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Abstract: Non-thermal plasma (NTP) has been introduced over the past several years as a 

promising method for nitrogen oxide (NOx) removal. The intent when using NTP is to 

selectively transfer the input electrical energy to the electrons, and to not expend this in heating 

the entire gas stream, which generates free radicals through collisions, and promotes the desired 

chemical changes in the exhaust gases. The generated active species react with the pollutant 

molecules and decompose them. This paper reviews and summarizes relevant literature regarding 

various aspects of the application of NTP technology on NOx removal from exhaust gases. A 

comprehensive description of available scientific literature on NOx removal using NTP 

technology is presented, including various types of NTP, e.g. dielectric barrier discharge, corona 

discharge and electron beam. Furthermore, the combination of NTP with catalyst and adsorbent 
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for better NOx removal efficiency is presented in details. The removal of NOx from both 

simulated gases and real diesel engines is also considered in this review paper. As NTP is a new 

technique and it is not yet commercialized, there is a need for more studies to be performed in 

this field. 

Keywords: Non-thermal plasma (NTP); Nitrogen oxides removal; Diesel engines; Catalyst; 

Emission treatment; Pollution. 
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1. Introduction 

 
There is a continuous increase in the number of diesel engines in both stationary and mobile 

applications, due to their lower operating cost, higher thermal efficiency, longer durability, and 

their lower hydrocarbon (HC) and carbon monoxide (CO) emissions [1]. Besides HC and CO 

emissions, they emit 2–20 times more NOx and approximately 30-100 times higher particulate 

matters (PM) than gasoline engines. Moreover, conventional energy sources are close to 

extinction, and environmental concerns necessitate cleaner fuels being used. Indeed, exhaust 

emission regulations have become much more stringent in recent times. Alongside these 

increasingly stringent emissions standards, there is still considerable concern that unregulated 

pollutants are having a deleterious effect on human health and the environment generally [2-7]. 

Given the likely health effects associated with gaseous pollutants and ultrafine particles, there is 

a clear need to monitor the emissions of diesel engines. 

Up until now, several technologies have been applied for NOx removal from exhaust gases. 

Selective catalyst reduction (SCR), active lean NOx catalysts, lean NOx trap catalysis and 

multiple injection combustion have been considered for NOx removal in automobile and 

stationary engines [8-10]. SCR is used to convert NOx into diatomic nitrogen (N2), 

and water (H2O) with the aid of a catalyst i.e. a gaseous reductant such as anhydrous 

ammonia, aqueous ammonia or urea [11, 12]. Zeolite catalysts will be also the mainstay for 

Japan, US, and Euro VI applications [13].The advantage of using SCR is that the major 

byproducts of SCR are harmless nitrogen and water vapour.  However, SCR catalysts need high 

temperatures (around 300°C) for activation. There are some problems in using SCR catalysts, 

such as the possibility of ammonia leakage, catalyst poisoning, catalyst discharge under the high 
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temperature conditions or through the influence of sulphur, and the need for the construction of 

urea solution stations [14, 15]. In addition, diesel exhaust is a highly oxidising environment, and 

the SCR catalysts used on gasoline engines are not suitable for NOx removal in diesel 

applications [16]. 

The NTP technique will be considered for emission reduction in diesel engines fuelled by 

diesel or biodiesel. NTP treatment of exhaust gas is a promising technology for NOx removal, 

which is effective through the introduction of plasma inside the exhaust gases. Plasma is the 

fourth state of matter consisting of positive and negative charges which have a tendency to 

remain electrically neutral overall, and over large length scales. It is composed of free electrons, 

ions, radicals, atoms, and molecules in various states of excitation [17]. Vehicle exhaust gases, 

both diesel and gasoline, undergo chemical changes when exposed to plasma. Logically, 

oxidation processes dominate in the presence of oxygen. These reactions include oxidation of 

hydrocarbons, carbon monoxide, and nitrogen oxides [18]. 

This review paper provides an overview of the literature concerning NOx removal from 

exhaust gases as conducted by various groups of researchers. The first part of this review is 

about diesel engine emissions. The second section contains an overview of pulse power 

technology and its application on plasma treatment of exhaust gases. The final section provides a 

summary of findings as to how plasma can be effective for NOx removal from simulated gases 

and diesel engines, whilst highlighting the significance of exploring various views concerning 

plasma emission treatment as held by a number of researchers. The main argument presented in 

this section suggests that there is a strong correlation between mechanical, chemical and 

electrical parameters involved in plasma production and exhaust gas treatment, which will 
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ultimately result in the improvement of diesel engine emission treatment.  This review paper 

seeks to bring together in a systematic way the disparate material on NOx removal from exhaust 

gases. 

2. Diesel engine emissions 

 
Diesel engines are used as the power source in a wide variety of industries and their 

applications are growing rapidly all over the world. Diesel engines have been employed in 

transportation as the power source for buses, trucks, trains and ships. Moreover, they are used in 

power plants for power generation, and also in farming, construction and industrial settings. In 

spite of the large number of diesel engine applications, they continue to produce significant 

amounts of pollution, particularly NOx. Therefore, their increasing numbers in transportation 

vehicles will cause an increase in global emissions, with nitrogen oxides being the main pollutant 

from diesel exhaust.  

Inside an engine, the complete combustion of the fuels composed exclusively of carbon and 

hydrogen, would only generate CO2 and H2O, to the exclusion of any other harmful products. 

However, the very short time is enough for the chemical oxidation processes in combustion 

chambers, the lack of homogeneity in the carbureted mixtures, and the heterogeneity and rapid 

variations in the temperature do not allow for the ideal state of thermodynamic equilibrium to be 

reached [19]. Thus, the incomplete combustion of hydrocarbons results in the formation of a 

wide range of organic and inorganic compounds distributed among the gaseous, semi-volatile 

and particulate phases [20] as is schematized in Table 1 [21]. 
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Table 1 

Typical diesel exhaust composition [21].  

 Component Concentration 

Components naturally 
occurring in air 

N2 70-75 vol% 

O2 5-15 vol% 

CO2 2-12 vol% 

H2O 2-10 vol% 

Regulated harmful components 

CO 100-10000 ppm 

HC 50-500 ppm, C1 

NOx 30-600 ppm 

SOx Proportional to fuel S content 

PM 20-200mg/m3 

Unregulated harmful 
components 

Ammonia 2.0 mg/mile 

Cyanides 1.0 mg/mile 

Benzene 6.0 mg/mile 

Toluene 2.0 mg/mile 

PAH 0.3 mg/mile 

Aldehydes 0.0 mg/mile 

 

Diesel exhaust differs from gasoline engine exhaust in two major ways. Firstly, diesel exhaust 

contains a far higher amount of NOx. Secondly, the exhaust is far leaner, that is, it contains far 

less unburned hydrocarbon and carbon monoxide than a typical exhaust from gasoline engines. 

Thus, nowadays, the focus of the research on reduction of harmful emissions is mainly focused 

up on NOx [22].  

3. Health and environmental impacts of NOx and emission legislations 

 
Several types of nitrogen oxides exist in the environment: N2O, NO, NO2, N2O3, N2O4, NO3, 

and N2O5. The abbreviation NOx usually relates to nitric oxide (nitrogen monoxide) NO and 



7 

 

 

 

nitrogen dioxide NO2, which can be called ‘fresh’ nitrogen oxides from a photochemical point of 

view since they reach atmosphere in these forms. Another important nitrogen oxide is N2O 

(Nitrous oxide), and it may also be called ‘fresh’ for the same reasons [15]. Nitrogen oxides form 

when fuel is burned at high temperatures, as in a combustion process.  The primary sources of 

NOx are motor vehicles (49%), electric utilities (27%), industrial, commercial, and residential 

sources (19%) and all other sources (5%) that burn fuels [23]. 

Among the various types of NOx, nitric oxide and nitrogen dioxide are considered toxic. 

Around 95% of NOx emitted from incineration processes is NO and 5% NO2 [24]. Nitric oxide is 

less toxic than nitrogen dioxide.  However, as with most radicals, NO is unstable and reacts 

readily with oxygen through photochemical oxidation  to form NO2 [15].  

Studies focused on risk assessment have showed that high outdoor NO2 concentrations 

observed in residential areas contribute to increased respiratory and cardiovascular diseases and 

mortality [25]. Some of the other negative effects of NOx are acid rain, ground-level ozone 

(smog), photochemical smog, global warming, nose and eye irritation, visibility impairment, the 

formation of toxic products and water quality deterioration [26].  

NOx is responsible for tropospheric ozone/particulate (urban smog) through photochemical 

reactions with hydrocarbon [27]. The mixture of NOx and volatile organic compounds (VOC) in 

the atmosphere when exposed to sunlight can result in the formation of photochemical smog 

which can cause the infection and encourage the spread of cancer. The yellowish colour of NO2 

decreases the visibility, contributes to heart and lung problems and can suppress plant growth. 

NO2 can also react with radicals produced from VOCs in a series of reactions to form toxic 

products such as peroxyacetyl nitrates (PAN) [27, 28].  
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NO and NO2 together with sulphur dioxide (SO2) are the major contributors to acid rains [27]. 

When NOx and SO2 exposed to the atmosphere, they react with water to form sulphuric acid and 

nitric acid which are the main components of acid deposition. Indeed, NO2 reacts with OH in the 

atmosphere to form nitric acid (HNO3). Nitric acid can also form when nitrogen dioxide (NO2) 

reacts with the nitrate radical (NO3) in the presence of atmospheric water or aldehydes. Nitrogen 

oxides account for approximately 30% of all acid deposition [29]. 

Nitrous oxide (N2O) has some negative effects as well. N2O is a greenhouse gas that has a global 

warming potential more than 300 times higher than that of carbon dioxide [30]. N2O can 

destroyed the stratosphere ozone which increase in UV-B radiation at the earth’s surface [31]. 

Furthermore, animal and human studies indicate that the toxic effects of N2O depend on 

concentration and time. For a time-weighted average of 100 ppm for an 8-hour workday and/or a 

time weighted average of 400 ppm per anesthetic administration, it would provide adequate 

protection of dental personnel and be acceptable with existing pollution control methods [32]. 

However, in patients administered N2O for extended periods of time and neurological 

abnormalities in health care workers who inhaled N2O recreationally, it have disproved some 

effects like anesthetic action and bone marrow depression [32]. 

The health effects of breathing in diesel exhaust have been shown to be toxic, mutagenic or 

carcinogenic in animal exposure tests [33]. Also, the exposure of animals to diesel exhaust has 

produced morphological and biochemical changes in the lung, with an increase in susceptibility 

to bacterial infection, and the possibility of producing systemic toxic effects. Some human 

diseases which can be caused from NOx are pulmonary edema (swelling), bronchitis, and even 

pneumonia [34]. Due to the negative effects of NOx on health, regulation of exhaust emissions 
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has recently become increasingly stringent. Government legislation for permissible exhaust 

emission standards was first introduced for light-duty vehicles only in both Europe and the 

United States in 1982, and then for heavy-duty engines in 1990 [35]. In Table 2, emission 

regulations concerning NOx are indicated and as shown, with more and more stringent standards 

being employed day by day [36, 37]. 

 

Table 2 

NOx emission standards for diesel vehicles [36, 37]. 

Year Reference 
Light duty diesel 

(g/km) 

Heavy duty diesel 

(g/km) 

2000 Euro I - 0.36 

2005 Euro II - 0.15 

2008 Euro III 0.5 0.10 

2010 Euro IV 0.25 0.02 

2011 Euro V 0.18 0.005 

 

Furthermore, Euro VI regulations will be introduced in 2013 which will enable the 

harmonization of the European standards with those of the US and Japan [13, 38]. 

4. Plasma and various power generators 

 
The term plasma was first introduced by Irving Langmuir (1881-1975) and his colleague Lewi 

Tonks (1897-1971) in 1929 to describe the inner region of a glowing ionized gas phase produced 

by means of an electric discharge in a tube [39]. Plasma is the fourth state of matter, that is, an 

ionized gas into which sufficient energy is provided to free electrons from atoms or molecules 
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and to allow species, ions and electrons to coexist. Generally, plasma is electrically neutral. The 

plasma ionization degree is the proportion of atoms that have lost (or gained) electrons [17]. 

As discussed before, in order to introduce plasma into a gas, the electronic structure of the 

species (atoms, molecules) should be changed and then excited species and ions will be 

produced. The required energy for this process can be provided by thermal force, or carried by 

either an electric current or electromagnetic radiations [40]. Therefore, plasma is divided into 

thermal or hot plasma and non-thermal or cold plasma. In the thermal variety, molecules 

dissociate into the atoms at high temperatures around 2000 ◦C. Gas molecule will be ionised by 

losing electrons if the temperature goes up to more than 3000 ◦C. In this state, gas has a liquid-

like viscosity at atmospheric pressure and the free electric charges confer relatively high 

electrical conductivities that can approach those of metals [41]. In thermal plasma, the kinetic 

energy (temperature) of charged particles and the kinetic energy (temperature) of the background 

gas are similar. Since all particles are in thermal equilibrium, thermal plasma is also known as 

equilibrium plasma [42]. In non-thermal plasma (NTP), the electric field transmits energy to the 

gas electrons and then energy will be transfer to the neutral species by collisions [40]. In NTP, 

electrons have a kinetic energy higher than the energy corresponding to the random motion of 

the background gas molecules, generally in the range of between 10,000K and 100,000K (2-3 

order of magnitude greater than the background gas) [43]. An example of non-thermal plasma is 

the gas filling a fluorescent tube. Its temperature is only around 40°C, but the temperature of free 

electrons in the system exceeds10,000°C [18]. The intent when using non-thermal plasma is to 

selectively transfer the input electrical energy to the electrons which then generate free radicals 

through collisions, and promote the desired chemical changes in the exhaust gas. These reactions 
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can be accomplished with just a fraction of the energy which is required in the thermal plasma 

system [43-45]. 

Generally, three kinds of power generators (namely AC, DC and Pulse) can be used in order 

to generate plasma. AC and Pulse energisations show a superior NOx removal efficiency when 

compared with DC energisation. However, Pulse energisation is found to be more energy 

efficient [46]. 

Pulsed power is generated by instantaneously delivering the energy stored in an energy 

component, which has been accumulated there gradually to a load. By releasing stored energy 

over a very short time interval, a huge amount of peak power can be delivered [47]. In other 

words, the energy, which can be generated with extra low voltage, is released a shorter period of 

time, which causes higher amplitude [48]. This strategy is called pulsed power. Recently, many 

studies of industrial applications of pulsed power technology, such as food processing, medical 

treatment, water treatment, ozone generation, engine ignition, ion implantation, exhaust gas 

treatment and others resulted from the development of pulsed power generators [48, 49]. 

Recently, repetitively operated pulsed power generators with a moderate peak power have 

been developed. These generators are compact, reliable, low maintenance, and have high 

reproducibility. Using pulsed power technology, non-thermal plasmas have been generated by a 

pulsed electron beam [50] or a pulsed streamer discharge [51], and can be used to treat nitric 

oxides (NOx), sulphur dioxide (SO2), carbon dioxide (CO2), particulate matter and volatile 

organic compounds (VOCs), and also to generate ozone. Non-thermal plasmas have many kinds 

of chemically activated radicals, such as O (Oxygen radical), O3 (Ozone), N (Nitrogen radical), 

N* (excited Nitrogen radical), N2+ (positive ions of nitrogen) and OH, which are generated by 
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the dissociation and ionization of the ambient gases caused by the impact of energetic electrons 

[49, 52, 53]. 

When plasma is introduced inside the exhaust gases, oxidation processes will be started. NOx, 

unburned hydrocarbons, carbon monoxide (CO) and particulate matter (PM) will be oxidized 

[54]. In spite of NOx reduction to N2 and O2, plasma treatment of exhaust gases is more related 

to NO oxidation to NO2 [55, 56]. The plasma is believed to show potential to improve catalyst 

selectivity and removal efficiency.  

5. Different types of plasma reactors 

 
NTP can be generated in several ways, such as through electrical corona discharges, radio 

frequency discharges, microwave discharges [57, 58], dielectric barrier discharges and electron 

beams. The following NTP technologies are considered for pollution reduction in engine exhaust 

gases, with each having their advantages for different applications. 

 

5.1. Electron beam 

An electron beam is formed in a separate generator, such as a cathode tube, and injected into 

the exhaust gas. The energy of the electrons is absorbed by the components of the gaseous 

mixture proportionally to their mass fraction [59]. The energy of electrons can be much higher in 

the e-beam reactor than in other reactors. Disadvantages of the e-beam reactor include the need 

for a special reactor for generating the electrons, and poor efficiency in transferring the electrons 

into the exhaust gas [18, 60]. 

 



13 

 

 

 

5.2. Corona discharges 

The term corona comes from the crown-like appearance of the plasma discharge when the 

voltage exceeds a certain value [61]. In a corona discharge reactor, a non-uniform electric field is 

formed between two concentric electrodes by the sharp edges or points of its electrodes where 

the radius of the curvature is small. A characteristic of corona discharges is that there is no need 

to use a dielectric to generate plasma [62, 63]. The electric field must be pulsed in order to 

prevent the plasma going into the thermal mode and forming an arc [18]. 

 

5.3. Dielectric barrier discharge 

The basic design of a dielectric barrier discharge (DBD) reactor consists of a set of electrodes 

with at least one dielectric barrier between them. As a result of the presence of the dielectric 

barrier, the discharges require higher voltage for their operation. In other words, the electric field 

must be high enough to cause breakdown in the gas [64]. The gas is passed through the dielectric 

surfaces, while the electrodes produce the sufficient electrical field between them to cause 

plasma to form. A common feature of both DBD and corona discharge is that small scale 

electron streamers are formed [62]. However, a DBD produces a homogenous discharge with 

low energy consumption and this discharge process is also the mechanism through which 

charges are transported [65]. Whealton et al. [62] explained that after applying the electric field 

perpendicular to the dielectric, electron streamers are formed. Space charge then builds up on the 

dielectric surface, locally terminating the external applied electric field, and then finally 

extinguishing the discharge. The material used for dielectric barriers is usually quartz glass, 
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silica glass or alumina; however, they can also be made from ceramic materials, and thin enamel 

or polymer layers in special cases [18, 64]. 

 

5.4. Dielectric packed bed reactor 

The dielectric packed bed reactor is similar to the DBD, but with a different configuration of 

dielectrics. Pellets of dielectric material are placed in the gap between the barrier and the 

electrode. One advantage of this system is that relatively low applied voltages can be used to 

form a plasma over a relatively large separation of the electrodes [63]. Another advantage of this 

system is that it is possible to use catalyst pellets, which makes this type of reactor a possible 

choice for plasma-catalyst systems. However, the high pressure drop and attrition of the pellets 

are disadvantages of this system [18].  

 

5.5. Surface plasma discharge 

In this system, the dielectric barrier completely fills the gap between the two electrodes. One 

of the electrodes covers one side of the dielectric barrier completely; however, the other 

electrode only partially covers it, making it distinct from the surface discharges and DBD. The 

plasma is generated next to this dielectric surface which is in contact with the gas. When the 

electric field is applied, the surface plasma covers the entire dielectric surface [62]. A feature of 

this discharge is that after a few nanoseconds, charge begins to build up at the dielectric surface, 

which has the effect of reducing the electric fields outside the dielectric, eventually extinguishing 

the discharge [18]. 
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6. Plasma NOx removal 

 
NOx storage reduction (NSR), selective NOx recirculation (SNR) and non-thermal plasma 

have been considered increasingly in recent times, with a view to developing techniques to 

reduce NOx emissions in diesel engines[55, 66-68]. 

Non-thermal plasma (NTP) technology has been introduced as a promising method for NOx 

removal from simulated gases as well as real diesel engine exhaust. In an NTP reactor, NOx 

concentration is reduced by a set of reactions between free electrons, ions, radicals, atoms, and 

molecules which are formed in plasma. The NOx reduction reactions generally can be divided in 

two groups:  

NOx removal reactions, and 

NO – NO2 conversion reactions. 

 In the first group, some of the primary and main NOx removal reactions could be 

summarized as the following [55, 69-73]: 

eNNeN 2  (1) 

ONNNO  2  (2)

32 OOO   (3)

)A(NeeN 22   (4)

ONNNO)A(N  22  (5)

ONON)A(N  222 2  (6)

222 ONNNO   (7)
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where )A(N 2  represents 2N  metastable state. 

The second group of reactions (which involves the reactions of oxidizing NO to NO2) could 

be summarized as the following [55, 72-74]: 

eOOeO 2  (8) 

2NOONO   (9)

32 OOO   (10)

223 ONOONO   (11)

Hydrocarbons are attributed an important role in NOx removal by using plasma discharge. 

The reaction paths for NOx removal change significantly from that without hydrocarbon 

additives. In the presence of hydrocarbons, the efficiency of NOx reduction and NO – NO2 

conversion is greatly increased due to the reactions between the hydrocarbons and NOx such as 

[18]: 

OHHCOHHC 6363   (12) 

OHOOHCOOHHC 63263   (13)

26363 NOOHOHCNOOHOOHC   (14)

Furthermore, the NO-NO2 conversion due to the oxidation by O/OH radicals or by 

hydrocarbons is less probable since the O/OH radicals decrease in the presence of soot inside the 

diesel engine exhaust. Moreover, some NO2can react with soot by the following reaction [75]: 

NOOHNCOCOsootNO  2222  (15) 

In addition, in the presence of water, some other reactions are also involved, which are as 

follows[76]: 
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eHOHeOH 2  (16) 

2HNOOHNO   (17)

32 HNOOHNO   (18)

and 

OHNOOHNO  22  (19) 

Therefore, the reactions taking place during the treatment of actual diesel exhaust vary largely 

from that of the simulated gas mixtures, due to the presence of various hydrocarbons, aldehydes 

and water in the diesel exhaust. 

On the other hand, many studies suggest that the conversion of NO to NO2 is an important 

intermediate step in the reduction of NO to N2 [77], and that the most efficient way to do this is 

to use a plasma reactor along with an additional catalyst reactor. In the first step, the plasma 

oxidises NO to NO2 in the presence of HC [78]: 

productHCNOOHCNOPlasma  22  (20) 

In the second stage, the catalyst reduces NO2 to N2by selective reduction using hydrocarbons 

[78]: 

OHCONHCNOCatalyst 2222   (21) 

In general, some researchers employed NTP using different combinations of gases to simulate 

real exhaust gases from engines in order to examine the ways that different parameters affected 

the system [76, 79-95], and others  study real engines to enhance the efficiency of the NTP [46, 

74, 75, 78, 88, 96-111]. 

Various kinds of NTP reactors were studied by the researchers. The earlier kind of NTP 

reactors were electron beam reactors, which were mostly employed from 1980 to 2000 [112-
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115]. The majority of researchers applied dielectric barrier discharge (DBD) reactors [74, 75, 79, 

93-95, 98-106, 109-111]. Some used packed bed DBD reactors [46, 80, 83, 98, 99, 103, 106, 

116] and others used DBD assisted reactors along with another catalyst or adsorbent reactor [74, 

80, 84, 86, 100, 101, 104-106, 109, 110]. However, some researchers studied corona reactors 

[78, 81, 82, 85, 87, 88, 96, 97, 107, 108]. In addition, some researchers examined surface plasma 

discharge reactors [76, 91, 117]. Note that in some studies, the packed bed DBD reactor is called 

a single stage plasma-catalytic system, with the catalyst or adsorber placed in the discharge zone. 

The DBD assisted reactor (used with another catalyst or adsorbent reactor) is also called a two 

stage system, with the catalyst or adsorbent placed downstream of the plasma. The advantage of 

single-stage reactors is that the active species react on the catalyst surface in the discharge zone. 

However, in the two-stage systems, the oxidation of NO to NO2 in the plasma increases the 

catalyst performance, since the NO2 removal is better than the NO removal near the catalyst 

[118]. 

 

6.1. NOx removal from simulated gases 

 
6.1.1.  DBD reactor 

Mizuno et al. [79] in 1998 investigated NTP at very low temperatures,below100ºC. Different 

simulated gases (NO+O2, N2O, O2, N2, CO2 and H2O gas cylinders) were examined to simulate 

the exhaust of a thermal power plant. A straight wire DBD reactor was used for all simulations. 

The concentration of NO and NO2was measured at three different temperatures: room 

temperature, liquid nitrogen temperature and solid ethanol temperature. The voltage source for 
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this study was pulse DC voltage, and the maximum supplied voltage and pulse frequency was 30 

kV and 60 Hz respectively. At low temperature, it was claimed that the plasma process is 

effective to remove gaseous pollutants, as well as to promote plasma chemical reactions. To cite 

one particular case, the removal efficiency of nitrogen (DeNO) at room temperature was 20%, at 

liquid nitrogen temperature (-196ºC) it was60% and at solid ethanol temperature (-114ºC) it 

was98%. Note that the removal efficiency or removal ratio was defined as follows: 

i

ei
R NO

)NONO(
NO

100
  (22) 

The influence of gas flow rate on the removal efficiency of NO was also studied, and showed 

that the DeNO decreased when increasing the gas flow rate from 1 to 8 L/min, because the gas 

exposure to the electrical field decreases. It was also shown that by decreasing the temperature, 

the discharge power decreased at a fixed input power. In this paper, although it was reported that 

the plasma-treated gas was more effective at low temperature, no clear reasons were outlined. A 

real engine was not studied, and an extremely low temperature was considered, which is not 

applicable in everyday situations.  

Wang et al. [92] conducted a complete investigation on the effects of electrode connection, 

diameter, material, shape of the inner electrode, and dielectric material on NO removal in order 

to improve the performance of dielectric barrier discharge reactors. The simulated gas examined 

in this paper is the combination of NO and N2. An AC power supply with a peak voltage of 30kV 

and peak frequency of 10 kHz was employed. The specific energy density (SED) parameter 

which is defined as the ratio of discharge power to the gas flow rate is considered to compare 

different case studies. For the same removal efficiency, it is better to have a lower specific 
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energy density regarding the energy consumption. If the SED parameter of 10 J/L (for a 3-L-

class diesel engine) can be achieved, which is around 3% of automotive diesel engine power 

output over the United State Federal Test Procedure (US FTP) test cycle, it will come to a 

practical level [119]. 

It was shown that when a high voltage was applied to the outer electrode and when a smaller 

discharge gap was selected in the coaxial reactor, a smaller breakdown voltage was required, and 

therefore better NO removal could be achieved with the same high voltage. Furthermore, 

increasing the inner electrode diameter increased the NO removal efficiency due to the decrease 

in the discharge gap. Three different materials were tested for the inner electrode, and showed 

that tungsten had a higher NO removal efficiency than copper or stainless steel, due to a larger 

secondary electron emission. Copper proved more effective than stainless steel [120]. The use of 

a screw electrode as an inner electrode was also tested in comparison with a rod electrode, and 

this showed that the NO removal efficiency was higher with the screw electrode than the rod 

electrode, as the equivalent gap capacitance of the reactor with the screw electrode was lower. 

The screw electrode generates a large number of micro discharges with a small energy deposition 

per micro discharge [121], and the discharge is more intense in the screw electrode reactor, due 

to the higher input power when compared with the rod electrode reactor under the same applied 

voltage. In addition, the accidental surface of the screw electrode makes the moving gases 

become turbulent, increasing the probability of particle collisions and intensifying the plasma 

reaction. Finally, they examined various dielectric materials and showed that the NO removal 

efficiency was higher when using corundum when compared with ceramic and quartz materials, 
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since the relative permittivity of corundum is higher than ceramic materials. Quartz was the least 

effective material to be used. 

In 2012, Vinh et al. [93, 94] investigated the effects of different PM compositions and oxygen 

fraction on NOx removal efficiency in simulated exhaust gas by a dielectric barrier discharge 

needle-to-cylinder reactor at room temperature. They also studied the combination between a 

dielectric barrier discharge reactor and a wall-flow type diesel particulate filter (DPF)[122]. A 

diffusion flame formation system was used to produce PM [123]. The simulated gas was the 

combination of NO, N2, O2 and PM. A 50 Hz alternative high voltage supply in the range of 5kV 

to 15kV was used. It was shown that PM could increase the NOx removal efficiency intensely; 

however, PM was more effective when they introduced fresh PM in to the reactor. For example, 

by using 100mg fresh PM in a special case, the NOx removal efficiency was 28%; however, it 

was around 12% without using PM. They claimed that the existence of PM inside the reactor 

incurs O radicals react with HC or soot besides other reactions. Therefore, the NO2 formation 

process is slower and consequently, the NOx removal efficiency is higher. Accordingly, PM has 

worked as a reactive agent in the reactor [93]. Furthermore, the NO removal efficiency is much 

higher in the presence of oxygen than the case without oxygen; however, the NOx removal 

efficiency is not different. 

 

6.1.2. Packed bed DBD reactor 

In 1999, Yamamoto et al. [80] compared two types of plasma reactors, studying reaction by-

products and NOx removal efficiency. One was an ordinary packed-bed reactor without any 

barrier, and the other was a barrier type packed-bed plasma reactor. In addition, the effect of 
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using Na2O3 after the plasma reactor to reduce the amount of produced NO2 was studied. The 

NO2 will react with sodium sulphite (Na2SO3) to form a non-toxic water-soluble Na2SO4 as a 

final product. Mok and Lee [124] in 2006 were also used Na2SO3 as a reducing agent to remove 

sulfur dioxide and nitrogen oxides simultaneously. Ferroelectric BaTiO3 pellets were used inside 

the reactors, with a 15kV and 60Hz AC power supply. A mixture of NO balanced with N2 in a 

gas cylinder, and dry air supplied by a compressor was employed to simulate the exhaust gas. 

The concentration of NO, NO2, NOx, CO, CO2, N2O, HNO2 and HNO3 (aqueous solution) were 

measured. It was shown that the hybrid system using the barrier type packed-bed plasma reactor, 

followed by the chemical reactor with Na2SO3, provided nearly 100% NOx removal efficiency 

with negligible reaction by-products of N2O, CO, HNO2 and HNO3. It was claimed that the cost 

of this system was approximately 15 times more economical than the conventional selective 

catalyst reduction (SCR) process. The effect of reactor diameter and the optimum diameter of 

pellets for hybrid systems was also investigated. It was found that the NO2 conversion was 

higher and NOx reduction was smaller for 1.5 mm diameter electrodes (the smallest size of 

electrode diameter considered), when compared with 5.0 mm diameter electrodes. Furthermore, 

1.5mm diameter electrodes produced less reaction by-products, such as N2O, HNO2, HNO3 and 

CO, thus making this electrode most suitable for the hybrid system. In addition, the 

BaTiO3pellets with a diameter of 3.0 mm (the largest size considered) provided the best results 

on the hybrid NOx control system. The decomposition of the air alone for both different reactors 

was also studied, along with the effects of power supply voltage. However, the power supply 

frequency was not considered. 
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In 2011, Rajanikanth and Rout[83] studied the dielectric packed bed reactor for the removal 

of NOx from simulated gas, and compared this with a conventional DBD. Gas cylinders of NO in 

N2, N2, CO2 and O2 were used to simulate the vehicle exhaust gas at room temperature, and 

changes in the concentration of NO, CO, CO2 and O2 were also considered. Three types of 

catalyst were used as dielectric pellets: alumina (Al2O3), Alumina coated with palladium as 

catalyst (Al2O3-Pd), and barium titanate (BiTiO3). The voltage source for this study was a single-

phase AC supply, and the range of voltage and pulse frequency of the supplier was 15-28.6 kV 

and 50-125Hz, respectively. The pulse rise time was 34ns. It was shown that the presence of a 

packed dielectric bed increased the discharge power. Therefore, for a given reactor size and set 

of operating conditions, higher NO removal efficiencies at lower voltages could be achieved. 

Barium titanate pellets showed better removal efficiency than the other proposed pellets. For 

example, DeNO was 76% for DBD alone. It was 84%, 72% and 100% for DBD with almunia, 

almunia coated with palladium, and barium titanate pellets, respectively. The major contribution 

of this paper was its comparability with conventional catalytic converters which operate at an 

exhaust gas temperature around 300ºC or above. In addition, the effects of pulse frequency and 

pulse voltage were also studied. It was shown that the NO removal ratio increased with an 

increase in the pulse repetition ratio, and an increase in the peak of applied voltage. This effect 

was due to the higher discharge power resulting from the higher pulse repetition rate and higher 

peak voltage. 

In 2003, Ravi et al. [116] considered the effect of temperature on NO conversion using 

simulated gases consisting of NO, O2, and N2 in the presence of various hydrocarbons: ethylene, 

acetylene and n-hexane. They also studied acetylene with the presence of H2O in the simulated 
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gas. A packed bed DBD reactor with glass beads as pellets was used. The concentration of NO 

and NO2was measured at different temperatures, from room temperature up to 200ºC. 60 Hz AC 

high voltage was applied, ranging from 8kV to 16kV. It was found that the discharge power 

increased with increasing the temperature. NO conversion in the presence of ethylene and n-

hexane was better than that of acetylene at all temperatures. The adding of acetylene at room 

temperature showed no better conversion of NO than when there were no additives. At higher 

temperatures, the conversion of NO was enhanced. A little enhancement in NO and NOx removal 

was observed in the presence of water vapor, due to the effect of OH and O radicals for NO 

removal.  

 

6.1.3. Combined DBD reactor with catalyst or absorber 

In 2003, Ravi et al. [84] investigated the conventional DBD reactor when combined with a 

catalytic reactor at different temperatures. Three different reactors were studied: DBD alone, 

catalyst alone, and a cascaded plasma catalyst reactor. The catalyst used was a commercially 

available SCR catalyst (V2O5 – WO3 / TiO2). The simulated gas was the composition of NO, O2, 

and N2 in the presence of ethylene and ammonia only for the cascaded reactor. A 60Hz AC 14kV 

high voltage power supply was used. It was shown that the rate of oxidation of NO to NO2 

decreased with temperature. In addition, it was shown that by using cascaded plasma catalyst 

reactors, the NOx removal efficiency was more pronounced, especially at low temperatures, and 

this was labeled as a “synergy effect”. However, clear reasons for this synergy effect were not 

given. Also it was also claimed that this behavior may not be common to all types of catalysts at 
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various temperature, and one must choose the optimal operating energy density, depending on 

the characteristics of the individual catalyst. 

In 2004, Mok et al. [86] studied NOx removal by using a packed bed plasma reactor assisted 

with monolith V2O5/TiO2 catalyst using AC and pulse voltage. Various effective parameters 

such as initial NOx concentration, gas flow rate, gas humidity and reaction temperature were 

studied. The simulated gas was the composition of N2, O2, NO balanced with N2 and ethylene. 

It was claimed that ethylene helped NO oxidation to NO2. It was shown that increasing the 

initial concentration of NOx, decreases the removal efficiency for the same energy density; 

however, if the NO2 fraction keeps constant, the NOx removal efficiency is similar for different 

initial concentrations of NOx. This was an important finding in this paper which is rare in other 

studies. Furthermore, from their paper, increasing the gas flow rate decreases the efficiency of 

NOx removal. According to the effect of water vapor, it was shown that for the plasma-catalyst 

system, by increasing the humidity from 0 to 3%, the NOx removal efficiency was decreased 

almost 10% and further increase in humidity did not have a significant effect on NOx removal 

efficiency. It was also shown that for the catalyst alone reactor, increase in the reaction 

temperature enhances the NOx removal efficiency; however, the reaction temperature is hardly 

influenced by the NOx removal efficiency. 

 

6.1.4. Corona reactor 

In 2000 and 2001, Namihira et al. [81, 82] studied the effects of pulse-width in improving 

NOx removal efficiency. They designed a new DC voltage generator in the order of 10 

nanoseconds pulse-width. A corona discharge reactor and gas cylinders of N2, NO and H2O were 
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used, and the concentration of NO and NO2was measured at ambient temperature. They studied 

low pulse frequencies range from 1-13 pps (pulses per second) and various pulse widths from 

40-120ns. It was shown that the removal ratio of NO decreased with an increasing pulse 

repetition rate and an increasing pulse-width. However, the removal energy efficiency increased 

with a decreasing pulse-width. In other words, the removal energy efficiency was higher for 

shorter pulse-widths at a fixed NO removal ratio. The authors claim that their results are clearly 

in coincidence with another study which used electron beam irradiation without any additive 

[125, 126]. The removal energy efficiency for the comparison was calculated as follows: 
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where f  is the pulse repetition rate [pulses/s], E  is the input energy to the reactor per pulse 

[J/pulse] and G  is the gas flow rate [lit/min].  

In 2004, NOx removal mechanism by a DC corona discharge has been considered by Arai et 

al. [85]. A mixture of N2, O2, and NO was used as the test gas. In their experiments, oxygen 

concentration was changed between 0 and 20%. The initial concentration of NO was kept at 

100ppm and the residence time inside the reactor was 17sec. It was shown that the NOx removal 

mechanism depends on oxygen content. In the case of NO+N2 mixture, NO reduction process 

has been controlled by exited N2 radicals. However, in the case of NO/N2/O2 mixture, NO 

mainly was converted to NO2 and N2O5 by ozone generated from corona discharge.  

In 2006, Saito et al. [87] studied the effect of H2O, CO2, CH4 and C2H4 on NO removal by 

using a DC corona discharge. The base gas in their experiments was a mixture of N2/O2 

(20%)/NO (100ppm) and the coexisting gases was added to the base gas. They considered both 
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positive and negative discharge in their tests. When moisture was added to the base gas, NOx 

removal was 30% at energy density of 50J/L in the case of positive corona discharge and 90% at 

250J/L for negative discharge. It was found that the existence of CO2 in the base gas was not 

desirable. When CO2 was added to the base gas, the NOx concentration increased up to twice at 

920 J/L compared to the case of CO2 free for positive discharge. In the case of negative 

discharge, about 200 J/L more energy was needed to get 90% NOx reduction compared to the 

base case. In the case of C2H4 addition, NO was oxidized to NO2 for positive discharge and 

NOx was hardly removed. However, NOx was decreased with a lower energy density in the case 

of negative discharge. In the case of simulated gas (N2/O2/NO/H2O/CO2/C2H4 mixture), the 

NOx removal efficiency was more than 90% and the energy density was lower compared with 

the base gas. However, some byproducts such as CO, O3, NO3, and NO2 have been increased in 

the case of simulated gas. 

 

6.1.5. Surface plasma discharge reactor 

In 2011 and 2012, Jolibois et al. [76, 91] studied a wet-type reactor featuring a surface 

discharge. This system was studied, with a coil inserted in the electrical circuit during the 

treatment process, and also with a catalyst (γ-Al2O3). The simulated gas examined was a mixture 

of NO and air. Sodium sulphite (Na2SO3) was used to obtain the wet condition required. With 

wet conditions, the NOx removal efficiency is improved by dissolvingNO2 into the liquid as 

NO2- and NO3-ions [127]. However, the continuous absorption of nitrogen oxides causes 

saturation and acidification of the liquid, and results in the inhibition of further 

absorption.ByaddingNa2SO3, the nitrite and nitrate ions reduce to N2, and therefore gas 
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absorption is facilitated [128]. A comprehensive study was made of variations in voltage and 

frequency, and it was shown that the NOx removal efficiency was higher in relation to the signal 

frequency variations, rather than voltage variations. Furthermore, they showed that the removal 

efficiency was improved by inserting a coil between the power supply and the surface, and was 

also improved by using a catalyst. It was claimed that the inductance influenced the power 

consumed by the plasma. 

 

6.1.6. Complex unique types of reactors 

In 2009 and 2010, Matsumoto et al. [89, 90] developed a new pulse generator: the nanosecond 

pulsed generator. This can produce 80kV high voltage, with 2ns rise and fall time, 5ns pulse 

width and a pulse frequency of0-100pps. The authors claimed that this generator can achieve 

100% removal efficiency. The simulated gas examined was a mixture of N2 and NO. The 

nanosecond pulsed discharge was shown to have a distinct advantage in energy efficiency for 

NO removal when compared with sub-micro-second pulse discharge and other discharge 

methods. The effects of repetition ratio and applied voltage were studied, and it was shown that 

the NO removal ratio increased with an increase in the pulse repetition ratio and by increasing 

the peak of applied voltage due to the more discharge energy. In addition, it was shown that the 

positive pulse voltage gave a higher NO removal ratio than the negative pulse voltage when 

delivered at the same repetition rate in the case of lower applied peak voltage. On the other hand, 

there were no changes between the NO removal via positive and negative pulse voltage in the 

case of the higher applied peak voltage. Unlike previously mentioned studies, in this case, the 

authors studied the effects of reactor geometry. They showed that the NO removal ratio was 
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increased by using a smaller reactor internal diameter. In addition, the NO removal ratio was 

increased by using a longer reactor, since the gas residence time in the reactor was also 

increased. Another important result of this study was that the NO removal ratio was increased 

considerably with the presence of O2 and water fed by bubbling into the gas stream. This result 

demonstrated that the introduction of O2 and water in this way is more effective for NO removal 

due to the effectiveness of the OH radicals or O radicals. In the 2010 study[90], it was shown 

that the nanosecond pulse discharge had more advantages than DBD and corona discharge as 

regards NO energy efficiency and the NO removal ratio. 

In Table 3 is an overview of the papers studied, considering NTP for NOx removal from 

simulated gases. 
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Table 3 

Overview of published papers featuring NTP for NOx removal from simulated gases. 

Authors Year Reactor type Gas type 
Catalyst/ 
adsorbent type 

Reactor 
inlet 
temperature 

Flow rate Power  generator 
Peak 
voltage 

Peak pulse 
frequency 

The range of 
studied energy 
density 

Mizuno et al. [79] 1999 DBD reactor 
Simulated gas (N2O/ 

O2/N2/CO2/H2O)   
- 

20, -196°C,  

-114°C 
1-8 L/min 

Pulses generated by 

DC voltage supply 
30kV 60Hz - 

Yamamoto 

et al. [80] 
1999 

Packed-bed DBD 

reactor 

Simulated gas  

(N2/NO) 
BaTiO3 Room temp. 1-2 L/min 

AC high voltage 

supply 
15kV 60Hz - 

Namihira et al. 

[81, 82] 

2000 

2001 
Corona reactor 

Simulated gas  

(NO/N2/O2/H2O) 
- 29.2C 2-12 L/min 

Pulses generated by 

DC voltage supply 
49.2kV 13pps - 

Rajanikanth  

and Rout[83] 
2001 

Packed-bed DBD 

reactor 

Simulated gas  

(NO/N2/CO2/O2) 

Al2O3, Al2O3-

Pd, BiTiO3 
Room temp. 2 L/min 

Pulses generated by 

DC voltage supply 
50kV 125pps 10 – 60 J/L 

Ravi et al. [116] 2003 DBD reactor 
Simulated gas  

(NO/N2/O2/H2O) 
- 

Room temp. 

and 200ºC 
2 L/min 

AC high voltage 

supply 
16kV 60Hz 0 – 160 J/L 

Ravi et al. [84] 2003 

Combined DBD 

reactor with 

catalyst 

Simulated gas  

(NO/NO2/O2/N2/ 

ethylene, ammunia) 

V2O5-

WO3/TiO2 

100, 150 and 

200ºC 
2 L/min 

AC high voltage 

supply 
14kV 60Hz 0 – 160 J/L 

Arai et al. [85] 2004 Corona reactor Simulated gas (N2/O2/NO) - - 1 L/min 
DC high voltage 

power supply 
15kV - 0-1500 J/L 

Saito et al. [87] 2006 Corona reactor 
Simulated gas 

(N2/O2/NO/H2O/CO2/C2H4) 
- - 1 L/min 

DC high voltage 

power supply 
15kV - 0-2500 J/L 

Matsumoto 

et al. [89, 90] 

2009 

2010 

Pulsed streamer 

discharge reactor 

Simulated gas  

(N2/ NO) 
- - 2 L/min 

Nanosecond pulsed 

generator 
80kV 50pps - 

Jolibois 

et al. [76] 
2012 

DBD / Surface 

plasma reactor 

Simulated gas  

(N2/NO) 
γ-Al2O3 Room temp. 1 L/min 

AC high voltage 

supply 
20kV 5kHz 0 – 190 J/L 

Wang et al. [92] 2012 DBD reactor 
Simulated gas  

(N2/NO) 
- - 10 L/min 

AC high voltage 

supply 
30kV 1kHz 100 – 800 J/L 

Vinh et al. [93, 

94] 
2012 DBD reactor 

Simulated gas  

(N2/NO/O2/PM) 
- Room temp. 

0.5, 1 and 

2 L/min 

Alternative high 

voltage supply 
15kV 50Hz 0 – 300 J/L 
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6.2. NOx removal from diesel engines exhaust gas 

6.2.1. DBD reactor 

In 2008, Rajanikanth et al. [75] studied two different types of dielectric barrier discharge 

rectors (wire-cylinder and pipe-cylinder)using simulated gas and real diesel engine exhaust. It 

was shown that, due to a shorter discharge gap, the pipe-cylinder reactor had more NOx removal 

efficiency than the wire-cylinder reactor. The reason is the consumed power of the plasma 

discharge in the discharge gap which depended inversely on the gap length. They claimed that 

the average electric field in their pipe-cylinder reactor with 1.625mm discharge gap is about 140 

kV/cm and the corresponding electron energy is about 13eV, which is higher than the chemical 

bond energy of NO (6.50eV), NO2(3.11eV), and CO(11.12eV) molecules. They showed that for 

an energy density of higher than 30 J/L, NO removal efficiency for the pipe-cylinder is about 20-

25% greater than that of the wire-cylinder reactor. However, for the NOx removal efficiency, it is 

almost the same after the energy density of 120J/L. In this year, in another paper [109], they 

performed this experiment on cascaded plasma adsorbent and achieved the same results - the 

pipe-cylinder reactor had superior NOx removal efficiency when compared with the wire-

cylinder reactor.  

In 2011, Mohapatro et al. [111] studied a crossed flow dielectric barrier discharge reactor on 

the removal of NOx from a 3.75kW diesel engine. This reactor consisted of 9 electrodes with the 

gas flowing radially rather than axially toward the electrodes. This unique feature of this new 

DBD reactor improved the performance of NOx removal from diesel engine exhaust due to the 

higher discharge and longer residence time. Since their results were obtained without using any 
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catalysts/adsorbents, the authors claimed that by using a cross flow DBD reactor they could 

remove a significant amount of NOx from diesel engine exhaust with less energy. For example in 

one case, with nine electrodes, the DeNO was 100% and DeNOx was 95% with an energy 

efficiency of almost 3.5 g/kWh NO. However, with one electrode, the DeNO was 74% and 

DeNOx was 45% with an energy efficiency of almost 23.1 g/kWh NO. The voltage source in this 

study was a pulse generator with a peak voltage of 25kVand frequency of 75pps.The pulse rise 

time was 20ns and the pulse duration was13ms. 

6.2.2. Packed bed DBD reactor 

In 2002, Rajanukanth et al.[98] compared the results for filtered real diesel engine exhaust 

and simulated gas. They used a DBD reactor alone, plus a packed bed DBD reactor (a hybrid 

adsorber plasma reactor-HAPR) with three different molecular sieves as adsorbent beads: MS-

3A, MS-4A and MS-13X. Their experiments were conducted at the room temperature and also 

200ºC (the average exhaust temperature in urban driving cycles). A 6kW diesel engine was used 

to study the effect different NTP reactors on filtered real diesel engine exhaust and the 

concentration of NO, NO2, CO, CO2 and aldehydes was considered during all the experiments. A 

single-phase AC supply with a high voltage range from 15kV to 25kV and a frequency of 

100ppswas employed. It was claimed that the hybrid adsorber plasma reactor (HAPR) 

successfully demonstrated NOx removal from diesel engine exhaust.  It was shown that the NOx 

removal efficiency when using a plasma reactor alone is 36%. This efficiency increased with the 

HAPR to 73% at room temperature and 78% at 200ºC. It was also determined that MS13X was 

the superior adsorbent for NOx removal. 
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In 2003, Yamamoto et al. [16] investigated the effect of non-thermal plasma on a filtered 2kW 

diesel engine exhaust at different loads. Three different plasma reactors were evaluated: pulse 

driven DBD reactor, pulse driven dielectric packed bed reactor and AC driven dielectric packed 

bed reactor. BaTiO3 ferroelectric pellets were used for the packed bed DBD reactor. The 

characteristics of the power supply were: a peak voltage of 25kV, 1.2ms pulse width, with 13.7ns 

pulse rise time for the packed bed DBD reactor and 6.1ns for the DBD reactor. The frequency of 

the AC supply was 60Hz and pulse supply was 210Hz. It was found that the AC packed-bed 

reactor and pelletless pulsed reactor showed better performance in terms of the discharge power 

and NOx removal efficiency, with minimum reaction products for a given power at no load 

engine. When the engine load exceeded 50%, there was only a limited decrease in NO reduction 

and all the reactors performed more or less equally. It is claimed that the total operating cost of 

the plasma-chemical hybrid system can be one-third to one-fifth of the conventional selective 

catalytic process.  The key finding of this study is the amount of power consumption required for 

various configurations.  Power consumption for the pulsed corona reactor without pellets is less 

than the pulsed corona with BaTiO3 pellets, and both are less than the 60Hz AC packed bed 

plasma reactor. 

In 2006, Rajanikanth et al. [41] studied the injection of nitrogen radicals into the real diesel 

engine exhaust for the technique of NOx removal by plasma. N2 gas was passed through a 

separate plasma reactor in order to produce N radicals which were then injected into the 

treatment zone. Both the NTP reactor and the reactor which produced N radicals are DBD 

reactor. The removal efficiency without injecting of N radicals has been compared with 

considering the injection of N radicals. The pulse generator was used in this study as a high 
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voltage generator in the range of 14kV to 25kV, and the pulse frequency was 130pps. It was 

shown that by injecting N radicals, there was quite significant improvement in NOx removal 

efficiency. However, the specific energy density, which is defined as the division of power to 

flow rate, increased considerably. It is claimed that this increment in removal efficiency without 

the use of catalysts or adsorbents is an important step toward NO removal by a plasma reactor 

alone. 

In 2009, Srinivasan et al. [46] studied three different voltage energisations (AC/DC/pulse) on 

the removal of NOx from both filtered and unfiltered diesel engine exhaust. A packed bed DBD 

reactor was used, with dielectric beads. It was claimed that the performance of pulse power was 

better than AC and both were better than the DC energisation. The average electric field in the 

AC case is not as high as that observed in the pulse energised reactor or for the DC case; the 

average energy gained by the electrons under DC is insufficient to generate any radicals. In other 

words, the same removal efficiency could be achieved with less specific energy density in the 

pulse power than with AC power or with DC power.  

 

6.2.3. Combined DBD reactor with catalyst or absorber 

In 2003, Rajanikanth et al. [100]investigated a cascaded system of plasma and  adsorption 

process for NOx and total hydrocarbon (THC) removal from a 6kW real diesel engine’s exhaust. 

A part of the exhaust gas was passed through a particulate filter first to filter out solid 

particulates and then fed to the reactors. Three different systems were evaluated: a DBD reactor, 

an adsorbent reactor and a cascade system. The cascade system consisted of a DBD reactor 
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upstream of an adsorbent reactor. Three different adsorbent beads were used: activated alumina, 

MS-13X and activated charcoal. The concentration of NO, NO2, NOx, CO, THC and aldehydes 

were measured at different temperatures. A high voltage AC system with a peak voltage of 25kV 

and frequency of 100pps was used in this study. It was shown that the NOx removal efficiency 

was higher with the plasma-associated adsorption (cascaded) process when compared with the 

individual processes, and the removal efficiency was found to be almost invariant in time. For 

example, in one special case, DeNOx was 10% for SED 52J/L, however, for an adsorbent reactor 

alone, it was 14% and for a cascaded system, it was 25% for SED 52 J/L. In addition, activated 

charcoal and MS-13X were more effective for NOx and THC removal, respectively. It was also 

shown that NOx removal efficiency decreases with an increase in temperature for all the three 

adsorbents. However, the temperature was more effective for MS-13X and it proved less 

effective for the two other adsorbents. For example, with MS-13X, the NOx removal efficiency 

was almost 65% at 25ºC and 45% for 140ºC. 

In 2004, Rajanikanth et al. [101]again studied the cascaded plasma catalyst; however, they 

used a filtered diesel engine exhaust at a different load and also used SCR (V2O5/TiO2) as a 

catalyst. It was shown that the NO removal efficiency decreased with an increase in exhaust 

temperature. In addition, the DeNO decreased when increasing the engine load, due to an 

increase in the initial concentration of NO. They showed that with the catalyst alone under 

200ºC, NOx removal was not affected. However, the plasma-assisted catalytic reactor was 

successfully employed to remove NOx from diesel engine exhaust at different loads of the 

engine. In one particular instance, the NOx removal efficiency were 33%, 27% and 87% 

respectively for a plasma reactor, a catalyst reactor and a plasma-assisted catalyst reactor. 
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In 2007, Rajanikanth et al. [104] performed the same experiment as [74] (cited previously), 

but this time in a more detailed fashion. The researchers examined a plasma reactor with an 

adsorbent and then a catalyst reactor, while using different kinds of adsorbent and catalyst 

materials. They showed that between three different adsorbent materials (activated charcoal, MS-

13X, activated alumina), the activated charcoal cascaded with plasma exhibited superior 

adsorption properties. Furthermore, MS-13X cascaded with plasma gave higher NOx removal 

efficiency when compared to activated alumina cascaded with plasma. It was shown that the 

performance of the cascaded process at high temperatures was poorer than that at room 

temperature, due to the poor performance of plasma and adsorbent processes at higher 

temperatures. Examined four-stage cascaded plasma catalyst was also examined. When 

comparing the four-stage cascaded plasma catalyst with the two-stage model, the four-stage 

catalyst showed superior performance. It was expressly claimed that the cascaded plasma-

adsorbent reactor could be a viable option for low temperature (<200 ºC) stationary diesel 

exhaust NOx treatment. However, the cascaded plasma-activated catalytic reactor could also be a 

better option for non-stationary diesel exhaust NOx treatment, since it is not significantly affected 

by the plasma reactor temperature. 

In 2009, Rajanikanth et al. [110] presented a novel way for generating high voltage for the 

plasma reactor in diesel engine exhaust. A solar powered high frequency electric discharge was 

developed to improve the size and specific energy density required in comparison with the 

traditional repetitive pulse or AC energisation. This generator can produce up to 16kV high 

voltage with a high frequency of 12.2 kHz and a pulse rise time of 24ns. This new high voltage 

generator was employed with DBD reactors, and different systems were examined, such as 
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cascaded plasma-adsorbent and cascaded plasma-catalyst reactors. It was shown that under this 

solar-powered high-frequency AC application, there was a considerable improvement in the NOx 

removal, when compared with other generators. For example, in the DBD reactor, NOx removal 

efficiency was 22%, 27% and 46% respectively for the 50Hz ordinary AC power supply, 

repetitive pulse power supply and 12.2 kHz AC power supply energised by solar powered 

battery. In addition, the cascaded system of solar-powered generator with adsorbent had superior 

performance when compared with other systems. It was claimed that this solar-powered high 

voltage power supply could be designed for a possible retrofit in vehicles. It could be used on top 

of a vehicle with appropriate mechanical fixtures. However, it would need modification to the 

reactor and the plasma in order to accommodate the actual exhaust flow-rate and temperature. 

6.2.4. Corona reactor 

In 1998 and 1999, Puchkarev et al. [78, 96, 97] investigated the effect a transient, non-

equilibrium plasma on NOx removal. They developed a pulsed corona discharge with a peak 

voltage of 49kV, a frequency of 1 kHz, a pulse rise time of 20ns and a pulse duration between 50 

and100ns. They studied the effects of diameters of inner and outer electrodes, reactor length, 

annular dielectric inserts to prevent arcing, flow rates, pulse repetition rates, plasma volume, and 

pulsed and mean energy deposition into the gas on NO removal. These parameters were studied 

in order to determine the optimum conditions for cost effective NO/NOx removal. They showed 

that short pulses are more effective for efficient energy usage rather than longer pulses. In 

addition, the energy cost using positive corona is 1.5-2 times higher than that for negative corona 
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for the same NOx removal. Note that the energy cost defined in this study was calculated as 

follows: 

)molecule/eV(
NOF

fE

x



250  (24) 

where is the energy cost, E is the energy deposition into the gas, f is the frequency and F is 

the flow rate. xNO is the NOx removal in ppm. 

The researchers realized that a high energy density generated a lower energy cost than a low 

energy density. They also showed that the energy cost for NO removal varied very little by 

varying the plasma volume. However, it changed more significantly for NOx removal. Moreover, 

they gave evidence that the energy cost and NO/NOx removal depended on the initial 

concentration of different species, such as NO, HC, particulate matter and also the gas 

temperature. 

Koga et al. [88] compared the effect of corona discharge for NOx removal in engine exhaust 

gas and simulated gas. They considered a mixture of N2/O2/NO/NO2/H2O/CO2/C2H4 as the test 

gas. It was shown that the NOx removal characteristics in real exhaust and simulated gas were 

similar if the composition were same. Effect of flow rate and residence time has been studied as 

well. The flow rate was changed in the range of 0.5 to 20 L/min. By increasing the residence 

time, NOx removal has been increased. Furthermore, the energy density for NOx removal 

depends on initial NOx concentration. When initial concentrations were 160 ppm and 24 ppm, 

the required energy densities for 90% NOx removal were 200J/L and 700J/L, respectively. 

In 2007, Vinogradov et al. [107] investigated on the DC corona discharge technology for NOx 

removal from diesel engine exhaust. Various geometrical parameters of a rectangular corona 

reactor were studied in order to find the optimum parameters for the best reactor performance. A 
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high voltage DC system with a peak voltage of 50kV was used in this study. Comprehensive 

research was performed on a polarity of the corona discharge, and this showed that as regards 

both cleanness (mass of NOx removed relative to its initial mass),and efficiency, negative 

polarity is preferable. It was shown that the cleanness was almost independent of the engine load; 

in other words, it did not depend on the initial NOx concentration. However, the efficiency is 

relatively low for0kW and twice as high for 2.5, 4.5, and 7.5 kW diesel engines. Therefore, it 

was concluded that this type of corona reactor is more suitable for higher engine loads. In 

addition, a comprehensive study was presented of the effective parameters of the reactor which 

influenced the residence time.  In 2008 [108], they studied the same corona reactor, but with a 

pulsed discharge. It was shown in this case, that the cleanness and efficiency are independent of 

the polarity of the electrodes; however, the positive polarity provided a more stable discharge, 

and a lower concentration of ozone than negative polarity. 

6.2.5. Effect of carbonaceous soot oxidation on NOx removal 

Rajanikanth et al. [74, 75, 102, 105, 106] studied the effect of carbonaceous soot oxidation on 

NOx removal. They used unfiltered diesel engine exhaust which contains carbonaceous soot, and 

measured the concentration of CO2, CO, NO, NO2, THC and aldehydes. They were compared 

using six different reduction systems: a DBD alone, an adsorbent alone, a cascaded plasma-

adsorbent reactor (PRAR), a pellet bed catalyst reactor, a honeycomb catalyst reactor and a 

cascaded plasma-catalytic reactor (PRCR). A high voltage AC system with a peak voltage of 

25kV and a frequency of 130pps was employed on a 4.4kW diesel engine exhaust at no load 

condition. Three different temperatures were examined: 24ºC, 100ºC and 150ºC.  
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It was shown that the NOx removal efficiency using the plasma technique was improved with 

the presence of carbonaceous soot in the diesel engine raw exhaust gas due to the reactions with 

NO2. Taking as an example one case, for a specific energy of 50J/L, NOx removal efficiency 

was 45% for an unfiltered diesel engine; however, DeNOx was 30% for filtered diesel exhaust 

gas [74].In Table 4, the initial concentration of the main substances in a diesel engine exhaust 

that participate in plasma NOx removal for a 2.6kW diesel engine at 40% load have been 

tabulated [75, 109]. 

 

Table 4 

Initial concentrations of the main substances in diesel engine exhaust. 

Substance Concentration (ppm) or volume fraction (%) 

O2 12.5% 

CO2 4.9% 

CO 1770 ppm 

NO 600 ppm 

NO2 66 ppm 

NOx (NO+NO2) 666 ppm 

 

In addition, different adsorbent beads were tested, such as activated charcoal, molecular 

sieves, MS-13X and activated alumina. Adsorbent reactor alone and PRAR approved to show 

good performance in NOx removal; however, they did not exhibit efficient CO removal. They 

used various catalysts, such as conventional two-way and three-way catalysts, but only studied 

CO removal with the catalyst reactor. It was shown that generally, catalysts have a positive effect 
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on CO removal. Although the two-way catalyst exhibits a more effective CO removal than the 

three-way catalyst, the problem is that the catalyst did not show effective results on NOx removal 

due to a high oxidising environment in the diesel engine exhaust. 

In Table 5, an overview of the studies considering NTP for NOx removal from diesel engine 

exhaust is schematized.  
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Table 5 

Overview of the published papers considering NTP for NOx removal from diesel engine exhaust. 

Authors Year Reactor type Gas type Catalyst/adsorbent type 
Reactor 
temperature 

Flow 
rate 

Power  generator 
Peak 
voltage 

Peak pulse 
frequency 

The range of 
studied energy 
density 

Puchkarev et al. 

[78, 96, 97] 

1998 

1999 
Corona reactor Diesel exhaust gas - - 

1-10 

L/min 
Pulse supply 49kV 1kHz - 

Rajanikanth  

and Ravi[98] 
2002 

DBD reactor / 

Combined DBD 

reactor with 

adsorbent 

Simulated gas (NO in 

N2, O2, CO) / Diesel 

engine exhaust at no 

load 

MS-3A, MS-4A, MS-13X 
Room temp. 

and 200ºC 
2 L/min 

AC high voltage 

supply 
25kV 100pps - 

Yamamoto 

et al. [99] 
2003 

DBD reactor / 

Packed bed DBD 

reactor 

Diesel engine 

exhaust at various 

loads 

BaTiO3 Room temp. 3 L/min 

AC high voltage 

supply / pulse 

supply 

25kV 
60Hz for AC / 

210Hz for pulse 
- 

Rajanikanth 

et al. [100] 
2003 

DBD reactor / 

Combined DBD 

reactor with 

adsorbent 

Diesel engine 

exhaust at no load 

and load 50% 

Activated alumina,MS-13X, 

activated charcoal 
Room temp. 2 L/min 

AC high voltage 

supply 
25kV 100pps 0 – 100 J/L 

Rajanikanth  

and Ravi[101] 
2004 

DBD reactor / 

Combined DBD 

reactor with catalyst 

Diesel engine 

exhaust at various 

loads 

SCR (V205/Ti02) 
100, 150 and 

200ºC 
2 L/min Pulse supply - 80pps 0 – 100 J/L 

Rajanikanth 

et al. [74, 102, 

105, 106] 

2004 

2005 

2007 

DBD reactor / 

Combined DBD 

reactor with catalyst 

and adsorbent 

Diesel engine 

exhaust at various 

loads 

Adsorbent: activated 

charcoal, molecular  sieves 

MS-13X, activated  alumina / 

catalyst: conventional 2-way  

and 3-way catalyst, non-

conventional activated 
Alumina(A12O3) 

24, 100, 150ºC 4 L/min 
AC high voltage 

supply 
25kV 130pps 0 – 100 J/L 



43 

 

 

 

Rajanikanth and 

Sushma[103] 
2006 

DBD reactor / 

Combined DBD 

reactor with 

adsorbent 

 

Diesel engine 

exhaust at various 

loads 

BaTiO3 Room temp. 4 L/min Pulse generator 25kV 130pps - 

Koga et al. [88] 2006 Corona reactor 

engine exhaust gas 

and Simulated gas 

(N2/O2/NO/NO2/H2O

/CO2/C2H4) 

- - 
0.5-20 

L/min 

DC high voltage 

power supply 
15kV - 0-2500 J/L 

Rajanikanth and 

Srinivasan[104] 
2007 

DBD reactor / 

Combined DBD 

reactor with catalyst 

and adsorbent 

Diesel engine 

exhaust at various 

loads 

Adsorbent: activated 

charcoal, molecular  sieves 

MS-13X, activated alumina / 

catalyst: alumina 

24, 100, 150ºC 4 L/min 
AC high voltage 

supply 
25kV 130pps 0 – 100 J/L 

Vinogradov 

et al. [107, 108] 

2007 

2008 
Corona reactor 

Diesel engine 

exhaust 
- 25ºC 8 L/min 

DC high voltage 

supply / pulse 

supply 

50kV 1000Hz 0 – 140 J/L 

Rajanikanth and 

Sinha [75, 109] 
2008 

DBD reactor / 

Combined DBD 

reactor with 

adsorbent 

diesel engine exhaust 

at various loads  and 

Simulated gas 

(NO/N2/O2),  

MS-13X/carbon molecular 

sieves(CMS)/activated 

charcoal 

Room temp. 2 L/min Pulse supply 25kV 130pps 0 – 190 J/L 

Srinivasan et al. 

[46] 
2009 

Packed bed DBD 

reactor 

Diesel engine 

exhaust at various 

loads 

- Room temp. 2 L/min 

DC/ AC high 

voltage supply 

/pulse supply 

25kV 130pps 0 – 190 J/L 

Rajanikanth 

et al. [110] 
2009 

DBD reactor / 

Combined DBD 

reactor with catalyst 

Diesel engine 

exhaust at various 

loads 

Commercially available 

catalytic 

converter 

Room temp. 
2-4 

L/min 

AC high voltage 

supply /AC high 

voltage supply (solar 

powered battery) / 

pulse supply 

16kV for 

AC, 25kV 

for pulse 

50Hz for AC, 

12.2kHz for AC 

(solar), 87pps for 

pulse 

90 J/L 

Mohapatro 

et al. [111] 
2011 

Cross-flow DBD 

reactor 

Diesel engine 

exhaust at load 27% 
- - 

2-25 

L/min 
Pulse supply 20kV 75pps 0 – 550 J/L 
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7. Conclusion 

As presented in this review, non-thermal plasma has been shown to have promising potential 

for the removal of NOx from exhaust gases. Many studies have been conducted in order to 

improve the existing technologies and to develop new ways to increase the performance of NTP. 

Various combinations of NTP with catalyst and adsorbent have also been initiated in order to 

increase the NOx removal efficiency. Study of the published papers indicates that pulse power 

technology is more efficient for generating the plasma, and has increasingly been applied in 

recent years. Furthermore, combining NTP with a catalyst or adsorber while using a packed bed 

reactor can be more effective than NTP alone. The NOx removal efficiency from the exhaust gas 

in diesel engine is higher than simulated gases due to the presence of carbonaceous soot in the 

emission gas. Most of the presented studies are not beyond a laboratory scale. There are also 

some contradictions in some aspects of NTP, such as what polarity is optimum for NOx removal. 

Regarding the existing publications, energy consumption is the main challenge of using this 

technology. More comprehensive researches should be considered to improve the electrical 

aspects and also reactor design. Additionally, even fewer studies investigated the economics of 

NTP technology. In the view of global health and environmental concerns and increasingly 

stringent emission regulation restrictions, NTP technology is predicted to become commercially 

viable in the future, and therefore, more research is a necessity in order to make this technology 

widely available. 
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