March 16, 2009 Time: 04:07pm tl-vl.4

01

02

03

04

05

06

07

08

09

23

24

25

26

39

40

41

42

43

44

45

The Role of Nonlinear Relapse on Contagion
Amongst Drinking Communities

Ariel Cintron-Arias, Fabio Sanchez, Xiaohong Wang,
Carlos Castillo-Chavez, Dennis M. Gorman, and Paul J. Gruenewald

Abstract Relapse, the recurrence of a disorder following a symptomatic remission,
is a frequent outcome in substance abuse disorders. Some of our prior results sug-
gested that relapse, in the context of abusive drinking, is likely an “unbeatable”
force as long as recovered individuals continue to interact in the environments that
lead to and/or reinforce the persistence of abusive drinking behaviors. Our earlier
results were obtained via a deterministic model that ignored differences between
individuals, that is, in a rather simple “social” setting. In this paper, we address the
role of relapse on drinking dynamics but use models that incorporate the role of
“chance”, or a high degree of “social” heterogeneity, or both. Our focus is primarily
on situations where relapse rates are high. We first use a Markov chain model to
simulate the effect of relapse on drinking dynamics. These simulations reinforce the
conclusions obtained before, with the usual caveats that arise when the outcomes of
deterministic and stochastic models are compared. However, the simulation results
generated from stochastic realizations of an “equivalent” drinking process in pop-
ulations “living” in small world networks, parameterized via a disorder parameter
p, show that there is no social structure within this family capable of reducing the
impact of high relapse rates on drinking prevalence, even if we drastically limit the
interactions between individuals (p =~ 0). Social structure does not matter when
it comes to reducing abusive drinking if treatment and education efforts are inef-
fective. These results support earlier mathematical work on the dynamics of eating
disorders and on the spread of the use of illicit drugs. We conclude that the sys-
tematic removal of individuals from high risk environments, or the development of
programs that limit access or reduce the residence times in such environments (or
both approaches combined) may reduce the levels of alcohol abuse.
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network - social influence - drinking dynamics.
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344 A. Cintron-Arias et al.
1 Introduction

The mechanisms responsible for observed drinking patterns within and
between populations are complex ([26, 43, 58]; and references therein). The devel-
opment of compartmental and mathematical frameworks geared towards the iden-
tification of key “transition” mechanisms that increase the percentage of abusive
drinkers must factor in the impact of individuals’ socioeconomic characteristics,
their propensity to drink (heavy drinking tends to run in families), changes in
local environments (going to college), treatment failure, ineffectiveness of edu-
cational efforts, cultural norms and community values ([43]; and references
therein).

The term drinking (population) dynamics refers to the study and identification
of “average” mechanisms, at the individual level, responsible for observed drinking
patterns within the organizational and temporal scales of interest. We model drink-
ing dynamics at the population level as the result of individuals’ social contacts
in pre-specified environments (“drinking contagion”). This modeling approach has
proved useful in the identification of the mechanisms behind social patterns that
are thought to be, in part, an outcome of intense interactions between individuals
in shared social environments. This modeling approach has been applied to the
study of the spread of scientific ideas and innovations [5]; in studies that focus on
the mechanisms behind the observed increases in prevalence of eating disorders
[28]; in studies that address the impact of relapse on the distribution of drinkers
[53, 54]; in studies that envision violence as an epidemic [50]; as explanation for the
observed growth or decline of crime in cities [27]; and in studies that highlight the
explosive increases in the use of illicit drugs, such as ecstasy [38, 55]. Researchers
are interested in studying the impact of individual drinking habits and preferences’
variability at multiple levels of social organization: from small “isolated” to highly
connected communities; and over short or long time horizons. Models have been
used to explore the capacity of drinking environments to support communities of
drinkers as well as the impact of individuals’ movements between drinking venues
on the overall distribution of drinking types [43].

The National Institute on Alcohol Abuse and Alcoholism estimates that 18 mil-
lion Americans suffer from alcohol abuse or dependence. Alcohol-related problems
cost the United States (U.S.) nearly $185 billion annually [44] while alcohol abuse
was responsible for nearly 80,000 fatalities per year during 2001-2005, and it is now
the third leading cause of death in the U.S. [17]. Prevention and control efforts that
include treatment and education programs that target specific populations including
children [36] or adolescents [25] are in need of improvement. Among the many
problems confronting these programs are the very high rates of relapse after treat-
ment that are observed. Up to 70% of treated alcohol abusers relapse after treatment
(reviewed in [54]). Mathematical studies can be particularly effective as guides to
the evaluation, testing and implementation of single or multiple intervention strate-
gies over short or long time scales. This is particularly true in the study of chronic
relapsing diseases such as alcohol addiction.
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The Role of Nonlinear Relapse on Contagion Amongst Drinking Communities 345

1.1 Social Dynamics, Disease Transmission,
and Social Structure

Several aspects linked to disease transmission depend strongly on a population’s
social dynamics. Disease dynamics can often be driven by factors that include het-
erogeneity in behavior, frequency of use of mass transportation, travel patterns, and
cultural norms and practices. Examples where the use of mathematical models have
generated useful insights include studies on the role of behavior on the transmission
dynamics of sexually transmitted diseases like gonorrhea or HIV ([3, 16, 30, 31];
and references therein) and studies on the intensity and frequency of travel on the
spread of communicable diseases such as SARS [21, 55] and influenza [23, 35].
The most significant study of the role of heterogenous mixing on the transmis-
sion dynamics of gonorrhea was carried out by Hethcote and Yorke [30]. These
researchers through their introduction of the concept of core group (outliers in the
distribution of sexually-active individuals) showed that most secondary cases of
gonorrhea infections could be traced to the core (most connected nodes in a network
of sexually-active individuals). Furthermore, they showed that focusing surveillance
and treatment on core subpopulations resulted in significant reductions in gonorrhea
prevalence. The public health policy at that time wrongly focused on the “random”
testing of women, a policy derived from data that showed that a large percent-
age of gonorrhea infected women are indeed asymptomatic ([30]; and references
therein).

The systematic study of the role of heterogenous social landscapes on disease
dynamics began in direct response to efforts to stop the HIV epidemics. Efforts
to compute explicit mixing matrices (who had interactions with whom) and to
study the impact of sexual preference in the context of HIV transmission intensified
([3, 6-8, 12—15, 31-34]; and references therein).

Most recently, efforts to explore disease dynamics in the context of heteroge-
nous (fixed) social network structures have proved quite fruitful. The study of
epidemics on network has increased our understanding of the role of “social”
heterogeneity on disease dynamics ([46]; and references therein) but the impact
of the efforts of the mathematical “network” community goes beyond the study
of epidemics on networks, as is evident from the wealth of applications found
in the literature (see [4, 46, 47, 57]; and references therein). There is a body of
research that contributes to the characterization and validation of some classes
of network structures with data [40]; structures whose statistical properties are
most often captured via power law distributions [47]. The class of best known
or more popular models of this type include small-world [57] and scale-free [4]
networks.

Social network analysis is the result (to a great degree) of major contributions
by social scientists [56]; and references therein). Recent contributions by mathe-
matical scientists ([46] and references therein; [47, 57]) have increased interactions
between social and mathematical scientists. Applications that make use of special-
ized network structures include studies of the structure of scientific co-authorship



March 16, 2009 Time: 04:07pm tl-vl.4

01

02

03

04

05

06

07

08

09

23

24

25

26

39

40

41

42

43

44

45

346 A. Cintrén-Arias et al.

networks [46], the organizational structure of committees in the U.S. House of
representatives [51], the structure of internet networks [49], the properties of contact
tracing networks for SARS [40], and the nature of sexual partnership networks [37].
Efforts to study stochastic epidemic and social processes on networks have also
been carried out in the context of homeland security ([22] and references therein)
and drinking [11]. Our goal here is “theoretical”, that is, we focus on the study
of drinking on some networks characterized by scaling laws ([46]; and references
therein). Specifically, the primary objective is to explore the role of network struc-
ture on the distribution of drinkers in communities (small world type) where relapse
rates are high.

This manuscript is organized as follows. Section 2 revisits the results in [53, 54]
on the role of relapse on the distribution of drinking types. Section 3 introduces the
stochastic analog of the deterministic model to highlight the role of variability in the
distribution of drinking types of Section 2. Section 4 simulates one version of the
stochastic drinking dynamics in a small-world network. Finally, Section 5 discusses
the role of relapse in these settings.

2 A Deterministic Contagion Model in Well-Mixed
Drinking Communities

In the drinking model formulation proposed in [54], the population is divided in
three classes: S(7), moderate and occasional drinkers [19], D(¢), problem or heavy
drinkers [20, 45], and temporarily recovered, R(¢). Table 1 presents the definitions
used in [54] where it is assumed that the population is composed of “average”
individuals that interact at random with each other. The proportion of contacts of
S-individuals with D-individuals per unit of time is therefore proportional to D/N
where N = S + D + R, denotes the total size of the community. The progression
rate from S to D and the relapse rate from R to D depend on frequency-dependent
(random) interactions.

Table 1 State variables and parameters of the contagion model in Sdnchez et al. [54]

State variable Description

S(t) Number of occasional and moderate drinkers at time ¢

D(t) Number of problem drinkers at time ¢

R(1) Number of recovered individuals at time 7

Parameter Description

B Effective transmission rate (average number of effective interactions

per occasional and problem drinker per unit of time)

P Community-driven relapse rate (average number of effective interactions
per problem drinker and recovered individual per unit of time)

¢ Per-person treatment rate

" Per-person departure rate from the drinking environment

N Community size (permanent population size)
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In [54] the model is given by the following set of nonlinear differential equations:

ﬁ— N — Stw— S(t) 1
oM ﬂ()N wS(1), ey
ab _ St%+ Rt&t) + ¢)D(t 2
dt—ﬂ()N p()N — (u+¢)D(), )
45— D(t RtBQ R(t 3
dt—¢()—p()N — nR(@), 3)
N = S(@)+ D(t) + R(), @)

where 8 denotes the per-capita effective contact rate (transmission rate), that is,
BSD/N denotes the rate of transitions from S to D, the result of the frequency-
dependent interactions between individuals in the classes S and D; u denotes the
per-capita departure rate from the system; p denotes the per-capita effective relapse
rate, that is, pRD/N denotes the rate of transitions from R to D, the result of
the frequency-dependent interactions between R and D; ¢ denotes the per-capita
recovery (treatment or education) rate; and uN denotes the total recruitment rate
into this homogeneous social mixing community. It is assumed that all “recruits”
are S-individuals. Hence, we set the S-recruitment rate equal to N as it guaran-
tees constant population size. The validity of the analysis is therefore tied to a time
horizon where changes in total population size are minimal.
The reproductive number under a treatment/education regime ¢ is given by

B

Ry =R(p) = ——.
¢ (@) P

)

‘R is a dimensionless quantity (ratio or number) that can be interpreted as the num-
ber of D-individuals “generated” in a population of primarily S-individuals sharing
a common environment. That is, if we start with S ~ N individuals and introduce
a “typical” D-individual then we expect R, secondary cases generated from the §
population per D-individual, but only at the start of the “outbreak”. Hence, Ry > 1
results in an exponentially growing D-community if N is large enough. We also
expect that when Ry < 1, the introduction of D-individuals in a population where
S ~ N (N large) will not result in the growth and (eventual) establishment of a
problem-drinking community (D-individuals). The above observations are on target
when the rate of relapse is linear, that is, p R rather than p R D/N. However, when
the relapse rate is nonlinear, namely, pRD/N, the outcome is not as “expected”.
The outcome depends on the ratios

szg[l—mm] ©)
p 1 I

R. == —2/—-E1, 7
,3|:1+7§0 Ro P] @

where R(¢) is defined in Equation (5); Ro = R(0) = /L.
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R, can be interpreted as the number of problem drinkers (D-individuals) generated
from the R-class as a result of the frequency-dependent interactions between the
R- and D-classes (R-individuals remain in the same environment). We observe
that R, > 0 if and only if R(¢) < 1. On the other hand R, > 0 but only as

long as
1
L>2 ——ﬁ>0.
uw+p Ro »p

We have not been able to interpret the meaning of R, in social terms. However, the
value of R., under some conditions, provides a sharp D-extinction threshold, that
is, a threshold that if crossed, would lead to the eventual elimination of the D-class,
independent of initial conditions (D(0)).

The distribution of drinking types, in the nonlinear relapse rate case, depends not
only on the thresholds Ry, R, and Ry but also on the size of the initial population
of problem drinkers, D(0). In [54] the following results were obtained:

1. If R(¢) > 1 then the D-class becomes established.

2. Whenever R, < R(¢) < 1 and R, < 1 or whenever R(¢) < R. < 1 the
D-class becomes (eventually) extinct.

3. Whenever R, < R(¢) < 1 and R, > 1 whether or not the D-class becomes
established is a function of the initial size of the class of D-individuals, D(0)
(see Fig. lc, d).

Numerical simulations Fig. 1a, ¢, dillustrate the role of initial conditions on drinking
dynamics. Nonlinear relapse leads to a system that supports two socially acceptable
coexisting stable equilibria (D = 0 and D > 0). Where the system ends depends
on initial conditions. Figures la, b show bifurcation diagrams for the number of
problem drinkers at equilibrium as a function of the reproductive number R(¢) (with
R, > 1).

A per-capita relapse rate greater than the per-capita recovery rate, p > ¢, leads
to explosive growth in the D-class as long as D(0) (the initial population of prob-
lem drinkers) is “large enough” (see Fig. 1a). The qualitative behavior displayed in
Fig. 1a is commonly called a “backward” bifurcation [54]. We further observe that
once the population of problem drinkers becomes established (R, < R(¢) < 1)
their extinction can only be carried out if ¢ increases to the point where R(¢) < R,
or if p decreases to the point where R, < 1. Figure lc, d, display D(t) versus ¢ to
illustrate, with a time series, the effects of initial conditions, D(0). We observe bista-
bility. The size of the initial number of problem drinkers determines whether or not a
D-community becomes established even under unfavorable conditions (R(¢) < 1).
When the per-capita relapse rate equals the recovery rate, p = ¢, we observe
(Fig. 1b) that the D-class grows (gradually) with R(¢); multiple endemic (non-
negative) stable D-equilibria will not co-exist in this case. When p = ¢, R(¢) < 1
guarantees the eventual extinction of the problem drinking class.
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Fig. 1 Numerical simulations of drinking model in a homogeneous drinking community. Panel (a)
shows a bifurcation diagram that involves the number of problem drinkers at equilibrium versus
the reproductive number R4, when ¢ < p. Panel (b) displays a bifurcation diagram illustrating the
special case when the recovery rate equals the relapse rate (¢ = p = 0.50). Here, R, < 1 provides
a sufficient condition that guarantees the eventual extinction of the population of problem drinkers.
Panels (c) and (d) display D(¢) versus ¢ under different initial conditions. In Panel (c) the initial
conditions are S(0) = 0.98N, D(0) = 0.02N and R(0) = 0; in Panel (d) they are S(0) = 0.95N,
D(0) = 0.05N and R(0) = 0. The parameter values used are: N = 10000, = = 0.50, ¢ = 0.50 and
p =17.00, 0.20 < B < 1.50 ( Panel (a)); N = 10000, u = 0.50, ¢ = p =0.50,0.20 < B < 1.50
(Panel (b)); N = 10000, u = 0.50, ¢ = 0.50 and p = 7.00, 8 = 0.90 (Panels (c) and (d))

3 A Stochastic Contagion Model

The stochastic model of this section is built from the deterministic model given by
System (1), (2), (3), (4) and is used to quantify the role of variability on drink-
ing dynamics. Here, we concentrate on an stochastic analog to the “mean field”
model given by Equations (1), (2), (3), (4), the deterministic model that supports
two positive equilibria (R, < Ry < land R, > 1).

The derivation of the stochastic model (continuous-time Markov chain) is stan-
dard (details are provided in an Appendix)—see for instance [1, 2, 52]). We carry
out simulations that highlight the differences between stochastic and deterministic
outcomes. Simulation outcomes (distributions) are later used to contrast the results
of stochastic simulations of the same drinking process in small-world networks.

The average behavior of the stochastic model is described in Table 2. The sim-
ulations of this deterministic version and stochastic analog are computed using
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Table 2 Collects the transition rates and infinitestimal probabilities of occurrence of the events
linked to a single drinking model outbreak. The dependence on 7 is omitted, writing S, D, and R,
instead of S(¢), D(t), and R(t), respectively

Rate at which Probability of transition

Event Transition event occurs  in time interval [,  + d]
Recruitment S—>S+1 uN uNdt

Moderate drinker removal S — S — 1 nS wSdt

Problem drinker removal D — D — 1 uD uDdt

Sober removal R— R-—1 WR WRdAt

Drinking contagion S—-S—-1,D—-D+1 ,BS% ﬂS%dt

Recovery D—-D-1,R—R+1 ¢D ¢Ddt

Relapse D—->D+1,R—-> R—-1 pR% pR%dt

identical epidemiological and social parameter values. It is not surprising to see
overall agreement between the dynamics of the deterministic model (black curve)
and the mean (over 50 realizations) dynamics of the stochastic model (grey curves)
when Ry > 1 (Fig. 2). The mean results are computed under the condition of non-
extinction of the D-class before the preselected time horizon. Setting Ry < R, < 1
leads invariably to the eventual extinction of the D-class in the deterministic
formulation but not always (as expected) in the stochastic formulation [1, 2].

700 T T T T

600 B

o
o
o
T
!

w IN

o o

o o
T T

Number of problem drinkers
N
o
o

100 -

s 1 1 L
0 10000 20000 30000 40000 50000
Time step

Fig. 2 Results from numerical simulations. 50 stochastic realizations ( grey curves) and numerical
solutions of the deterministic ( black curve) problem drinker class D(t) versus time ¢. For these
simulations the following values of parameters were used: N = 1000, 8 = 1.20, p = 7.00,
¢ = 0.50 and p© = 0.50 with Ry = 1.20 and the initial number of problem drinkers D(0) = 5
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Ry=1.20 (a) Ry=0.90 (b)
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Fig. 3 Histograms of D(T'), number of problem drinkers at stoppage time 7 = 50000, resulting
from 50 stochastic realizations with Ry > 1 (Panel (a)) and R4 < 1 (Panel (b))

In well-established drinking communities (including college students) estimates
clearly show that R4 > 1. Thus, one may ask whether the existence of backward
bifurcations (bi-stability) is just of theoretical value? If the goal is to prevent the
formation of a drinking community then the above question “makes” sense. How-
ever, most often the goal is to reduce or eliminate the D-class and the existence of a
backward bifurcation makes this much harder.

Relapse rates among problem drinkers are high [26, 41]. Hence, the existence of
a relapse driven backward bifurcation suggests that efforts to “eliminate” problem
drinkers or reduce problem drinking may be futile as long as “R-individuals” remain
in the same social environment. Substantial reductions in the relapse parameter—
with the ultimate goal of having R, < l—may be extremely difficult to achieve.
Furthermore, treatment and prevention measures even if effective are likely to
be insufficient if the goal is to eliminate the D-class (see bifurcation diagram in
Fig. 1a).

Histograms (based on 50 stochastic realizations) of the number of problem
drinkers at a stoppage time 7', denoted by D(T), are examined when Ry > 1
(Fig. 3a) and when R4 < 1 (Fig. 3b). Figure 3a shows that when R > 1 the value
of D(T) lies in [350, 550) while Fig. 3b shows that the problem drinker class may
persist. Nearly forty percent of the simulations involve result in a small segment
of the population in the D-class (less than 10%) when Ry < 1 . These results
are consistent with those of [54], that is, when the relapse rate is larger than the
treatment rate (o > ¢). In other words, it is possible for a population of problem
drinkers to become established even if R < 1 in a stochastic setting.

4 Drinking Dynamics in Small-World Communities
with High Relapse Rates

A network (graph) is a set of nodes with connections (edges) between them. Graphs
provide visual representations of the contact structure of individuals in a popula-
tion [46]. The fact that all social processes (including drinking) depend on contacts



March 16, 2009 Time: 04:07pm tl-vl.4

01

02

03

04

05

06

07

08

09

39

40

41

42

43

44

45

352 A. Cintron-Arias et al.

between distinct individuals has, in part, motivated the study of epidemics on
networks [29, 39, 40, 49].

Watts and Strogatz [57] introduced a one-parameter, p, family of networks. As
the disorder parameter p is varied in [0,1], the graph moves from a regular lattice
to a random graph. The model can be formulated algorithmically as follows: the
initial network is initialized via a one-dimensional periodic ring lattice of N nodes,
each connected to its closest (k) neighbors (two nodes are neighbors if there is
an edge connecting them). The network is updated by re-wiring each edge with
probability p (the disorder parameter) to a randomly selected node until it reaches
“fixed” statistical properties. When p — 0 the algorithm recovers the initial lat-
tice but when p — 1, most edges are rewired, the resulting network is a random
graph [9]. Watts and Strogratz showed that the use of just a few random long-range
connections (p small) drastically reduced the average distance between any pair of
nodes [57]—the kind of property that enhances “transmission”, the “small-world
effect”. The effect was postulated based on the result of a series of letter-forwarding
experiments carried out by Milgram [42]. The statistical properties of small-world
and “similar” networks have been studied ([47, 57]; and references therein).

Here we model community structure as a small-world network. The terms net-
work and community are used interchangeably, with nodes representing individuals
and edges denoting the social connections or interactions, the kind of “social mix-
ing” that may lead to node “transition” (from the moderate drinker into the problem
drinker state). Nodes can be in one of three distinct states: moderate drinker, prob-
lem drinker, and recovered drinker. The stochastic transitions between nodes’ states
are modeled as functions of time and the number of “neighbors” in particular states
(transition rates). If one starts with a community with N nodes where Node i
(1 < i < N) has §(i, t) neighbors who, at time ¢, are in the state “problem
drinker”, then the probabilities that Node i changes its state given that it alters its
state, at each time step are: from moderate to problem drinker, 1 — exp(—B4§(i, t));
from problem to recovered, 1 — exp(—¢); and from recovered to problem drinker,
1 — exp(—p(t)8(i, t)). This formulation (see Table 3) defines a stochastic process
on the random variables S,(¢), D,(t), and R,(t). These random variables can also
be thought of as parameterized by the disorder parameter p € [0, 1].

Drinking as a “contagious’” process is simulated as follows: the stochastic gener-
ation of a small-world network [57] is followed by multiple stochastic realizations
of the drinking process defined in Table 3 on the selected small-world network. The
parameter baseline values are summarized in Table 4. Histograms of D,(T) and
R,(T), where T denotes the stoppage time in the simulations (see Table 4), are
computed for each value of p (see Fig. 4). Figures 5 and 6 highlight the mean and
variance (over 20 realizations) of D,(T') and R,(T) as a function of p [22, 24].

A drinking wave is detected even as the size of the problem drinking class goes
to zero for the case p = 0 (no relapse) with R4 > 1. This feature agrees with
deterministic [10] and stochastic “theories” [1] on single-outbreak SIR models.
Figure 5a shows that variations on the network structure (modeled by p) have no
effect on the mean size of the problem drinker class D,(T) . However, the mean
size of the recovered class R,(T) exhibits a phase transition as p — 107! (Fig. 5b).
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Table 3 State variables, parameters, events, and transition probabilities of the drinking dynamics
model in small-world communities

State variable Description

8(i, t) Number of problem drinker neighbors of node i at time ¢

Sp(t) Total number of moderate drinkers at time 7 in a small-world community
parameterized by p

D,(t) Total number of problem drinkers at time # in a small-world community
parameterized by p

R, (1) Total number of recovered individuals at time ¢ in a small-world community
parameterized by p

Parameter Description

B Transmission rate

) Per-person treatment rate

(1) Time-dependent relapse rate

Event Probability of transition

Node i changes from moderate into problem drinker 1 — e POEn

Node i switches from problem drinker into recovered 1 —e?

Node i changes from recovered into problem drinker 1 — e~ Pe@3G0

Hence, in the absence of vital dynamics (births and deaths) and relapse, we conclude
that community structure does affect the average size of the problem drinking class
during the drinking wave. Small values of “p” lead to a phase transition [46], a
“small world” effect.

Figure 6 illustrates a worst case scenario in which the average relapse probability
is near one for the majority of the time. To see the impact of high, nearly stationary
relapse rates, we let (k) denote the average number of connections per node in a
one-dimensional lattice when p = 0 and carry out simulations on this network
with the average relapse probability (1 — e %)) ~ 1. The relapse rate p.(t)
(defined in Table 4) is modeled as a stepwise constant function that drops its value
at precisely ¢+ = 7. The worst case scenario here corresponds to the case where
T = oo. In general, when relapse rates are high for too long, small-world structures

Table 4 Parameter values utilized in simulations of drinking dynamics in small-world
communities

Parameter Description Baseline value
(k) Average connectivity per node 6
N Community size 1000
B Transmission rate 0.12
¢ Per-person treatment rate 0.7
(1) Time-dependent relapse rate p-(t) = 0.90 whenever t < 7
p(t)=0.121ift > 1
T Stoppage time 4000
D,(0) Initial number of problem drinkers chosen
uniformly at random in every community 5

Number of stochastic realizations 20
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Fig. 6 Dependence of the average and variance of D,(T) and R,(T) as a function of commu-
nity structure p ( logarithmic scale). Average ( circles) and one standard deviation added to and
subtracted from the average ( dash curves) are calculated from 20 stochastic realizations for each
fixed value of p. The results shown in Panels (a) and (b) assess a “worst case scenario” of hav-

ing on average every recovered node going into relapse with probability nearly one, in symbols
1 — e POk ~

(any value of p) have no effect on the mean sizes of the problem and recovered
drinking classes. In fact, the size of the problem drinking community is above 60%
regardless of the value of p (other parameters kept fixed). Furthermore, we see that
on average D,(T)+ R,(T) = N when relapse rates are high. That is, every member
of this closed population becomes a problem drinker at least once regardless of the
value of p.

Reducing the relapse rate from 0.90 to 0.12 at precisely the time 7 reduces the
average relapse probability from 1 — e=0%%) ~ 1,00 to 1 — e~%12%) &~ 0.50 at time
7. Figure 7 shows the impact of increasing the values of t = 3, 5, 7, 10. We do not
observe a lot of differences in the average values of D,(T") and R,(T) as a function
of t. However, these averages “improve” in the “right” direction as t reduces its
value from T = oo towards 7 = 0.

5 Discussion

Relapse has a significant impact on the dynamics of addictive behavior ([28, 54, 55];
and references therein). The use of a simple system of differential equations [54]
shows that for socially-intense processes like drinking, the reproductive number, R4
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Fig.7 Average D,(T) and R,(T) as functions of the community structure, p. Panels (a) and (b)
display the results obtained from using a time-dependent relapse rate p, (7). The relapse rate jumps
from 0.90 to 0.12 at time t = 7, that is, every node diminishes its probability of transition from

the recovered into the problem drinker state by half (probabilities go from 1 — ¢=%%%) = [ to

1 — e~ %12 &~ 0.5) Panels (a) and (b) show the changes in averages as a function of the timing in

the jump (7). The relapse reduction at times, T = 3 (upward triangles), t = 5 ( diamonds), T =7
( right triangles), T = 10 ( circles) are highlighted. The averages displayed in Fig. 6 are for the
case T = 0o ( squares)

is not always the key. Frequency dependent relapse rates play a huge role. Frequency
dependent relapse rates do increase the possibility of severe outbreaks within “well-
behaved” communities, but more importantly they also increase the likelihood of
failure of programs aimed at eliminating drinking. Sdnchez et al. [54] clearly delin-
eated the possibilities from their mathematical analysis of a simple model where all
the mixing takes place in the same drinking environment. Mubayi et al. [43] recently
explore the impact of individuals’ movement between heterogeneous drinking envi-
ronments. They showed that frequent movement between distinct environments can
have a significant (negative) effect on the distribution of drinking types. Here, we
only focused on exploring the predictions of [54] in two stochastic settings. The
stochastic analog (continuous time Markov chain) of Sanchez et al.’s deterministic
model was used to highlight the role of variability. The results were consistent with
those of Sanchez et al. with the usual caveats [1]. A small-world network was used
to highlight the very strong role played by relapse.

In fact, our study of drinking in a small-world network parameterized by the
disorder parameter p leads to the following results: When there is no relapse (p =
0), we recovered the well understood phase transition effect previously identified
from SIR simulations on small-world networks [46], as p crosses a critical value;
the introduction of high relapse rates “eliminates” the role of “p”. In other words, the
form of social connections (who interacts with whom) in populations experiencing
strong patterns of relapse has no impact on the prevalence of addictive behaviors.
Hence, if relapse rates are high then emphasis on programs that generate substantial
and sustained reductions in “mixing” will not be effective. Reducing residence times
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in risky environments which promote relapse, reducing recruitment into drinking
communities and reducing movement between drinking venues are more likely to
be effective [43].

Appendix

Transitions between drinking classes involve discrete events which change the num-
ber of individuals in every class, one at a time. For example, when a drinking
“contagion” event occurs, the number of moderate drinkers is decreased by one,
while the number of problem drinkers increases by one. The probability that an
event takes place during an infinitesimal time interval [z, ¢ + d¢] is calculated from
the average rates in the deterministic model. In this example, the “conversion” event
occurs at the rate of fS(¢)D(t)/N and the probability that it happens in [z, t + dt] is
approximately (8S(¢)D(¢)/N)dt. All the events, their rates of occurrence, and the
probabilities at which they take place are listed in Table 2.

It is assumed that the events are described by independent Poisson processes [1].
The term

E =uN 4+ uS+uD+ uR+ SD/N +¢D + pRD/N,

denotes the rate at which an event occurs at time ¢. The time between events is
exponentially distributed with mean 1/E. The time at which the next event happens
is found, for each realization, by sampling from an exponential distribution with
mean 1/E.

To decide which event takes place (once it is known that an event occurs),
we divide up the interval (0, E) into subintervals that correspond to the relative
occurrence probabilities of the various events. For example, given that an event
has occurred, the probability that it is a recruitment is u/N/E, the probability of
the removal of a moderate drinker is uS/E, the probability of the removal of a
problem drinker is D/ E, etc. A number U is selected randomly from the uniform
distribution on (0, 1) and an event is selected if this value falls within the appropriate
subinterval. For instance, the event is a recruitment if U satisfies 0 < U < uN/E,
a moderate drinker removal if U lies between uN/E and (uN + nS)/E, a prob-
lem drinker removal if U lies between (uN + uS)/E and (uN + uS + uD)/E,
and so on.
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