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Inherited genetic variations in pharmacogenetic loci are widely acknowledged as important
determinants of phenotypic differences in drug response, andmay be actionable in the clinic.
However, recent studies suggest that a considerable number of novel rare variants in phar-
macogenes likely contribute to a still unexplained fraction of the observed interindividual
variability. Next-generation sequencing (NGS) represents a rapid, relatively inexpensive,
large-scale DNA sequencing technology with potential relevance as a comprehensive phar-
macogenetic genotyping platform to identify genetic variation related to drug therapy.
However, many obstacles remain before the clinical use of NGS-based test results, including
technical challenges, functional interpretation, and strict requirements for diagnostic tests.
Advanced computational analyses, high-throughput screening methodologies, and genera-
tion of shared resources with cell-based and clinical information will facilitate the integration
of NGS data into candidate genotyping approaches, likely enhancing future drug phenotype
predictions in patients.

Innovative and collaborative research spanningseveral decades have led to important new
knowledge of the role of inherited genetic dif-
ferences to variability in drug efficacy or toxicity
(Madian et al. 2012). Individual differences in
drug response may result from variation in
genes controlling the pharmacokinetics (PK)
of a drug (its absorption, distribution, metabo-
lism, and excretion [ADME]) or drug targets,
typically referred to as pharmacodynamics
(PD). Therefore, whereas alteration in systemic
drug exposure or tissue concentrations will gen-
erally lead to changes in pharmacological ef-
fects, genetic variation in drug target genes will
affect drug concentration needed at target sites

for optimal drug response. Hence, pharmacoge-
netic studies have focused on genes encoding
drug-metabolizing enzymes, drug transporters,
and drug targets (often referred to as pharma-
cogenes) involved in drug PK and PD as well as
comedications and environmental factors inter-
acting with these proteins.

PHARMACOGENETICS AND CLINICALLY
ACTIONABLE VARIATION

Pharmacogenetics is known as the study of her-
itable variability in response to drugs con-
cerning ADME or drug target genes, whereas
pharmacogenomics is understood as a more
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comprehensive, genome-wide approach to drug
response (Pirmohamed 2001). To date, single-
nucleotide variants (SNVs) represent the most
common form of protein-altering “functional
variants” identified among pharmacogenes.
Functional SNVs have been reported in genes
of enzymes catalyzing drugs by phase I (i.e., cy-
tochrome P450s or CYP) (Fujikura et al. 2015)
or phase II metabolism (i.e., glutathione trans-
ferases [GSTs], UDP-glucuronosyltransferases
[UGTs], sulfotransferases [SULTs]) (Guille-
mette 2003; Hayes et al. 2005; Cook et al. 2013;
James and Ambadapadi 2013) as well as ATP-
binding cassette (ABC) efflux transporters, sol-
ute carriers (SLCs) (DeGorter and Kim 2009;
Nies et al. 2009; Franke et al. 2010; DeGorter
et al. 2012), or regulatory proteins (pregnane
X receptor [PXR], farnesoid X receptor [FXR])
(Omiecinski et al. 2011). In addition, select
drug targets such as the vitamin K reductase
(VKORC1) or the β adrenoreceptors 1 and 2
(ADRB1 and 2) genes are known to harbor
such variation. More focused pharmacogenetic
as well as genome-wide association studies
(GWAS) (Daly 2010; Motsinger-Reif et al.
2013) have led to new discoveries and replica-
tion of findings relating to a number of com-
mon SNV/gene drug associations, and continue
to provide new therapeutic implications, thus
showing the clinical relevance of such variants.
To help facilitate the implementation of these
clinically “actionable” variants, the Clinical
Pharmacogenetics Implementation Consortium
(CPIC), a U.S.-based international consortium,
provides freely accessible, peer-reviewed, evi-
dence-based guidelines with specific recom-
mendations to aid in the interpretation and
translation of genetic test results into geno-
type-based drug prescribing (cpicpgx.org)
(Caudle et al. 2014, 2017). Currently, there are
CPIC guidelines for more than 30 drugs (33
as of September 2017), including the anticoag-
ulant warfarin (Johnson et al. 2011, 2017) and
the antiplatelet clopidogrel (Scott et al. 2011,
2013), the cholesterol-lowering agent simva-
statin (Ramsey et al. 2014), the immunosuppres-
sive thiopurines azathioprine and mercaptopu-
rine (Relling et al. 2011, 2013), the antiviral drug
abacavir (Martin et al. 2014), the gout remedy

allopurinol (Saito et al. 2016), and the antiepi-
leptic carbamazepine (Leckband et al. 2013).
Moreover, many pharmacogenomic biomarkers
have been incorporated in drug labels by the U.S.
Food and Drug Administration (www.fda.gov/
Drugs/ScienceResearch/ucm572698.htm) and
the European Medicine Agency (Ehmann et al.
2015), and several U.S. hospitals have piloted
preemptive pharmacogenetic screening (Dun-
nenberger et al. 2015).

VARIANT DISCOVERY BY DNA
SEQUENCING

Traditionally, “Sanger” sequencing has been the
gold standard for determining nucleotide se-
quence variation since the method was discov-
ered in 1977 (Sanger et al. 1977). This method
has been applied to decode the DNA sequence
of the first human genome in 2003, completed
after an enormous effort overmore than 10 years
(International Human Genome Sequencing
Consortium 2004). Next-generation sequencing
(NGS) refers to a relatively new, rapid, and less
costly, large-scale DNA sequencing technology
that enables sequencing of the entire genome
(referred to as genome-wide NGS), the exons
of all genes in the genome (exome-wide NGS),
or only the exons of select genes (targeted exome
NGS). NGS technology follows the sequencing-
by-synthesis principle (reviewed elsewhere in
detail in Koboldt et al. 2013; Biesecker and
Green 2014). After shearing genomic DNA,
the resulting millions of small DNA fragments
are “read” simultaneously by synthesizing a
string of complementary nucleotide bases, cap-
tured as fluorescent images. The actual nucleo-
tide sequence is computationally inferred using
these images through base-calling algorithms,
resulting in short DNA sequence reads subse-
quently assembled and aligned to the sequence
of a human reference genome. The predicted
accuracy of the assembly and alignment of short
reads, or in other words, the ability to identify
variable DNA sites with considerable confi-
dence (Nielsen et al. 2011), varies among differ-
ent NGS methods and depends on multiple fac-
tors, including the number of reads generated
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(also depth of coverage), and will be further dis-
cussed below with respect to pharmacogenes.

NEXT-GENERATION SEQUENCING TO
IDENTIFY VARIATION RELATED TO DISEASE
AND DRUG THERAPY

In recent years, NGS approaches have been ex-
tensively applied at a large scale to identify and
characterize potentially functional variation
in human genes to more fully elucidate genetic
contributions to disease as well as drug-
treatment outcomes, the latter of which is of
particular relevance to the emerging field of per-
sonalized or precision medicine. Large interna-
tional or multicenter research initiatives have
already generated extensive population re-
sources capturing DNA sequence variation in
thousands to tens of thousands of individuals,
in part linked to clinical data, that are made
available to the scientific community. For exam-
ple, the 1000 Genomes Project (Abecasis et al.
2012) (www.internationalgenome.org/data) has
thus far mapped and cataloged genetic variants
across 1092 human genomes from diverse pop-
ulations, whereas the National Heart, Lung, and
Blood Institute (NHLBI) Exome Sequencing
Project (ESP) currently provides protein-coding
variant information onmore than 6500 clinical-
ly well-characterized patients (Tennessen et al.
2012). The Exome Aggregation Consortium
(ExAC) (Lek et al. 2016) represents an even
larger resource, comprising combined exome
sequencing data and their predicted pathogenic-
ity from 60,706 individuals, and the DiscovEHR
study (Dewey et al. 2016) assessed functional
variants in 50,726 whole-exome sequences
linked to data from electronic health records to
determine a potential clinical impact.

More recently, NGS has been also explored
for comprehensive profiling of pharmacogenes
with relevance to drug PK and PD, and initial
reports suggest that this technology may repre-
sent a reliable and efficient tool to discover both
common and rare genetic variation in these
genes (Gordon et al. 2016; Twist et al. 2016;
Han et al. 2017). Detailed assessment of the
available extensive sequencing data sets in large
populations suggests the abundance and poten-

tial functional relevance of rare, mostly novel
SNVs compared to common, previously estab-
lished variants among many pharmacogenes
(Nelson et al. 2012; Fujikura et al. 2015; Kozyra
et al. 2017). Specifically, the recent evaluation of
genetic variation in phase I and II metabolic
enzymes, drug transporters, and nuclear recep-
tors combining SNV data of the ESP (6503 in-
dividuals) and 1000 Genomes Project (1092 in-
dividuals) indicates that the vast majority of all
variants in coding regions are rare (∼93%; mi-
nor allele frequency [MAF] < 1%) or very rare
(∼83%; MAF < 0.01%) and mostly nonsynony-
mous (56% to 65%), with an estimated 30% to
40% of functional variability likely to be attrib-
uted to these rare variants (Fujikura et al. 2015;
Kozyra et al. 2017). Similarly, a resequencing
study of 202 drug target genes in 14,002 subjects
revealed that more than 95% of the identified
variants were rare with an MAF below 0.5%,
and that 90% of those had not been reported
before (Nelson et al. 2012).

TARGETED NGS STRATEGIES FOR RARE
FUNCTIONAL VARIATION IN
PHARMACOGENES

The increasing recognition of the likely presence
of novel sequence variation among pharmaco-
genes suggests that commonly used genotyping
platforms restricted to candidate variants are
inadequate for a more comprehensive determi-
nation of a person’s genotype, supporting the
utility of NGS methods as a more rapid, com-
prehensive, and cost-effective strategy for variant
discovery. Despite current advances, genome-
wide sequencing for a large number of subjects
or patients is still not feasible for most research
institutions for reasons including, but not lim-
ited to, cost and time commitment to ensure
sequence quality as well as requirements to
data storage capacity and processing. Exome-
wide sequencing allows for a more focused ap-
proach restricted to protein-coding regions com-
prising only 1% of the human genome or about
20,000 genes (Ng et al. 2009); however, func-
tional variation in noncoding regions is missed.
Alternatively, “targeted” exome capture strate-
gies enable “deep” sequencing of a relatively
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small number of select genes of interest (∼100),
usually at a coverage of greater than 30-fold
(also 30×), minimizing error rates and uncer-
tainty in genotype calling, which are challenges
frequently associated with short-read NGS data
(Nielsen et al. 2011). In contrast to SNV candi-
date approaches (Johnson et al. 2012), such a
strategy will provide accurate genotyping results
for common, functionally established genetic
variation, while also capturing those that are
rare and previously unreported in clinically rel-
evant genes. Moreover, specific noncoding re-
gions can be targeted in regions already known
to harbor functional variants, as commonly
observed in genes encoding phase I and II
enzymes (CYP2C19�17 [Sim et al. 2013],
CYP3A5�3 [Kuehl et al. 2001], CYP3A4�22
[Wang et al. 2011], and UGT1A1�28 [Bosma
et al. 1995]). Hence, this approach has been of
particular interest to pharmacogenetic research
as well as to clinical (routine) genotyping
for implementing personalized genotype-based
therapies.

Targeted exome NGS (Fig. 1), usually in the
form of a custom gene panel, requires the cap-
ture and enrichment of genomic regions of
interest before sequencing. Multiple target-
enrichment strategies can be used such as poly-
merase chain reaction (PCR)-based, molecular
inversion probe (MIP)-based (Yoon et al. 2015),
or hybrid oligonucleotide capture-based ap-
proaches (reviewed in Mamanova et al. 2010;
Altmuller et al. 2014); however, performance
can vary from one approach to another. Accord-
ingly, before a broader integration of such tests
for research or clinical purposes, a rigorous eval-
uation of each custom gene panel is required to
ensure its accuracy in variant and genotype call-
ing, including validation of the optimal probe
design with subsequent performance validation
to ensure mapping of reads to the intended lo-
cations, even sequence coverage across target
regions as well as reproducibility of the results
(Mamanova et al. 2010). Recently, several cus-
tom capture-based pharmacogenetic panels
have been developed comprising established
ADME and drug target genes. The NGS-based
platform PGRNseq has been generated for 82
pharmacogenes, and was validated in almost

300 individuals as a multicenter effort among
members of the Pharmacogenomics Research
Network (PGRN) together with various medical
institutions in the United States (Gordon et al.
2016). In conjunction with the electronic Med-
ical Records and Genomics (eMERGE) net-
work, more than 5000 patients were subse-
quently sequenced through PGRNseq and
variants, many of them identified as clinically
actionable by CPIC, linked to electronic health
records (eMERGE-PGx) (Rasmussen-Torvik
et al. 2014; Bush et al. 2016). The resulting
data will be integrated in a web-based research
tool to aid the discovery of rare, clinically rele-
vant SNVs and to pilot the integration of pre-
emptive sequencing for therapeutic decision
making in the clinical setting. Using different
capture techniques, another research group
from several Korean universities created and
validated two target NGS panels in sets of 74
or 114 PK and PD genes among 376 individuals
called ADME-PGx and extended ADME-PGx,
respectively. These panels were also intended to
serve as a diagnostic tool for the fast and unbiased
discovery of rare, potential functional variation
among patients. Last, our group has designed
and evaluated a targeted NGS-sequencing panel
termed PGxSeq in 70 patients, involving 100
pharmacogenes, also including 14 known func-
tional promoteror intronic SNPswith established
functional relevance with similar research goals
(unpublished data).

TECHNICAL LIMITATIONS
OF PHARMACOGENETIC NGS PLATFORMS

Several technology-inherent limitations are de-
bated in the literature that relate to the short-
read-based nature of the NGS process causing
suboptimal sequence coverage and mapping
quality, thus increasing the risk of inaccurate
variant and genotype calls (Nielsen et al. 2011;
Drogemoller et al. 2013; Vanakker and De
Paepe 2013; Lauschke and Ingelman-Sundberg
2016). First, a high degree of homology among
genetic loci can lead to inappropriate capture or
wrongful alignment of sequence reads to the
reference genome and, therefore, false-positive
or false-negative errors (recently assessed by

U.I. Schwarz et al.

4 Cite this article as Cold Spring Harb Perspect Med 2019;9:a033027

w
w

w
.p

er
sp

ec
ti

ve
si

n
m

ed
ic

in
e.

o
rg

 on August 27, 2022 - Published by Cold Spring Harbor Laboratory Press http://perspectivesinmedicine.cshlp.org/Downloaded from 

http://perspectivesinmedicine.cshlp.org/


Drogemoller et al. 2013; Mandelker et al. 2016).
Regions of high homology can be foundwithin a
specific gene (between its exons) among differ-
ent genes or in the case of nearby homologous
nonfunctional pseudogenes. Recently, a total of
11,216 unique pseudogenes were identified in
the human genome (Pei et al. 2012), indicating
the considerable potential for erroneous geno-
type detection. It has been estimated that more
than 12% of the human exome contains “diffi-
cult or unable to be analyzed” regions for NGS
because of highly homologous genes (Man-
delker et al. 2016). Whereas particularly con-
cerning for genes comprising variants that are
likely to predict disease risk in patients during
diagnostic testing, high-sequence similarity is
also observed among pharmacogenes (Man-
delker et al. 2016), particularly within gene fam-
ilies of CYP (CYP Allele Nomenclature; www
.pharmvar.org) (Nelson et al. 2004), SULT
(Blanchard et al. 2004), and UGT enzymes
(UGT nomenclature; www.pharmacogenomics

.pha.ulaval.ca/cms/ugt_alleles) (Mackenzie et al.
1997), thus creating uncertainty concerning the
reliability of genotype-based phenotype predic-
tions or drug dose recommendations for the
patient. Specifically, at least 55% identity in the
amino acid sequence exists among members of
CYP subfamilies (Gonzalez 1988; Nelson et al.
1996), and, in some cases, sequence similarity of
more than 90% has been reported (i.e., CYP2C9
and CYP2C19 [Nelson et al. 2004]). Second,
highly polymorphic genes with complex struc-
tural variations are recognized to be challenging
such as CYP2D6 (Gaedigk 2013), CYP2A6 (Rao
et al. 2000), or the human leukocyte antigen
(HLA) genes, encoding the major histocompat-
ibility complex (MHC) proteins in humans (The
MHC Sequencing Consortium 1999) because
they are prone to potential misalignments,
whereas high GC content and regions of low
complexity may affect the accessibility of gene
regions for sequencing applications (Drogemol-
ler et al. 2013). Last, NGS data utilization for
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Figure 1. Schematics showing the iterative process of identification and validation of pharmacogenetic variants.
SLC, Solute carrier; ABC, ATP-binding cassette.
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accurate prediction of novel, previously unseen
haplotype structures or additions to known hap-
lotypes through computational phasing meth-
ods is thought to be limited (Browning and
Browning 2011; Lauschke and Ingelman-Sund-
berg 2016). Guidelines set by the CYP Allele
Nomenclature Committee highlights caution
toward novel sequence variation identified by
NGS in CYP genes noting, “If a novel allele was
discovered by NGS, confirmation by a second
method such as Sanger sequencing or genotyp-
ing, is required. If a novel allele was discovered
by Sanger sequencing, findings must be con-
firmed by repeat sequencing of a separate am-
plicon.” Moreover, the 1000 Genomes Project
(Abecasis et al. 2012) generated specific mask
files that can aid researchers in the assessment
of genomic regions considered accessible by
short-read sequencing, also regarded as the
“accessible genome” (ftp.1000genomes.ebi.ac
.uk/vol1/ftp/phase1/analysis_results/supporting/
accessible_genome_masks).With regard to clin-
ical diagnostics, some have suggested confirma-
tion of discovered SNV through the simultane-
ous application of two different NGS platforms,
also called orthogonal NGS, to further improve
variant calling accuracy, because extensive Sang-
er sequencing is time consuming and also ham-
pered by structural challenges within specific
DNA regions (Chennagiri et al. 2016). To assist
clinical laboratories with the validation of NGS
platforms and interpretation and reporting of
variants, the American College of Medical Ge-
netics and Genomics (ACMG) and the Associ-
ation for Molecular Pathology (AMP) have
jointly published essential laboratory standards
and guidelines (Rehm et al. 2013; Richards et al.
2015).

First results from extensive validation stud-
ies, including the above-introduced pharmaco-
genetics NGS panels (Gordon et al. 2016; Han
et al. 2017; unpublished data), suggest that care-
ful probe design in conjunction with advanced
bioinformatics tools may overcome many of
these limitations. For example, after repetitive
refinements of the probe design, on average,
high coverage of greater than 400× in 99.6%
of selected genes and more than 99% accuracy
has been reported for the ADME-PGx panels

(Han et al. 2017). In that study, NGS genotype
data were compared to genotypes derived from
HapMap (the International HapMap Consor-
tium) reference control samples or drug-metab-
olizing enzymes and transporters (DMETs)
Plus genotyping array data in hundreds of ini-
tially tested individuals. Similarly, a high level
of performance and accuracy has been achieved
for the PGRNseq panel with an average read
coverage of almost 500× and over 99.8% con-
cordance of NGS genotype data in two clinical
cohorts of almost 200 patients also character-
ized using various genotyping platforms (Gor-
don et al. 2016). Concordance evaluation also
included 32 diverse HapMap trios, each con-
sisting of one adult and both parents, per-
mitting Mendelian inheritance analysis as a
suitable approach to screen for sites prone to
false-positive calls by NGS. However, several
inconsistencies were detected for CYP2A6 and
CYP2D6 across multiple trios that were largely
located in inaccessible regions with predicted
low mappability. Similarly, discordant results
were also observed for CYP2D6 with the
ADME-PGx panels. Moreover, the highly poly-
morphic genes HLA-B and HLA-DQB3 could
not be considered for analysis of the PGRNseq
panel, whereas these genes were not included
in the ADME-PGx panels. This clearly shows
the importance of tracking positions or genes
with absent data or ambiguous calls, so that test
limitations can be defined and alternative
methods applied. Interestingly, whereas NGS
is generally considered not suitable for the
assessment of copy number variation (CNV),
more recent findings suggest otherwise (Twist
et al. 2016; Yang et al. 2016; Han et al. 2017;
Iacocca et al. 2017). For example, the number of
copies for GSTM1 and GSTT1, two genes
known for common nonfunctional “null” al-
leles (gene deletion), could be predicted from
the mean number of sequencing reads, the latter
also proportional to copy number when deter-
mined by a PCR-based method (Han et al.
2017). Recent reports also indicated that
CYP2D6 phenotypes can be reasonably well
predicted from whole-exome and whole-ge-
nome sequences, including complex diplotypes
with SNV, larger DNA rearrangements, and
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even gene deletion, duplication, and multiplica-
tion events for known haplotypes (Twist et al.
2016; Yang et al. 2016). Overall, despite the few
cases of observed discordance in genes that are
notorious for extensive homology or structural
variations, these findings highlight the utility of
targeted NGS-based panels in pharmacogenetic
testing for research or diagnostic setting (Ras-
mussen-Torvik et al. 2017).

PREDICTING FUNCTIONAL RELEVANCE
USING BIOINFORMATICS TOOLS

Beyond technical challenges for NGS approach-
es, the functional interpretation of sequencing
results recognizing the enormous amount of
rare, previously uncharacterized variation iden-
tified in pharmacogenes represents a significant
obstacle in the clinical implementation of such
pharmacogenetic sequencing platforms (Duz-
kale et al. 2013). Many different in silico predic-
tion algorithms are available to categorize po-
tentially protein-damaging effects of SNVs
through scoring systems. These are generally
based on the type of change (missense or splice
site alterations), evolutionary sequence conser-
vation (sorting intolerant from tolerant [SIFT];
Kumar et al. 2009), mutation taster (Adzhubei
et al. 2010), structural stability (PolyPhen-2;
Adzhubei et al. 2010), or represent composite
algorithms integrating conservation metrics,
protein-level effects, and regulatory informa-
tion, among others (i.e., combined annotation
dependent depletion [CADD]; Kircher et al.
2014). However, differences in outcome scores
among these prediction tools have been previ-
ously reported concerning variants categorized
as “deleterious” (Han et al. 2017), and some
argue that these algorithms may not be well-
suited for the assessment of pharmacogenet-
ics-related phenotypes as they have been derived
frompatient data to discern predictors of disease
(Lauschke and Ingelman-Sundberg 2016). As
shown in a recent study, actual functional con-
sequences of novel rare variants in pharmaco-
genes such as CYP2C19, ABCB1, and SLCO1B1
were predicted with an accuracy of about 80%
using the combined scores of SIFT, mutation
taster, and CADD (Han et al. 2017). Thus, po-

tentially functional SNPs can be missed or mis-
interpreted by in silico prediction as recently
reported for the drug efflux transporter multi-
drug-resistant protein MRP4 (ABCC4) (Baner-
jee et al. 2016). Although two SNPs predicted to
be functionally benign (V77I and C956S) result-
ed in severe impairment of MRP4 trafficking to
the plasma membrane, two other SNVs predict-
ed to be deleterious (C171G and G187W)
showed substrate-dependent effects on MRP4
transport that may be explained by multiple
pharmacologically distinct substrate-binding
sites in the transporter. Similarly, substrate-de-
pendent effects of SNVs have been also reported
for members of the organic anion transporting
polypeptides ([OATPs], SLC gene family) such
as OATP1B3 (Letschert et al. 2004; Schwarz
et al. 2011) and OATP1B1 (Tirona et al. 2001),
showing the complex challenge of computation-
al approaches in variant assessment. Last, accu-
rate prediction of new haplotype structures or
additions to known haplotypes through compu-
tational phasing methods is required to accu-
rately predict phenotypes (Browning and Brown-
ing 2011; Snyder et al. 2015; Lauschke and
Ingelman-Sundberg 2016). A representative ex-
ample is SLCO1B1 388A>G (rs2306283) or �1B,
which is an allele shown to increase protein
expression and uptake activity of the hepatic
transporter OATP1B1 (Nies et al. 2013). The
SLCO1B1�1B allele has been associated with
reduced drug exposure for the OATP1B1 sub-
strates atovastatin and pravastatin (Mwinyi
et al. 2004; Nies et al. 2013), improved lipid-
lowering response, and reduced statin-induced
side effects (Donnelly et al. 2011; Rodrigues et al.
2011). However, these effects are largely re-
versed in the presence of SLCO1B1 521T>C
(rs rs4149056) or �5 (combined SLCO1B1�15)
(Tirona et al. 2001), a loss-off-function allele
associated with reduced hepatic expression
(Nies et al. 2013), increased statin plasma expo-
sure (DeGorter et al. 2013; Nies et al. 2013),
and a predictor of statin-associated myopathy
(SEARCH Collaborative Group et al. 2008).
Therefore, the incorporation of haplotype infor-
mation in predictive algorithms is likely re-
quired to fully elucidate the cumulative effect
of novel rare variants.
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IN VITRO AND IN VIVO FUNCTIONAL
CHARACTERIZATION

After computational analyses, suitable experi-
mental and clinical validation approaches are
needed to screen the variants for functional ef-
fects. Cell-based models have been commonly
used to characterize functional effects of SNVs
in metabolizing enzymes and drug transporters
through enzymatic or transport activity assays
with a specific substrate after transient or stable
overexpression of the variant protein in compar-
ison to a normal-function wild-type (Tirona
et al. 2001; Kim 2002; Schwarz et al. 2011). Al-
though this approach may allow the assessment
of a small number of SNVs in clinically relevant
or known target genes (Han et al. 2017), it is
likely not feasible to be applied to all discovered
variants considering the plethora of rare varia-
tion; 6750 rare putatively functional SNVs were
recorded across 146 pharmacogenes among
7595 subjects (Kozyra et al. 2017). This under-
lines the necessity of alternative high-through-
put screening methods, for example, using clus-
tered regularly interspaced short palindromic
repeats (CRISPR)/Cas9 libraries in cultured hu-
man cells (Shalem et al. 2014; Zhou et al. 2014).
The genome editing CRISPR/Cas9 technology
allows small, site-specific DNA changes such as
SNVs, insertion/deletions (indels) as well as the
deletion of larger genomic loci (i.e., exons)
(Cong et al. 2013; Ran et al. 2013). As recently
suggested (Lauschke and Ingelman-Sundberg
2016), SNV-containing guide RNAs (gRNAs)
targeting ADME genes may be cloned into a
lentiviral vector that is subsequently used to
transfect most applicable cell lines for functional
tests of thousands of pharmacogenetic variants
to create specific libraries. However, initial
screening and identification of such mutant
cell clones represents a time-consuming, labor-
intensive, and costly requirement (Bell et al.
2014). Therefore, initiatives that help facilitate
these large-scale experimental validation studies
for pharmacogenomics research are essential
such as the generation of gene-edited stem-cell
clones for SNVs via the PGRN Pharmacogeno-
mics iPSC Library and Service (PiLS) (www
.pgrn.org/pgrn-pils-resource.html#RFA1).

Underlying in vivo mechanisms of variable
drug exposure or response because of variation
in drug metabolizing enzymes or drug trans-
porters have been traditionally evaluated in a
small number of known variant and wild-type
carriers after administration of specific probe
drugs. For example, the influence of CYP2D6
genotype-predicted phenotypes on the metabo-
lism of the prodrug codeine has been previously
characterized in a classic PK study in healthy
subjects (Kirchheiner et al. 2007), demonstrat-
ing absence of bioactivation to morphine in
CYP2D6 poor metabolizers suggesting lack of
effect. Whereas in vivo phenotyping with rele-
vant probe drugs still represents a valuable strat-
egy, sufficient numbers of variant carriers in the
case of rare variants or specific probe drugs for
pharmacogenes may not always be available.
Consequently, information sharing through
public repositories that capture the obtained
cell-based and clinical information as well as
collaboration among laboratories will aid in re-
ducing the number of assessments needed and
allow a more efficient and timely evaluation of
the phenotypic significance of new genetic var-
iation in pharmacogenes.

DIAGNOSTIC TESTING AND CLINICAL
IMPLEMENTATION

Whereas thousands of pharmacogenetic bio-
markers have been discovered in the past, only
very few have been clinically implemented, in
part because of the strict requirements for ge-
netic testing. Prior to its clinical use, a genetic
test must be evaluated for its analytic validity,
clinical validity, and clinical utility as outlined
by the ACCE framework (Sanderson et al. 2005;
Burke 2014). Analytical validity relates to the
test’s ability to reliably and accurately measure
the genotype of interest, which, as mentioned
earlier, can be difficult for genes with complex
genetic structure such as CYP2D6 (Gaedigk
2013). A test’s ability to accurately detect or pre-
dict a patient’s phenotype based on a genotype
indicates its clinical validity. While current gen-
otyping and sequencing technologies are suffi-
ciently robust with respect to pharmacogenetic
testing, defining the drug-effect phenotype has
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become more challenging, complicated by the
fact that many drug effects are influenced by
multiple variants in the same gene, some of
which are rare, and by variants inmultiple genes
within a patient. Moreover, the variable preva-
lence of SNVs among different populations can
confound the translation of pharmacogenetic
traits (Zhou et al. 2017) as reported for genetic
polymorphisms in CYP2C9 and VKORC1, de-
termining a race-specific anticoagulant re-
sponse to warfarin (Limdi et al. 2008). More-
over, in contrast to most Mendelian traits,
drug-effect phenotypes are generally the com-
posite of genetic as well as clinical (comorbidity)
and environmental (drug interactions, diet) fac-
tors (DeGorter et al. 2012), thus the positive
predictive value for pharmacogenetic tests can
be low. Last, clinical utility evaluates whether the
use of a genetic test leads to improved health
outcomes via individualized drug dosing or
treatment, and whether the test can identify pa-
tients at risk for drug toxicity (Lesko et al. 2010).
The best outcomes that show effectiveness of a
pharmacogenetic intervention in clinical care is
widely debated, and may include a reduction in
deleterious clinical events or overall health care
costs. This is best illustrated for the anticoagu-
lant warfarin, where intermediate outcomes
such as out-of-range international normalized
ratios (INRs) as well as clinically more robust
hard outcomes such as severe bleeding are as-
sessed. Although randomized controlled trials
(RCTs) are commonly accepted as the gold
standard for evidence to support the clinical
utility of an intervention, they are very costly
and may be challenging in study design because
the benefit of pharmacogenetic interventions is
largely restricted to an often small number of
variant carriers (outliers). Moreover, feasibility
of studies including hard end points such as
adverse effects can be limited by their scarcity
(i.e., very low bleeding rates for warfarin). While
the application of the same genotype-based
warfarin dosing algorithm in two different
randomized controlled trials resulted in incon-
sistent findings for the primary outcome percent
time in therapeutic range (Kimmel et al. 2013;
Pirmohamed et al. 2013), this was likely caused
by differences in the proportion of carriers

with warfarin dose-predictive variant alleles as
well as population-specific variants in African-
Americans that were not accounted for in the
applied algorithm, among other reasons (Schwarz
et al. 2014). Although it should be mentioned
that a more recent randomized clinical trial,
Genetics Informatics Trial (GIFT) with 1650
patients enrolled, showed that genotype-guided
warfarin dosing improved the composite out-
come ofmajor bleeding, INR > 4, venous throm-
boembolism, or death, when compared to a
clinically guided dosing algorithm (Gage et al.
2017).

Other limitations may apply to studies that
may be unethical of a drug that is known to
cause serious life-threatening toxicities as in
the case of the chemotherapeutic agent 5-fluo-
rouracil in patients with DPYD poor metabo-
lizer status. Consequently, evidence has to be
derived from alternate data including case re-
ports, family studies, retrospective case-control
studies, systematic reviews and meta-analysis of
individual patient data, allowing the linking of
drug concentration or pharmacological effects
to genetic variation (Meulendijks et al. 2015).
Therefore, many pharmacogenetic tests are cur-
rently recommended and applied on the basis of
alternative scientific evidence in the absence of
RCTs.

STATISTICAL CHALLENGES OF RARE
GENETIC VARIATION

Whereas large effects of common single variants
on variable drug exposure or response in pa-
tients have been detected with various study de-
signs and modest sample size, including GWAS
(Takeuchi et al. 2009; Perera et al. 2013), much
larger numbers of individuals as well as innova-
tive study designs and statistical methods are
required to study rare, mostly heterozygous
SNVs affecting drug therapy outcomes, thereby
making such efforts more costly and challenging
(reviewed by Sagreiya et al. 2010; Lee et al. 2014;
Zuk et al. 2014; Kaakinen et al. 2017). To im-
prove statistical power, rare-variant association
analyses (i.e., Burden test, variance-component
tests, or combined omnibus tests) combine mul-
tiple variants in genetic regions of assumed rel-
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evance using specific software packages such as
PLINK (atgu.mgh.harvard.edu/plinkseq) (Pur-
cell et al. 2007; Chang et al. 2015) or SKAT
(www.hsph.harvard.edu/skat). To increase sam-
ple size, data from multiple studies/centers are
often assessed through rare-variant meta-anal-
ysis strategies. The above-described eMERGE-
PGxmulticenter project shows best these efforts
in linking rare pharmacogenetic variation data
from as many as 5000 patients with therapeutic
outcomes derived from their electronic health
records (eMERGE-PGx) (Rasmussen-Torvik
et al. 2014; Bush et al. 2016), creating a research
resource to test such rare variant associations,
for example, between a group of stop-gain ge-
netic variants and disease (Verma et al. 2016).

CLINICAL IMPLEMENTATION
OF PHARMACOGENETIC TESTS

At present, pharmacogenetic testing remains
largely confined to specialized laboratories and
medical centers. Several barriers have been
noted to hinder its widespread routine clinical
use (reviewed in Relling and Evans 2015;
Lauschke and Ingelman-Sundberg 2016; Dias
et al. 2017). One obstacle is a lack of incentives
for clinicians to conduct tests or implement pro-
cedures that might prevent adverse events. In
addition, many health care systems do not pro-
vide reimbursement for this type of service.
Another obstacle is insufficient knowledge of
tests or clear guidelines on how to translate the
pharmacogenetic genotypes into clinical action
that can further discourage the acceptance by
clinicians. This involves complex nomenclature
systems such as the Human CYPAllele Nomen-
clature (www.pharmvar.org), unclear reporting
standards, or disagreement with guidelines from
professional societies, for example, concerning
the drugs warfarin (Cavallari andNutescu 2014)
and clopidogrel (Chan et al. 2014), the latter
commonly because of lack of RCTs demonstrat-
ing the benefit of pharmacogenetic testing com-
pared to standard care and very limited data to
suggest cost-effectiveness of pharmacogenetic
testing. Another important consideration in-
volves the availability of effective, alternative
therapies for variant allele carriers at high risk

or the ability to monitor therapeutic drug con-
centrations if nonstandard dose adjustments are
made (for drugs with an established concentra-
tion–effect relationship). To facilitate clinical
implementation, the CPIC regularly publishes
detailed guidelines on how test results for clini-
cally actionable, inherited pharmacogenetic var-
iation should be reported and translated into
clinical practice (Caudle et al. 2017). Cost and
complexity of the computational approaches
required to identify, annotate, and interpret ge-
netic variants is another significant obstacle,
specifically if NGS approaches are more widely
used. Although an increasing number of bioin-
formatics tools for analyzing genetic variation
are available, a substantial level of knowledge
and manual interpretation is still required. Con-
sidering the potential relevance of rare variation,
the challenge will be to catalog and annotate
these variants in publicly available databases
that can be updated such as PharmGKB,
ClinGen, or ClinVar to be potentially associated
with electronic health-care record systems link-
ing genetic test results with evidence-based
treatment decisions (Relling and Evans 2015).
Other barriers include insufficient knowledge
of prescribers as well as concern about inciden-
tal or secondary findings from genetic testing
(Richards et al. 2015; Li et al. 2017). However,
many of the ethics related concerns that sur-
round diagnostic testing for disease-risk vari-
ants is less of concern in pharmacogenes, given
their primary relevance to drug responsiveness
(Relling and Evans 2015).

CONCLUDING REMARKS

Rare variation in drugmetabolism and response
genes comprises a yet unrecognized part in in-
dividual differences in drug therapy. NGS rep-
resents a promising new technology enabling
fast, cost-efficient, and comprehensive interro-
gation of DNA sequences. Despite current lim-
itations of NGS in pharmacogenes, the integra-
tion of such data into candidate genotyping
approaches and consideration of largely rare,
functional pharmacogenetic variation will allow
a more precise prediction of individual drug
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phenotypes in patients and thus more adequate
genotype-based dose adjustments.
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