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The role of noisy channels in quantum teleportation
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In quantum information theory, the effects of quantum noise on teleportation are undeniable. Hence, we investigate the effect of noisy
channels including amplitude damping, phase damping, depolarizing and phase flip on the teleported state between Alice and Bob where they
share an entangled state by using atom-field interaction state. We analyze the fidelity and quantum correlations as a function of decoherence
rates and time scale of a state to be teleported. We observe that the average fidelity and quantum correlations accurately depend on types of
noise acting on quantum channels. It is found that atom-field interaction states are affected by amplitude damping channel are more useful
for teleportation than when the shared qubits are affected by noisy channels such as AD channel and phase flip. We also observe that if the
quantum channels are subject to phase flip noise, the average fidelity reproduces initial quantum correlations to possible values. On the other
hand, not only all the noisy quantum channels do not always destroy average fidelity but also they can yield the highest fidelity in noisy
conditions. In the current demonstration, our results provide that the average fidelity can have larger than2/3 in front of the noise of named
other channels with increasing decoherence strength. Success in quantum states transfer in the present noise establishes the importance of
studying noisy channels.
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1. Introduction

A significant restriction on quantum devices for information
processing and communication is environmental noise. Up
to now, the effects of several archetypal quantum operations
on a qubit, the depolarizing, phase-damping (or phase-flip),
and amplitude damping channels have been studied on dif-
ferent quantum information processing protocols and quan-
tum correlations. They have been widely applied for the im-
plementation of quantum information processing. However,
a real quantum system is, in general, influenced by its sur-
rounding environment [1-6]. As a result, the communication
accomplished under noisy channels may not be trustable be-
cause the receiver may obtain partial or degrade information
different from the sender’s information. Studying how deco-
herence affects quantum correlations has been investigated in
several quantum systems [7-12].

Quantum teleportation is an extensively applied princi-
ple for quantum information technologies, including quan-
tum communication and quantum computing [13,14]. It is
the process in which two spatially separated parties Alice and
Bob share an entangled bipartite resource, and Alice trans-
mits the unknown state of a qubit to Bob. If they share a
maximally entangled state, then Alice can transmit the state
successfully with unit fidelity following some set of proto-
cols. The main problem of quantum teleportation is related
to generate nearly perfect entangled states between distant
sites. One of the simplest theoretical models in quantum op-
tics is known as the Jaynes-Cummings model [15-19]. It has
been used extensively to describe the quantum features of the
interaction of a single two-level atom with a single cavity
mode. This model has been investigated not only theoreti-
cally but also experimentally [18-20]. Many beautiful exper-

iments lead to creating entangled states which are obtained
from atom-photon interactions in optical and microwave cav-
ities. Hence, as one of the promising candidates engineer-
ing quantum entanglement and quantum channel, the cavity
quantum electrodynamics (QED) system has received much
attention [21,22]. Entanglement states are useful tools for
the implementation of quantum information protocols such
as quantum key distribution, quantum teleportation [23,24],
super dense coding [23] and quantum computation. There-
fore, generating entangled states and keeping them surviving
for a long time is an important task. For this aim, many ef-
forts have been devoted to the study of the manipulation of
quantum entanglement with atoms and photons in cavities.
They have been widely applied for the implementation of
quantum information processing. However, a real quantum
system is, in general, influenced by its surrounding environ-
ment [1-3]. As a result, the communication accomplished un-
der noisy channels may not be trustable because the receiver
may obtain partial or degrade information different from the
sender’s information.

The study of correlations between quantum systems has
received great attention at the beginning of the last century.
In the bipartite system, no matter whether it is separable
or entangled, one can exploit quantum discord (QD) mea-
sures [25] and super quantum discord (SQD) measures [26]
for quantifying the quantum correlations. The QD can be
described as a difference between classical correlation and
quantum mutual information, which is captured by the strong
(projective) measurements. When the quantum and classical
correlations are the same, QD is zero. It is shown that sep-
arable states can be applied to distribute entanglement [27].
It is illustrated that QD is the resource that causes this pro-
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cess feasible and enables entanglement distribution without
actually sending an entangled state. Moreover, the measure-
ment of an arbitrary quantum state with using projective mea-
surement will result in coherence loss [1,28-30]. However,
the system will be perturbed softly, and may not lose its co-
herence entirely, if the measurement device couples to the
system weakly [31-35]. Weak measurements performed on
one of the subsystems can lead to SQD that is always larger
than QD. The amount of information extracted using weak
measurements can be tunable in some cases. This feature is
helpful in protecting quantum entanglement from decoher-
ence [36]. Recently, it was shown that weak measurements
also help to protect quantum entanglement from the decoher-
ence [37]. In the present work, we investigate quantum tele-
portation through noisy channels by creating entangled states
between atom and field. We obtain the fidelity of quantum
teleportation and quantum correlations as a function of de-
coherence time. We display that noisy quantum channels al-
ways diminish the range of states to be accurately teleported.

The layout is as follows: In Sec. 3, we present the Hamil-
tonian of the Jaynes-Cummings model and noisy channels.
In Sec. 4, we pay attention to the effect of noise on tele-
ported states that have been created using the Jaynes Cum-
mings model. Finally, the main results will be summarized in
Sec. 5.

2. Description of the model and noisy channels

In the following we investigate the Jaynes Cummings model
of a single-two level atom interacts with a single cavity mode.
The Hamiltonian of this system by considering the rotating
wave approximation has the form [37,38]:

H = ωa†a + 1
2ω0σz + λ́(a†|g〉〈e|+ a|e〉〈g|) (1)

whereω0 is the atomic transition frequency,ω is the field fre-
quency anda†(a)is the annihilation (creation) operator,λ́ is
the atomic-field coupling constant,σz is the atomic inversion
operator, and|e〉 ( |g〉) are the excited and the ground states
of the atom, respectively.

Let us define the joint atom-field initial states as the fol-
lowing relation:

|ψ(0)〉af =
∑∞

n=0 Pn|n, e〉 (2)

which the first and second states denote field and atom, re-
spectively. We consider that atom is initially in the excited
state|e〉, wherePn = exp(−n/2)

√
nn/n! is for a coherent

state of mean photon numbern. Now the state evolution of
the system is found to be:

|ψ(t)〉af = U(t)|ψ(0)〉af (3)

whereU is the time evolution operator. Using the relation
U(t) = exp(−iHt), it can be shown in the atom basis|e〉
and |g〉 and for the case of resonance that it takes the form
[39]:

U(t)=


 cos(τ

√
a†a + 1) −ia√

a†a
sin(τ

√
a†a)

−ia†√
a†a+1

sin(τ
√

a†a + 1) cos(τ
√

a†a)


 (4)

which τ = λ́t is the dimensionless interaction time. The
atom-field wave function evolves with the interaction per-
formed by Eq. (4), the state Eq. (3) can be achieved as fol-
lows:

|ψ(t)〉af =
∞∑

n=0

Pn

[
cos(τ

√
n + 1)|n, e〉

− i sin(τ
√

n + 1)|n + 1, g〉
]

(5)

The density state of the atom-field is in a2×∞ dimensional
space. For such states, we are interested in the2 × 2 sys-
tems. By a local action, we project the entire atom-field
into a subspace equivalent to2 × 2 system. Following this
protocol in a two-dimensional space, the density operator
ρaf = |ψ(t)〉af 〈ψ(t)| is,

ρaf (t) = κ1|n, g〉〈n, g|+ κ2|n, e〉〈n, e|
+ κ3 [|n, e〉〈n + 1, g| − |n + 1, g〉〈n, e|]
+ κ4|n + 1, g〉〈n + 1, g|
+ κ5|n + 1, e〉〈n + 1, e|, (6)

where the matrix elements can be written as,

κ1 =
P 2

n−1

N
sin2(τ

√
n),

κ2 =
P 2

n

N
sin2(τ

√
n + 1),

κ3 = i
P 2

n

N
sin(τ

√
n + 1) cos(τ

√
n + 1),

κ4 =
P 2

n

N
sin2(τ

√
n + 1),

κ5 =
P 2

n+1

N
cos2(τ

√
n + 2), (7)

where,

N = P 2
n−1 sin2(τ

√
n) + P 2

n + P 2
n+1 cos2(τ

√
n).

The interaction of a noisy environment with a qubit can
be represented by a quantum operation acting only on the
Hilbert space associated with the qubit if we use the operator-
sum representation formalism. Based on the Kraus operator
approach, decoherence channels for a density matrixρ can be
given as [40-43]:

ε(ρ) =
∑

i

EiρE†
i . (8)

whereε(ρ) represents the evolved state of the system under
suitable local decoherence channels and the Kraus operators
Ei satisfy the completeness relation:

∑

i

E†
i Ei = I (9)
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TABLE I. Kraus operators for phase flip (PF) channel, amplitude damping (AD) channel, phase damping (PD) channel, and depolarizing
(De) channel, whereλ represents the decoherence parameter.

Channel description Kraus operators

PD channel E0 =
√

1− λI,

E1 =

( √
λ 0

0 0

)
, E2 =

(
0 0

0
√

λ

)
.

AD channel E0 =

(
1 0

0
√

1− λ

)
, E1 =

(
0

√
λ

0 0

)

PF channel E0 =
√

1− λI,

E1 =

(
0 −

√
λ i√

λ i 0

)
,

De channel E0 =
√

1− 3λ
4

I, E1 =
√

λ
4
σx,

E2 =
√

λ
4
σy, E3 =

√
λ
4
σz.

andI is the2 × 2 identity matrix. Kraus operators for noisy
channels are given by Table I, where0 ≤ λ ≤ 1 represents
the decoherence parameter and expressing the probability of
losing a system excitation to the environment. A description
of the physical meaning of each kind of noise, as well as its
Kraus operators, are given below and we also effects these
noisy channels on the teleportation process by using entan-
gled states given by Eq. (6).

2.1. Phase damping

A type of noise due to environmental interaction can be mod-
eled as the following phase damping (PD) channel. In this
case, the relative phase between the energy eigenstates of the
system is lost, decaying the off-diagonal elements of the den-
sity matrix of the system. In other words, the loss of quan-
tum information occurs without loss of energy. Substituting
Kraus operators of noisy channels given by Table I, and com-
bining Eq. (6)-(8), the elements of the density matrix for the
evolution of the PD channel can be represented form X-state
as follows:

ρ =




ρ11 0 0 ρ14

0 ρ22 ρ23 0
0 ρ32 ρ33 0

ρ41 0 0 ρ44


 , (10)

where

ρ11 =
κ1

%
, ρ22 =

κ2(1 + λ)
%

ρ33 =
κ4(1− λ)

%
, ρ44 =

κ5

%

ρ23 = ρ∗32 =
κ1(1− λ)

%
,

ρ14 = ρ41 = 0. (11)

where,% = ρ11 +ρ22(1+λ)+ρ33(1−λ)+ρ44. The matrix
of Eq. (11) has an X structure, which will turn out to be very
useful to compute the dynamics ofQD andSQD.

2.2. Amplitude damping

Now, we consider the interaction of the system with the am-
plitude damping channel. A quantum system dissipating en-
ergy to (or receiving energy from) its environment-such as an
atom losing (or receiving) a photon can be modeled as damp-
ing (or amplification) in its amplitude. In this case, the Kraus
operators of the amplitude damping channel for a single qubit
are given by Table I. Whereλ is the probability of decay from
upper-level|1〉 to the lower level|0〉. Using Eq. (8) and Ta-
ble I it is straightforward to find the elements of the density
matrix under noise as follows:

ρ11 = κ1 + λ(κ2 + κ4 + κ5λ),

ρ22 = (λκ5 + κ2)(1− λ),

ρ33 = (λκ5 + κ4)(1− λ),

ρ23 = ρ∗32 = κ3(1 + λ),

ρ44 = κ5(1− λ)2,

ρ14 = ρ41 = 0. (12)

2.3. Phase-flip

Another noisy channel is phase-flip channel. The effect of
the phase-flip channel is to destroy the information contained
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in the phase relations without an exchange of energy, which
appliesρ to the first qubit with probability1−λ and leaves it
alone with probabilityλ. Using the Kraus operators describ-
ing the phase flip channel and Eq. (6)-(7), given by Table I,
we obtain the elements of density matrix for the phase-flip
channel as:

ρ11 = κ1(1− λ)2 + λ(α + κ5λ),

ρ22 = κ2(1− λ)2 + λ(β − κ5λ),

ρ33 = κ4(1− λ)2 + λ(α + κ5λ),

ρ44 = κ5(1− λ)2 + λ(β + κ1λ),

ρ23 = ρ∗32 = κ3(1− λ)2 + κ3λ
2,

ρ14 = ρ41 = 0. (13)

where,α = (κ2 + κ4)(1− λ) andβ = (κ1 + κ5)(1− λ).

2.4. Depolarizing channel

Finally, we are interested in examining the effect of depolar-
izing (De) channel on the system. A d-level quantum system
under depolarizing channel is depolarized with some proba-
bility, i.e., is replaced by the maximally mixed state 1/d with
some probability or left untouched. The Kraus operators of
depolarizing channel for a single qubit are given by in Table I.
The evolved state of the system is governed by the depolariz-
ing channel as follows:

ρ11 = κ1(2− λ)2 + λ {(2− λ)(κ4 + κ2) + λκ5} ,

ρ22 = κ2(2− λ)2 + λ {(2− λ)(κ5 + κ1) + λκ4} ,

ρ33 = κ4(2− λ)2 + λ {(2− λ)(κ5 + κ1) + λκ2} ,

ρ44 = κ5(2− λ)2 + λ {(2− λ)(κ4 + κ2) + λκ1} ,

ρ23 = ρ∗32 = κ3(1− λ)2,

ρ14 = ρ41 = 0. (14)

wherep is decoherence strength.

3. Noisy teleportation

Teleportation is a critical way of transfer information sepa-
rated spatially by qubit, which is an unknown state. In this
study, we investigate the effect of the cavity Fock staten on
the quantum correlation of the teleported state. Let us as-
sume that we have two users, Alice and Bob, who share an
entangled state given by Eq. (6). Alice is given pure state
ρin = |ψin〉〈ψin|, where,

|ψin〉 = cos
θ

2
|10〉+ eiϕ sin

θ

2
|01〉 (15)

where0 ≤ θ ≤ π and0 ≤ ϕ ≤ 2π. Alice aims to send this
state to Bob using Eq. (6). The output state can be achieved
as follows [44]:

ρout =
∑

µν Pµν(σµ ⊗ σν)ρin(σν ⊗ σµ) (16)

wherePµν = Tr[Eµρaf ]Tr[Eνρaf ],
∑

µν Pµν = 1. σν

(µ, ν = 0, x, y, z) are the three components of the Pauli ma-
trix, andσ0 is the identity matrix. Here,

E0 = |ψ−〉〈ψ−|, E1 = |φ−〉〈φ−|

E2 = |φ+〉〈φ+|, E2 = |ψ+〉〈ψ+|

where

|ψ±〉 =
|01〉 ± |10〉√

2

and

|φ±〉 =
|00〉 ± |11〉√

2

are bell states. Using the computational basis, we replace
|n, g〉, |n + 1, e〉 with |00〉, |11〉 and |n + 1, g〉, |n, e〉 by
|10〉, |01〉. Therefore, the density operator on Bob’s hand (out
state),ρout, is given by:

ρout =




ρ11
out 0 0 ρ14

out
0 ρ22

out ρ23
out 0

0 ρ32
out ρ33

out 0
ρ41

out 0 0 ρ44
out


 , (17)

the elements of this matrix are:

ρ11
out = ρ44

out = (ρ11 + ρ44)(ρ22 + ρ33),

ρ14
out = ρ41

out = (ρ14 + ρ41)(ρ23 + ρ32)sinθcosϕ,

ρ22
out = (ρ22 + ρ33)2cos2

θ

2
+ (ρ11 + ρ44)2sin2 θ

2
,

ρ23
out =

1
2

[
(ρ23 + ρ32)

2
e−iϕsinθ + (ρ14 + ρ41)2eiϕsinθ

]
,

ρ33
out = (ρ22 + ρ33)

2 sin2 θ

2
+ (ρ11 + ρ44)2cos2

θ

2
. (18)

The quality of Bob’s state will be measured in terms of the
fidelity and quantum correlations. Fidelity measures how
is close the final state, to the initial state which is defined
by [45]:

F (ρin, ρout) =
{

Tr

[√√
ρinρout

√
ρin

]}2

(19)

It is a useful indicator of the teleportation performance of
a quantum channel when the input state is pure. Since the
transported state is pure, the efficiency of quantum commu-
nication is characterized by the average fidelity, which de-
scribes the fidelity averaged over all possible pure input states
in the Bloch sphere formulated as [46]:

Fa =
1
4π

2π∫

0

dϕ

π∫

0

F (ρin, ρout) sin θdθ (20)
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If our model is used as a quantum channel for teleporting an
entanglement state,Fa can be expressed as:

Fa =
2
3
(ρ22 +ρ33)2 +

1
3
(ρ11 +ρ44)2 +

1
3
(ρ23 +ρ32)2 (21)

In a common situation,0 ≤ Fa ≤ 1, information is distorted
to some extent after being transmitted. For quantum commu-
nication,Fa can be larger than2/3, which is the maximum
of classical communication so that in order to transmit|ψin〉
with better fidelity than any classical communication proto-
col, we require the value ofFa to be strictly greater than2/3.

Let us now investigate what happens if one of the qubits

belonging to the quantum channel is also subjected to noise.
In the following, we intend to study the effect of local noisy
environments on the evolution of teleported states through
joint atom-field. Most often, the uncontrollable interaction
with the environment leads to decoherence. Studies of deco-
herence and teleported state dynamics in a quantum system
are believed a major subjects in quantum information pro-
cessing. The following work will investigate how teleported
states by the Jaynes-Cummings model are influenced by four
different types of noisy channels, such as phase-flip, ampli-
tude

FIGURE 1. Teleported average fidelity of (a) phase damping channel (b)AD channel (c) phase flip channel (d) depolarizing (De) channel
versus scaled timeτ andλ with the mean photon numbersn = 2 when the cavity fock states aren = 2 for ϕ = θ = π/2.
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damping, phase-damping, and depolarizing channels. In fur-
ther calculations, using the computational basis, we replace
|n, g〉, |n + 1, e〉 with |00〉, |11〉 and |n + 1, g〉, |n, e〉 by
|10〉, |01〉. To see this matter, we assume that we want to
send teleported states given by Eq. (17) to Bob and Charlie
through noisy channels.

Considering the Eqs. (11)-(14), we will focus on the dy-
namics of average fidelity of quantum teleportation,QD and
SQD for the obtained states that are presented under named
noisy channels. The dynamics of average fidelity for the four
different types of noisy channels versusτ and decoherence
strength are plotted in Fig. 1. It can be seen that in the phase-
damping channel and phase-flip channel, the teleported state
can have average fidelity larger than2/3 in the interval of

time [4, 5] for λ → 0 andλ → 1. It is not difficult to find that
the teleported state can have the valid average fidelity for the
phase damping channel and phase-flip channel, the teleported
state has an average fidelity greater than2/3, for values of
the scaled time close to 4.5. In the case of phase damping
channel, validity fidelity is independent of the decoherence
strength in the interval of time [4,5]. In other words, the dy-
namics of average fidelity oscillates with time and indicates
more robust concerning the noisy of phase damping channel
in the interval of time [4,5]. Moreover, the teleported state is
not sensitive to any change in this noisy channel for this inter-
val of time. Comparing dynamic properties of the quantum
channel and average fidelity leads to an interesting outcome,
that the teleported state can be safe against phase

FIGURE 2. Teleported average fidelity (Purple, Dashed), quantum discord (red, solid) and super quantum discord (green, dashed) of the
atom-field (a) phase damping channel (b)AD channel (c) phase flip channel (d) depolarizing (De) channel versus scaled timeτ versus
scaled timeτ with the mean photon numbersn = 2 when the cavity fock states aren = 2 for λ = 0.02 andϕ = θ = π/2.

Rev. Mex. Fis.66 (3) 378–387



384 S. AHADPOUR AND F. MIRMASOUDI

damping noise in some interval of times. It is immediately
seen that the dynamics of average fidelity declines rapidly to
no valid value (average fidelity less than2/3) and revives in-
creasingly to its initial values in the phase-flip channel (see
Fig. 1c) with increasing the decoherence strength in the in-
terval of time [4,5]. Therefore, one can observe that the pres-
ence of noise in the channel can lead to a revival of average
fidelity. While for AD channel and depolarizing (De) channel
average fidelity can not maintain its valid limit with growth
decoherence. This indicates that noisy channels are not al-
ways destructive and teleported states can be immune against
decoherence channel.

In the following, we are interested in comparing the dy-
namical properties of the quantum correlation of the channel
with average fidelity. The matrix of Eq. (18) has an X struc-

ture, which will turn out to be very useful to compute the
dynamics ofQD andSQD. For different channels, we plot
simultaneouslyQD, SQD and average fidelity of the tele-
ported state in terms ofτ for λ = 0.01 with cavity Fock state
n = 2 and givenn̄ = 2, in Fig. 2 and Fig. 3. They show
that the degree of quantum correlation for the teleported state
which is generated in the interval of time [0,5]. Figures in-
dicate that for some intervals time average fidelity has not a
valid value. However, in this case, theQD andSQD can
still capture correlation for the teleported state. Also, despite
the lack ofQD and valid value for fidelity for some intervals
time, we still have theSQD (see Fig. 3). A noteworthy point,
in this case, is that quantum correlations (especiallySQD)
are more robust than average fidelity against the decoherence
channels.

FIGURE 3. Teleported average fidelity (Purple, Dashed), quantum discord (red, solid) and super quantum discord (green, dashed) of the
atom-field (a) phase damping channel (b)AD channel (c) phase flip channel (d) depolarizing (De) channel versus scaled timeτ versus
scaled timeτ with the mean photon numbersn = 2 when the cavity fock states aren = 2 for λ = 0.02 andϕ = π/2, θ = π/4.
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4. Conclusions

The effects of quantum noise on the quantum correlations of
teleported states generated by atom and photon interaction
are analyzed. We calculated theQD, SQD, and the aver-
age fidelity of quantum teleportation subject to various types
of noises during the teleportation. We examined the range
of states that can be accurately teleported. Among states to
be teleported, the phase damping channel and depolarizing
(De) channel are less sensitive to the noise. So that, aver-
age fidelity is smaller than that of ideal one in all intervals of
time. While, quantum correlations generated by the Jaynes-
Cummings model when subjected to phase damping channel
and phase flip channel, as decoherence starts and increases,
teleported states are immune to the quantum noise. The av-
erage fidelity of values larger than2/3 in a certain interval
of time may be one representation indirectly showing how
the teleportation process is possible under these channels.
Therefore, we found the dependence of the average fidelity
and quantum correlations on the type of noise affecting the
quantum channel. On the other hand, if the noisy quantum
channel is described by a phase damping channel and phase
flip channel, the average fidelity is always greater than the
value of2/3, the best possible value that can be obtained only
by the classical communication. Also, quantum correlations
of teleported states and average fidelity comparisons showed
that quantum correlations were more resistant to noise than
average fidelity.

Appendix

A. Measures of quantum correlations

Here, we briefly explain the quantum discord and super quan-
tum discord and entanglement as the measures of quantum
correlations.

A.1. Quantum discord

Quantum discord for bipartite system was originally defined
as the difference between total correlation and the classical
correlation [47-52]. For a bipartite systemAB quantum dis-
cord is defined by [25]:

DQ(ρAB) = I(ρAB)− C(ρAB) (A.1)

the quantityC(ρAB) is named as a measure of classical cor-
relation [53]:

C(ρAB) = S(ρA)−min
ΠB

j

S(ρA|B), (A.2)

where {ΠB
j } denotes a complete set of positive operator-

valued measure (POVM) performed on the subsystemB, in
such a way that

∑
j ΠB

j = 1. WhereρAB denotes the bi-
partite density matrix of a composite systemAB, ρA andρB

represent the density matrices of partsA andB. The quan-
tity S(ρ) = −trρ log ρ refers to the Neumann entropy and

ρA = trBρAB is the entropy of the reduced density matrix,
wheretr stands for the trace of matrix [54-56]. The total
correlation is quantified by the quantum mutual information
I(ρAB):

I(ρAB) = S(ρA) + S(ρB)− S(ρAB) (A.3)

The reduced matrix ofρA andρB is given by:

S(ρA) = −(ρ11 + ρ22) log2(ρ11 + ρ22)

− (ρ33 + ρ44) log2(ρ33 + ρ44)

S(ρB) = −(ρ11 + ρ33) log2(ρ11 + ρ33)

− (ρ22 + ρ44) log2(ρ22 + ρ44) (A.4)

The eigenvalues of the density matrix

S(ρAB) =
4∑

i=1

εi logεi
2

are found to be:

ε1 =
1
2

[
(ρ11 + ρ44) +

√
(ρ11 − ρ44)2 + 4|ρ14|2

]
(A.5)

ε2 =
1
2

[
(ρ11 + ρ44)−

√
(ρ11 − ρ44)2 + 4|ρ14|2

]
(A.6)

ε3 =
1
2

[
(ρ22 + ρ33) +

√
(ρ22 − ρ33)2 + 4|ρ23|2

]
(A.7)

ε4 =
1
2

[
(ρ22 + ρ33)−

√
(ρ22 − ρ33)2 + 4|ρ23|2

]
(A.8)

For the simplest case of two-qubit state described by the den-
sity matrixρ, the analytical expression of theQD is defined
as:

DQ(ρAB) = min(Q1, Q2), (A.9)

where,

Qj = H(ρ11 + ρ33) +
4∑

i=1

εi log2 εi + Dj ,

D1=H

(
1+

√
[1−2(ρ33+ρ44)]2+4(|ρ14|+|ρ23|)2

2

)
,

D2 = −
∑

i

ρii logρii

2 −H(ρ11 + ρ33),

H(x) = −x log2 x− (1− x) log2 (1− x).

A.2. Super quantum discord

A kind of quantum correlation in quantum information pro-
cessing isSQD, which is defined by weak measurement op-
erators [57,58]. The weak measurement operators are given
as [59-62]:

P (±x) =

√
1∓ tanh x

2
Π0 +

√
1± tanh x

2
Π1 (A.10)
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wherex is the strength parameter of measurement,Π0 and
Π1 are orthogonal projectors that satisfyΠ0 + Π1 = I.
Besides, in the strong measurement limit, we have the pro-
jective measurement operatorslimx→∞ P (+x) = Π0 and
limx→∞ P (−x) = Π1.

If we replace all projection measurements with weak
measurements in classical correlation andQD, it leads to a
new type of quantum correlations calledSQD. The SQD
marked byDw(ρAB) is defined as:

Dw(ρAB) = S(ρB)− S(ρAB)

+ min
{ΠB

i }
Sw(A|PB(x)) (A.11)

where the weak quantum conditional entropy is defined as:

Sw(A|PB(x)) = P (+x)S(ρA|P B(+x))

+ P (−x)S(ρA|P B(−x)), (A.12)

with

P (±x) = trAB [(IA ⊗ PB(±x))ρAB(IA ⊗ PB(±x))],

and

ρA|P B(±x) =
trB [(IA ⊗ PB(±x))ρAB(IA ⊗ PB(±x))]
trAB [(IA ⊗ PB(±x))ρAB(IA ⊗ PB(±x))

,

whereIA is the identity operator on the Hilbert spaceHA.
Also, PB(±x) is the weak measurement operator performed
on subsystemB.
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