activation of a neutrophil,

either via ingestion of bacteria or by extracellular stim-

uli, the NADPH oxidase complex is assembled from

both cytosolic and membrane-bound components [31].

The active oxidase complex transports electrons from

cytosolic NADPH across the membrane to the electron

acceptor, molecular oxygen, generating superoxide anion

[29]. This is in turn metabolises in the phagosome into

highly bactericidal end products, such as hydroxyl rad-

ical, hydrogen peroxide and hypochlorous acid [31]. In

sterile inflammation, such as trauma or acute liver

failure, neutrophils are known to produce elevated levels

of spontaneous ROS [32, 33]. Furthermore, ROS produc-

tion in these patients in response to a stimulus is

strongly elevated in comparison with that found in neu-

trophils from healthy controls; a process generally re-

ferred to as priming [27, 34–36]. Uncontrolled release of

ROS by neutrophils accumulating in vascular beds can

contribute to loss of endothelial barrier integrity and

subsequent vascular leakage, predisposing patients to

organ injury as a result of pro-inflammatory complica-

tions (acute lung injury, ARDS) [37, 38]. This hypothesis

is in line with the findings of increased ROS production

in trauma patients developing ARDS in comparison with

control trauma patients [39]. In addition, the observa-

tion that neutrophils from patients with fatal sepsis are

characterised by markedly increased production of ROS

compared with survivors is noteworthy [40].

Granule products comprise the backbone of non-

oxidative killing by neutrophils [41]. The azurophilic

granule is a reservoir of serine proteases: neutrophil

elastase, cathepsin G, proteinase 3, and azurocidin [42].

These digestive proteases are delivered into the phagoly-

sosome upon fusion of granules with a phagosome

containing bacteria. During maturation of the phagolyso-

some the intraphagosomal pH is rigorously altered. The

early shift of intraphagosomal pH towards an alkaline
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level (pH 8.5–9.5) due to dismutation of O2
− provides

the initial milieu for the proper activation of proteases,

leading to optimal microbicidal and digestive function of

these enzymes [43]. Concomitant with the waning of

production of ROS the phagosome progressively acid-

ifies, coinciding with granule–phagosome fusion. These

granules contain the Na+/H+-antiporter V-ATP-ase,

which is responsible for pumping of protons into the

phagosome [44–46]. Neutrophils of burn-injured pa-

tients are characterised by dysfunctional pH control of

their phagolysosomes since these patients fail to demon-

strate transient phagosomal alkalinisation in the first

5 minutes and acidify promptly after ingestion of bac-

teria [47]. This situation might lead to improper acti-

vation of the proteases and impaired killing of

ingested microbes. On the other hand, deficient acid-

ification of peritoneal neutrophils in a murine model

of sepsis was associated with increased mortality [15].

These findings demonstrate the importance of ad-

equate intraphagosomal pH regulation for microbial

control.

The presence and proper function of granules intracel-

lulary are crucial as these organelles supply neutrophils

with an arsenal of antimicrobial mechanisms. However,

uncontrolled activation of neutrophils in an inflamma-

tory microenvironment can lead to collateral tissue dam-

age by excessive extracellular degranulation and the

release of neutrophil proteases. Neutrophil extravasation,

homing and activation are mediated by activation of

several surface receptors, including β2 integrins, comple-

ment receptors, Fcγ-receptors, and formyl peptide

receptors. Uncontrolled activation of neutrophils is me-

diated through these same receptors by responding to

aberrant production of chemokines, cytokines and re-

lease of extracellular peptides [48]. During this process

granules fuse with the plasma membrane, releasing their

content into the environment [49]. More tissue damage

will lead to increased influx and activation of neutro-

phils, which then leads to a vicious cycle of tissue

destruction [50].

Neutrophil extracellular traps

In addition to conventional intracellular killing and deg-

radation of individual bacteria, the concept of extracellu-

lar killing by neutrophils using neutrophil extracellular

traps (NETs) has received much attention during the

past decade [51, 52]. NETs consist of fibrils formed by

active expulsion of DNA, chromatin and granule pro-

teins from neutrophils [52, 53]. They are formed in re-

sponse to a variety of pro-inflammatory stimuli of which

IL-8, tumour necrosis factor-alpha and lipopolysacchar-

ide are the most relevant [54]. During formation of

NETs neutrophils die and this process is generally re-

ferred to as NETosis. This form of cell death is

dependent on the NADPH-oxidase complex since neu-

trophils treated with the pharmacological NADPH-

oxidase inhibitor DPI and CGD patients are unable to

release NETs [53]. In vitro NETs were shown to be a

cell-death-associated event occurring hours after stimu-

lation [53]. However, intravital microscopy revealed

viable neutrophils after formation of NETs and the

resulting anuclear neutrophils were subsequently capable

of phagocytosis and formation of mature phagosomes.

These data indicate that NETosis does not necessarily

result in cell death [55]. The direct bactericidal proper-

ties of NETs are a topic of discussion, and prevention of

bacterial dissemination in vivo might be their main func-

tion [56]. Apart from this antimicrobial function, the

cytotoxicity of NETs can be harmful to the host if their

release is inappropriately controlled. NETs are released

following sepsis, trauma and ischemia–reperfusion injury

and a growing body of evidence shows they can contrib-

ute to tissue destruction, as reviewed by Liu et al. [57].

The potential of NETs to cause tissue destruction was

elegantly demonstrated in a murine model of primary

graft-dysfunction after lung transplantation [58]. In

addition, several studies argue that NETs might be in-

volved in triggering auto-immune diseases since auto-

antibodies against NET constituents (e.g. DNA) are often

found in these diseases [59, 60]. Although NETs have

firmly established their tissue-damaging properties, scep-

ticism still exists about the in vivo anti-microbial rele-

vance of NETs [61].

Neutrophil dysfunction in acute inflammation
The mechanisms involved in adequate anti-microbial de-

fence can also disrupt subsequent immunity. This is

caused by aberrant control of their own essential anti-

microbial arsenal, such as: (1) auto- and paracrine cleav-

age of essential surface receptors; (2) downregulation of

surface receptors and signalling pathways in non-

resolving inflammation or during a second microbial hit

following initial sterile inflammation (damage-associated

molecular pattern (DAMP)–microbe-associated molecu-

lar pattern (MAMP) interference); and (3) the release

of neutrophil populations with decreased microbicidal

properties. In addition, neutrophils in inflammatory

conditions can affect other immune cells and contrib-

ute to immune paralysis of the adaptive immune

system.

Proteolytic cleavage by neutrophil-derived proteases and

downregulation of immune receptors

Serine proteases released by neutrophils influence the

expression of receptors critical to neutrophil–microbial

interactions (Fig. 1a). Apart from stimulatory effects

through serine protease activated receptors (PARs),

they can downregulate immune responses by cleaving
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essential receptors on the surface of both adaptive

and innate immune cells [62]. For instance, neutro-

phil elastase cleaves CXCR1, a receptor for IL-8, on

the surface of neutrophils [63, 64]. This mechanism is

relevant during acute inflammation in which circulating

neutrophils from trauma and sepsis patients selectively

downregulate CXCR2, the only other neutrophil receptor

for IL-8 [65, 66]. Tarlowe et al. [67] provided evidence that

downregulation of this receptor preceded the occurrence

of pneumonia in critically ill trauma patients. Downregu-

lation of CXCR2 and cleavage of CXCR1 would result in

severe hyporesponsiveness to IL-8, an important neutro-

phil chemoattractant.

Furthermore, neutrophil serine proteases can cleave

complement receptors such as the CR1 receptor (CD35)

and C5aR (CD88) on neutrophils [68, 69]. These receptors

are important as they mediate chemotaxis, degranulation

and proper recognition of opsonised microbial targets by

CR1 and C5aR, respectively [70]. During inflammation,

decreased expression of C5aR is seen due to engagement

and subsequent internalisation. This can result in a pro-

found defect in neutrophil phagocytosis of subsequent

pathogens as C5a-induced chemotaxis is important for

neutrophils to find opsonised targets [71]. Proteases not

only inhibit the function of neutrophils, they can also

affect monocytes in the micro-environment. Neutrophil

elastase cleaves CD14, a receptor necessary for the high

affinity recognition of lipopolysaccharide by TLR4,

thereby impairing proper bacterial recognition by

monocytes [72]. Lastly, elastase and cathepsin G medi-

ate shedding of cytokine receptors for IL-2 and IL-6

on T lymphocytes [73].

A

B

Fig. 1 Downregulation of immune receptors by serine proteases from degranulated neutrophils and desensitisation by pattern recognition
receptors. a Schematic representation of downregulation of receptors on neutrophils, monocytes and lymphocytes during inflammation due to
cleavage by neutrophil serine proteases after degranulation. Binding of C5a to neutrophils results in internalisation of C5aR. Decreased expression
of these receptors impairs neutrophil effector functions during subsequent challenges. b Biological mimicry between DAMPs and MAMPs.
Danger signals derived from necrotic tissue cells ("First hit") bind to pattern recognition receptors (PRRs) and limit subsequent responses
to microbial signals ("Second hit") through homo- and heterologous desensitisation. DAMP damage-associated molecular pattern, IL interleukin,
MAMP microbe-associated molecular pattern
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DAMP–MAMP interference

Trauma and ischemia/reperfusion injury can evoke the

release of large amounts of cellular components from

necrotic cells. These intracellular constituents are known

as damage-associated molecular patterns (DAMPS).

They are host-derived and serve as important pro-

inflammatory non-microbial stimuli after injury [74].

Since the development of the ‘danger hypothesis’ by

Matzinger [74], a large number of studies have focussed

on molecules driving this response. The most extensively

studied DAMPS are high-mobility group box 1, heat

shock proteins, ATP, uric acid, formylated peptides from

mitchondria and mitochondrial DNA [75–80]. Inflam-

mation induced by pathogens on the other hand is

mediated through microbial constituents referred to as

microbe-associated molecular patterns (MAMPS), which

resemble DAMPS and, importantly, share similar pattern

recognition receptors (PRRs) on the neutrophil [81].

This biological mimicry and utilisation of similar recep-

tors creates a problem for the immune system since in-

jury (DAMPS) causes downregulation of many of these

receptors by hetero- and homologous desensitisation.

This can render neutrophils unable to mount an ad-

equate response to a subsequent microbe (MAMP)

(Fig. 1b). To illustrate the relevance of this phenomenon,

Zhang et al. [80] showed the release of vast amounts of

mitochondrial formylpeptides into the circulation of

major trauma patients. These molecules stimulate neu-

trophils via formyl peptide receptor 1 (FPR1), an import-

ant receptor in recognizing microbes that produce

danger signals by release of formyl-peptides [80] (Fig. 1b).

It was shown that heterologous desensitisation of che-

mokine receptors and homologous desensitisation of

FPR1 occurred simultaneously, predisposing trauma pa-

tients to infection [82].

Release of incompetent neutrophil populations

Much of the work detailed in the previous sections did

not take into account the variations in functional pheno-

types that appear in the circulating neutrophil compart-

ment during severe inflammation. After maturation

neutrophils are retained in the bone marrow via expres-

sion of chemokine receptor CXCR4 (ligand CXCL12),

whilst CXCR2 (ligands IL-8/CXCL1 and 2) controls re-

lease into the peripheral blood. Inflammatory stimuli

can induce the release of neutrophils by disrupting the

balance in CXCR4/CXCL12 signalling through various

mechanisms [60]. In severe inflammation large numbers

of neutrophils are released into the circulation from the

bone marrow post-mitotic pool as well as from the mar-

ginated pool (i.e. neutrophils not freely circulating but

attached to the microvasculature) [83]. Under these con-

ditions we have previously shown that peripheral neutro-

phils consist of heterogeneous subsets with different

priming states and function [84]. During severe inflam-

mation a large number of immature or banded cells ap-

pear in the circulation and even neutrophil progenitor

cells can be identified. As a result, persistent severe in-

flammation might lead to "bone marrow exhaustion" of

neutrophils, which is thought to inevitably result in a

state of compromised innate immunity [85]. At present,

however, it is unclear how to interpret the presence of

immature cells in the bloodstream in response to inflam-

mation. It might be a compensatory response initiated

by the depletion of mature neutrophils in the bone mar-

row or a dedicated inflammatory reaction to a bacterial

stimulus. Our data support the first hypothesis since

these immature neutrophils also show a pronounced de-

crease of various receptors in comparison with their

mature circulating counterparts [84]. In addition to the

IL-8 receptors (CXCR1 and CXCR2) and the C5a recep-

tor, the Fc receptors (CD16 and CD32), which are

important in pathogen recognition, phagocytosis and

killing, are also downregulated on immature cells (Fig. 2)

[84]. Relatively few studies have assessed the functional-

ity of immature and progenitor neutrophils subsets in

severe human inflammation. In septic patients, imma-

ture neutrophils were shown to have decreased

phagocytic capacity [86]. Importantly, reduced phago-

cytosis and increased numbers of circulating neutro-

phil progenitors are both associated with poor outcome

in septic patients as well as in patients with severe in-

flammation [87, 88].

Suppression of adaptive immunity by neutrophils
Neutrophils have long been recognised as professional

killers. Eradication of bacteria and fungi was thought to

be their main task. Evidence is, however, accumulating

that apart from their direct anti-microbial function,

neutrophils participate in subsequent modulation of

(adaptive) immune responses in severe inflammation

[89–91]. Under these inflammatory conditions, neutro-

phils produce chemokines and secrete granule contents

which can subsequently attract and modulate the func-

tion(s) of T cells both directly and indirectly [92, 93].

For instance, neutrophil elastase reduces expression of

co-stimulatory molecules by dendritic cells, limiting

maturation and induction of a proper Th1 response [94].

In addition, T cells in the inflammatory microenviron-

ment may be affected by neutrophil elastase by cleavage

of their IL-2 and IL-6 receptors (Fig. 1a) [95]. Another

mechanism of immune-modulation was observed in

macrophages after phagocytosis of apoptotic neutrophils.

Under these conditions immune responses of macro-

phages shift towards a more anti-inflammatory cytokine

profile [96]. Furthermore, neutrophils themselves have

been shown to produce anti-inflammatory cytokines

such as IL-1ra and IL-10 [97]. However, the evidence
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regarding IL-10 production by neutrophils is controver-

sial, as it has only been shown in mice with mycobacter-

ial infections [98]. In humans neutrophils are unable to

produce IL-10 [99]. Direct regulation of T-cell responses

by neutrophils is slowly becoming an established con-

cept. A large body of evidence demonstrates that a het-

erogeneous group of immature mononuclear cells and

neutrophils termed myeloid-derived suppressor cells

(MDSCs) can suppress T-cell responses in several mur-

ine tumour models. In addition, these cells have been

shown to play a role in various models of infectious dis-

eases, organ transplantation and autoimmune diseases

[100]. Identification of human immature granulocytic

MDSCs has proven to be challenging though. In particu-

lar, their differentiation from mature neutrophil pheno-

types seen in the blood during acute inflammation

remains to be established, as we have reviewed in detail

elsewhere [101]. The mechanisms by which MDSCs can

suppress T cells include the expression and secretion of

arginase-1, which depletes arginine from the microenvir-

onment (Fig. 2) [102]. Depletion of L-arginine, which is

an essential amino acid, results in cell cycle arrest of T

cells in the G0–G1 phase [103]. Furthermore, in human

inflammation we and others have observed a population

of mature CD62Ldim neutrophils capable of suppressing

T-cell responses through a mechanism which relies on

ROS release in an immunological synapse [104]. Re-

cently, similar neutrophils in septic shock patients have

been found to express arginase-1 and suppress T-cell

functions [105]. Another mechanism by which neutro-

phils might inhibit T-cell responses is through PD-L1

[106]. Neutrophils isolated from sepsis patients express

the surface protein PD-L1, a potent inducer of apoptosis

in T cells. The underlying mechanism of PD-L1 expres-

sion is an interferon-gamma-dependent process [106].

The PD-1–PD-L1 axis is thought to be an important

mechanism in immune suppression in septic patients

by inducing lymphocyte apoptosis and monocyte dys-

function [107]. Blocking this axis after the induction

of sepsis by administering a PD-1-blocking antibody

improved survival in mice [108]. This suppressive

mechanism might be protective in tissues with severe

inflammatory infiltrates. On the other hand, this

process might be unwanted when neutrophils migrate

to lymph nodes and engage with adaptive immunity,

as has been described under various conditions [109].

In these lymph nodes neutrophils are able to inhibit

humoral immune responses through interaction with

T and B lymphocytes [109, 110].

Conclusion
Severe inflammation can result in immune paralysis

through various mechanisms. We propose that neutro-

phils play a central role in this process, either through

decreased antimicrobial functions or through direct sup-

pression of (adaptive) immunity. Many experimental

studies have been performed addressing the damaging

role of neutrophils, which contributes to organ failure in

severe inflammation. However, their role in immune par-

alysis remains understudied. Studies to explore their

causative role in susceptibility to infections in animal

models of severe inflammation should be designed. De-

creased neutrophil antimicrobial functions and their

ability to suppress adaptive immunity in vitro should be

Fig. 2 Circulating neutrophil subsets in severe inflammation. At least four types of neutrophils circulate in the bloodstream of patients during
severe inflammation: immature, competent and suppressive neutrophils and myeloid-derived suppressor cells. Mechanisms contributing to
immune dysfunction are displayed for neutrophils from different subsets. ROS reactive oxygen species
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considered as important patient outcomes. This ap-

proach is necessary to increase understanding of the role

of neutrophils in immune paralysis leading to detrimen-

tal outcome in post-surgical, post-trauma and septic

patients.
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