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Norepinephrine (NE) is recognized as having a key role in the pathophysiology of major 

depressive disorder (MDD) and schizophrenia, although its distinct actions via α-adrener-

gic receptors (α-ARs) are not well de�ned. We performed a systematic review examining 

the roles of NE and α-ARs in MDD and schizophrenia. PubMed and ProQuest database 

searches were performed to identify English language papers published between 2008 

and 2015. In total, 2,427 publications (PubMed, n = 669; ProQuest, n = 1,758) were 

identi�ed. Duplicates, articles deemed not relevant, case studies, reviews, meta-anal-

yses, preclinical reports, or articles on non-target indications were excluded. To limit 

the review to the most recent data representative of the literature, the review further 

focused on publications from 2010 to 2015, which were screened independently by all 

authors. A total of 16 research reports were identi�ed: six clinical trial reports, six genetic 

studies, two biomarker studies, and two receptor studies. Overall, the studies provided 

indirect evidence that α-AR activity may play an important role in aberrant regulation 

of cognition, arousal, and valence systems associated with MDD and schizophrenia. 

Characterization of the NE pathway in patients may provide clinicians with information 

for more personalized therapy of these heterogeneous diseases. Current clinical studies 

do not provide direct evidence to support the role of NE α-ARs in the pathophysiology of 

MDD and schizophrenia and in the treatment response of patients with these diseases, 

in particular with relation to speci�c valence systems. Clinical studies that attempt to 

de�ne associations between speci�c receptor binding pro�les of psychotropics and 

particular clinical outcomes are needed.

Keywords: norepinephrine, α-adrenergic receptors, major depressive disorder, schizophrenia, valence systems, 

pathophysiology, antidepressants, antipsychotics

INTRODUCTION

Major depressive disorder (MDD) and schizophrenia a�ect 151.2 and 26.3 million people world-
wide, respectively, and are associated with high rates of morbidity and mortality (1). �ese disorders 
exert a large mental health burden and socioeconomic cost across the world, accounting for 24.5 
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and 5.3%, respectively, of disability-adjusted life-years attributed 
to all mental, neurological, and substance use disorders (2). �e 
catecholamine neurotransmitter, norepinephrine (NE), has been 
speculated as having a role in depressive disorders since the 1950s 
(3), and schizophrenia since the 1970s (4), although a full under-
standing of the actions of NE in the pathophysiology of these 
diseases remains unclear.

An overview of the synthesis, actions, and metabolism of NE 
is shown in Figure  1. NE exerts its e�ects through binding to 
G-protein coupled α- and β-adrenergic receptors (ARs). α-ARs 
are further divided into α1 and α2, and each of these has three sub-
types: α1A, α1B, and α1D; α2A, α2B, and α2C. β-ARs include β1, β2, and 
β3 subtypes (5). Generally, α1- and β-ARs have a stimulatory e�ect 
on cell signaling, as they have been shown to increase intracellular 
phospholipase C or cyclic adenosine monophosphate (cAMP), 
respectively, whereas α2-ARs suppress intracellular cAMP and 
generally have an inhibitory in�uence on signaling (Figure 1) (6). 
NE has the highest a�nity for α2-ARs (5) so low-level NE release 
may inhibit neuronal activity, whereas increased neural transmis-
sion arising from NE binding to stimulatory α1- and β-ARs only 
occurs at higher NE concentrations (7).

Noradrenergic receptors are found on nerve �bers that origi-
nate from the locus coeruleus (LC) and project to many parts of 
the forebrain, including the cortex, cerebellum, amygdala, hip-
pocampus, basal ganglia, thalamus, and hypothalamus (Figure 1) 
(8). Noradrenergic heteroreceptors are also located on glutamate, 
gamma-aminobutyric acid (GABA), dopamine (DA), serotonin 
(5-HT), histamine, and orexin neurons, as well as in glial and 
immune cells. �erefore, in addition to being autoregulated by 
presynaptic α2A-ARs, α2C-ARs (5), and β2-ARs (9), NE signaling 
is also regulated by other neurotransmitters, such as inhibitory 
GABA and excitatory glutamate (3, 10). Taken together, this 
suggests that NE receptors within these pathways play a role in a 
broad range of brain functions, such as arousal, stress response, 
memory consolidation, immune response, endocrine function, 
sleep/wakefulness, and pain-threshold regulation (11).

�e Research Domain Criteria (RDoC) matrix was created 
to help identify brain mechanisms that explain the pathology of 
psychiatric disorders, improve accuracy of diagnosis, and predict 
responses to treatment (12). �e RDoC matrix classi�es symptoms 
into negative valence systems (including fear and anxiety), posi-
tive valence systems (including motivation and reward-seeking 
behavior), cognitive systems (including attention, perception, 
declarative, and working memory), social processing systems 
(including a�liation and attachment), and arousal/regulatory 
systems (including circadian rhythms and sleep) (13). By includ-
ing genetic and other factors that in�uence neurotransmission, 
the RDoC matrix provides a more comprehensive model of 
psychiatric diseases, including MDD and schizophrenia.

Major depressive disorder is mostly characterized by a 
depressed mood, fatigue, a diminished ability to think or concen-
trate, and disruptions to sleep/wakefulness, circadian rhythms, 
and immune responses (14). Evidence has shown that these 
symptoms can be in�uenced by NE activity in the LC via α-AR 
modulation. Two of the �rst antidepressant treatments (ADTs) 
were iproniazid, which inhibits monoamine oxidase (MAO), and 
imipramine, which blocks reuptake of serotonin and NE, leading 

to increased concentrations of these neurotransmitters (15). 
NE activity in the LC has been shown to be altered in patients 
with MDD compared with controls: histopathology studies have 
suggested patients with MDD have increased levels of tyrosine 
hydroxylase and a reduced density of NE transporter (NET) in the 
LC (16), the latter con�rmed by radioligand binding studies (17). 
Concentrations of 3-methoxy-4-hydroxyphenylglycol (MHPG), 
the major NE metabolite, in the cerebrospinal �uid (CSF) have 
been shown to positively correlate with lifetime mood burden, a 
composite measure re�ecting the number, duration, and intensity 
of depressive episodes (18). Moreover, salivary MHPG levels in 
men were recently shown to correlate with depressive symptom 
scores (19).

Desensitized α1-ARs in the brains of depressed patients 
have previously been identi�ed (20). Conversely, studies have 
shown that both the a�nity and density of inhibitory α2-ARs are 
increased in the LC and prefrontal cortex of patients with MDD 
compared with controls (21, 22), which may re�ect a compen-
satory response related to high NE levels. However, blocking 
α2-ARs using yohimbine has been shown to improve memory 
consolidation in patients with MDD, suggesting that increased 
α2-AR density may also have detrimental e�ects in these patients 
(23). MDD could, therefore, be conceptualized as a highly phe-
notypically and biologically heterogeneous condition, whereby 
depressed patients may experience both under- and over-arousal 
that may vary regionally (24).

Like MDD, schizophrenia is a heterogeneous disease where 
symptomatology includes positive (e.g., paranoid delusions, 
auditory hallucinations, incoherent thinking), negative (e.g., 
a�ective blunting, inactivity, impoverished speech), a�ective, and 
cognitive symptoms that can vary independently in each patient 
(4). In general, positive symptoms are aggravated by selective, 
indirect NE agonists such as yohimbine, and ameliorated by 
functional NE antagonists such as clonidine and oxypertine 
(4). Furthermore, adjunctive ADTs that alter NE activity (e.g., 
duloxetine) have been shown to relieve negative symptoms (25), 
suggesting NE may have a role in the pathophysiology of schizo-
phrenia. However, the heterogeneity of the disease is re�ected in 
postmortem studies, which have shown that brain concentrations 
of NE in patients with schizophrenia vary across populations (4).

An increased understanding of the involvement of α-ARs 
in the pathophysiology of MDD and schizophrenia is re�ected 
in the pharmacology of recently approved ADTs and antipsy-
chotics (APs). Many treatments for MDD act on overall NE 
levels (including uptake and MAO inhibitors) or on α-ARs (15). 
More recent therapies include selective NE reuptake inhibitors, 
such as reboxetine (26); NE and DA uptake inhibitors, such as 
bupropion (27); mixed serotonergic and noradrenergic reuptake 
inhibitors, such as venlafaxine, duloxetine, milnacipran, lev-
omilnacipran, and desvenlafaxine (15); the selective serotonin 
reuptake inhibitor (SSRI) and 5-HT1A partial agonist vilazodone 
(28); multimodal agents, such as vortioxetine, a SSRI, 5-HT1A 
agonist, 5-HT1B partial agonist, and 5-HT1D, 5-HT3, and 5-HT7 
antagonist (29); and compounds that block α2-ARs and 5-HT2 
receptors and increase activity at 5-HT1 receptors, such as mir-
tazapine (30). Many of these agents either directly or indirectly 
modulate NE.
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FIGURE 1 | Overview of the actions of NE in neural synapses. Noradrenergic neurons originate from the locus coeruleus and project to regions of the 

forebrain, including the cortex and hypothalamus. NE is synthesized from the amino acids TYR and PHL and converted �rst to DOPA, DA, and further to NE by the 

enzymes TYR-H, AADC, and DA β-H, respectively, after which NE is stored in presynaptic vesicles. Following its release into the synaptic cleft, NE exerts its effects 

through binding to the adrenergic receptors (ARs): α1A, α1B, and α1D; α2A, α2B, and α2C; or β1, β2, and β3. α1- and β-ARs have a stimulatory effect on cell signaling, 

whereas α2-ARs inhibit signaling. Also, while ARs are mainly located post-synaptically, α2- and β2-AR subtypes can also be localized pre-synaptically. NE is removed 

from the synaptic cleft by either reuptake via NET (expressed on the presynaptic terminals of NE neurons and glial cells), inactivation through the catabolic enzyme 

COMT to NM, or metabolism by MAO into several transitional metabolites, including its principal brain metabolite, MHPG. AADC, L-aromatic amino acid 

decarboxylase; cAMP, cyclic adenosine monophosphate; COMT, catechol O-methyltransferase; DA, dopamine; DA β-H, dopamine β-hydroxylase; DHPG, 

dihydroxyphenylglycol; DOPA, 3,4-dihydroxyphenylalanine; MAO, monoamine oxidase; MHPG, 3-methoxy-4-hydroxyphenylglycol; NE, norepinephrine; NET, NE 

transporter; NM, normetanephrine; PHL, phenylalanine; PHL-H, phenylalanine hydroxylase; PLC, phospholipase C; TYR, tyrosine; TYR-H, tyrosine hydroxylase.
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Although most current APs are DA D2 receptor antagonists or 
partial agonists/antagonists, several second generation APs also 
act on other neurotransmitter receptors, including α-ARs (31). 

In schizophrenia, it is generally thought that blocking α1-ARs 
suppresses positive symptoms, while blocking α2-ARs relieves 
negative and cognitive symptoms (31). Indeed, clozapine, a 
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prototypical second generation AP whose mechanism of action 
is not fully understood and has not yet been replicated by any 
other agent, is known to be an antagonist of α1-ARs with higher 
a�nity for these receptors than for D2 receptors, as well as acting 
as an antagonist of α2-ARs (32). Administration of clozapine in 
rats increases α1-AR density in the cortex and thalamus (33). 
While clozapine results in superior e�cacy in treatment-resistant 
schizophrenia and reduced extrapyramidal symptoms compared 
with standard APs and other second generation APs (34), its 
ability to induce potentially fatal agranulocytosis restricts its use 
clinically (32). Other APs such as risperidone, olanzapine, que-
tiapine, aripiprazole, asenapine, lurasidone, and cariprazine were 
subsequently developed in an attempt to improve e�cacy and side 
e�ect pro�les (32). Indeed, risperidone is a potent α-AR antago-
nist (35). Moreover, the second generation AP brexpiprazole has 
a distinct pharmacologic pro�le with purported serotonin-DA 
modulating activity and α-AR antagonist activity (36). In phase II 
and III studies, brexpiprazole was e�cacious in the treatment of 
patients with schizophrenia (37), and when administered adjunc-
tively in patients with MDD and an inadequate response to ADTs 
(38). �erefore, it is of considerable interest to understand the 
role that NE antagonism may play in ameliorating the symptoms 
of MDD and schizophrenia.

�is systematic review will focus on the role of α-ARs in the 
pathophysiology of MDD and schizophrenia, as well as in the 
mechanism of action of compounds used in clinical studies of 
these diseases. In particular, this review aims to assess how the 
action of these compounds at α-ARs may be related to the RDoC 
negative and positive valence systems, arousal, and cognition. 
�e review will include only those compounds exerting their 
action on α-ARs receptors, and not β-ARs or NET, as the hope 
is to elucidate the role of α-ARs in the perceived e�cacy of these 
compounds. Moreover, this review aims to establish whether the 
current clinical evidence is su�cient to link α-ARs to clinical 
treatments or outcomes of MDD and schizophrenia, with the 
understanding that the nature of these heterogeneous diseases 
may make it di�cult to identify a single common thread that 
de�nitively establishes such a link. �e review will also identify 
gaps in the literature that future investigations need to address.

MATERIALS AND METHODS

Literature Searches
Two literature searches were performed on the role of NE and 
α-ARs in MDD and schizophrenia. A PubMed search was carried 
out on December 11, 2015 and a ProQuest search was carried out 
on December 18, 2015. Both searches were conducted using the 
following Medical Subject Heading (MeSH) term search string: 
“norepinephrine” OR “noradrenaline” OR “alpha adrenergic 
receptor(s)” OR “beta adrenergic receptor(s)” AND “schizo-
phrenia” OR “major depressive disorder” AND “translational 
medicine” OR “immunity” OR “microglia” OR “astrocyte(s)” OR 
“in�ammation” OR “gene(s)” OR “brain chemistry” OR “bio-
marker” OR “neuronal plasticity” OR “cognition” OR “arousal” 
OR “sleep” OR “psychopharmacology” OR “brain development.” 
�e original searches were limited to the period January 2008–
December 2015 and publications in the English language.

Literature Review Results
�e searches yielded a total of 2,427 publications (PubMed, 
n = 669; ProQuest, n = 1,758). A�er exclusion of duplicates, arti-
cles deemed not relevant, case studies, reviews and meta-analyses, 
preclinical reports, or articles concerning other indications, 
abstracts, and full-length text were independently screened for 
eligibility by all the authors. To focus the review on the most recent 
information, it was decided that only articles published during the 
period January 2010–December 2015 would be included in full 
article screening. Psychotropics used in the treatment of MDD 
and schizophrenia do not generally exert a direct e�ect on β-ARs, 
with these receptors only in�uenced by a change in overall NE 
transmission. While some adverse events of psychotropics may 
be mediated by β-ARs, in order to focus the review on the role of 
NE related to the pathophysiology of psychiatric disorders, the 
review was limited to articles discussing the actions of NE at α-
ARs only and on drugs with at least a moderate a�nity for α-ARs 
(Ki < 100 nM). A total of 16 research reports were identi�ed as 
meeting these inclusion criteria (Figure 2) including six clinical 
trial reports, six genetic studies, two biomarker studies, and two 
receptor studies (Table 1).

RESULTS

Overall, we found that direct clinical evidence for the role of NE 
at α-ARs in the symptomatology of MDD and schizophrenia 
is limited. Six clinical trials were identi�ed (three investigating 
clonidine and three investigating mirtazapine; one for each in 
MDD and two for each in schizophrenia), none of which were 
designed a priori to compare the e�ect of compounds with di�er-
ing pharmacological pro�les on outcomes of the study.

Clinical Trials
Major Depressive Disorder
Clonidine, a speci�c α2-AR agonist, may suppress NE output, 
while simultaneously stimulating postsynaptic α2-ARs (39). In a 
study investigating the e�ects of clonidine in MDD patients and 
healthy controls, clonidine was shown to impair memory consoli-
dation (word list learning) but did not a�ect working memory or 
memory retrieval (40). Conversely, mirtazapine, a noradrenergic 
and speci�c serotonergic ADT, selectively blocks α2-ARs and 
serotonin 5-HT2 and 5-HT3 receptors as well as histaminergic H1 
receptors, and indirectly stimulates serotonin 5-HT1A receptors 
(30). Mirtazapine was compared with the selective serotonin and 
norepinephrine reuptake inhibitor duloxetine and was shown 
to be superior in the reduction of Hamilton Rating Scale for 
Depression scores in patients with MDD (41). �erefore, caution 
may be needed when targeting α2-AR in order to balance e�ects 
on learning and memory consolidation, while e�ectively reduc-
ing depressive symptoms in patients with MDD.

Schizophrenia
Administration of clonidine to patients with schizophrenia 
increased pre-pulse inhibition of the startle re�ex, a measure of 
sensorimotor gating known to be defective in schizophrenia, to 
levels similar to healthy controls, whereas inhibition of this re�ex 
remained de�cient in placebo-treated patients (39). Similarly, P50 

http://www.frontiersin.org/Psychiatry/
http://www.frontiersin.org
http://www.frontiersin.org/Psychiatry/archive


FIGURE 2 | Flow diagram of article selection. MDD, major depressive disorder; NE, norepinephrine; PK, pharmacokinetics.
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suppression, a related measure of sensory gating, was reduced 
in patients with schizophrenia compared with healthy controls. 
However, clonidine increased P50 suppression in patients, 
thereby causing enhanced sensory gating and potentially improv-
ing cognitive abilities in these patients (42).

Patients treated with adjunctive mirtazapine showed an 
overall improvement in total Positive and Negative Syndrome 
Scale (PANSS) scores, predominantly driven by improvements in 
positive symptom scores (43), although this may have been due to 
its sedating properties. Further investigation into factors that may 
predict and mediate this response revealed that improvements 
were attributable to increased spatial visualization ability and 
motor skill as measured by the block design test. Furthermore, 
pathway analysis indicated that perceived perceptual/cognitive 
bene�ts, related to the improvement in attention and process-
ing speed, may be attributable to mirtazapine’s antidepressant 

properties, rather than direct impact on cognition and negative 
symptoms of schizophrenia (44). One possible interpretation of 
these �ndings is that mirtazapine-associated modulation of α1-
ARs and α2-ARs and consequent “tuning” of NE/5-HT signaling 
may have played a key role in its ameliorative e�ect on the positive 
symptoms of schizophrenia.

Predicting Response to Treatment
Many investigations have been carried out to determine genetic 
or metabolic signatures associated with MDD and schizophrenia. 
As well as providing insights into the pathophysiology of these 
disorders, these reports may assist clinicians with predicting how 
patients will respond to therapy and providing more personalized 
care. We identi�ed six reports investigating the genetic variants 
of noradrenergic receptors or proteins expressed within the 
noradrenergic synthetic pathway, and their relationship to either 

http://www.frontiersin.org/Psychiatry/
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TABLE 1 | Summary of articles identi�ed.

Reference Indication Type of study

Chandley et al. (3) MDD Genetic

Houston et al. (45) Genetic

Egami et al. (47) Biomarker

Nyberg et al. (55) PET study

Rivero et al. (48) Receptor density

Kuffel et al. (40) Clinical trial

Nagao et al. (41) Clinical trial

Cheng et al. (49) SCZ Genetic

De Luca et al. (51) Genetic

Liu et al. (50) Genetic

Lochman et al. (53) Genetic

Evers et al. (52) Biomarker

Oranje and Glenthoj (39) Clinical trial

Oranje and Glenthoj (42) Clinical trial

Stenberg et al. (44) Clinical trial

Terevnikov et al. (43) Clinical trial

MDD, major depressive disorder; SCZ, schizophrenia.
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symptoms of MDD and schizophrenia or the side e�ects of treat-
ment with agents that have activity at α-ARs. We also identi�ed 
two studies investigating NE metabolites as biomarkers of MDD 
and schizophrenia, and two studies investigating the binding or 
distribution of NE-associated receptors or transporters.

Major Depressive Disorder
Locus coeruleus NE activity is non-speci�cally modulated by 
glutamatergic input, and so changes in glutamate levels could 
impact the e�ects of NE in this brain region. Analysis of genes 
related to glutamatergic function showed reduced expression in 
LC astrocytes of patients with MDD (3). Additionally, this study 
provides evidence of astrocyte dysfunction in the noradrenergic 
LC region in patients with MDD.

In another study, expression of SLC6A2rs36024 [a single 
nucleotide polymorphism (SNP) of NET] was found to be asso-
ciated with improvement of Montgomery–Åsberg Depression 
Rating Scale scores during olanzapine–�uoxetine treatment 
of patients (45). Olanzapine acts as an α1-AR antagonist with 
moderate a�nity (46), which may in part explain its bene�cial 
therapeutic response given dysfunctional reuptake by NET. 
Moreover, saliva levels of MHPG were shown to be higher in 
patients than controls, likely re�ecting aberrant NE turnover 
and less e�cient neurotransmission (47). �ese studies support 
targeting the reuptake of NE or antagonism of stimulatory α1-ARs 
for the treatment of patients with MDD.

Rivero et al. (2014) investigated the density of ARs in MDD 
(48). Using radioligand saturation binding experiments, α2- and 
β1-AR densities were found to be higher in the prefrontal cor-
tex of ADT-free patients with MDD than controls, possibly as 
a compensation associated with altered NE turnover in MDD. 
In antidepressant-treated patients, α2-AR density remained 
increased over controls, whereas no di�erence was observed in 
β1-AR densities (48). �ese results suggest a resistance of α2-ARs 
to the downregulatory e�ect of ADTs, a potentially important 
consideration in the development of future ADTs. However, as 
the majority of brain tissue used in this study was collected from 
patients who committed suicide (48), these results also indicate 

that it is important to consider the role of α2-ARs in patients with 
MDD with respect to suicidality and treatment response.

Schizophrenia
Weight gain has been noted as a common side e�ect of second 
generation APs. We identi�ed three genetic studies focusing on 
the association of genes encoding ARs and weight gain. Two 
reports provided evidence of a link between ADRA1A gene 
expression and increased weight gain, as well as body mass index 
during AP treatment (49, 50). Moreover, ADRA1A gene expres-
sion was positively associated with the cumulative number of 
metabolic syndrome components, with the presence of Arg347 
allele of ADRA1A identi�ed as a risk factor for metabolic abnor-
malities (49). Conversely, in nine genetic polymorphisms tested 
across genes coding for seven proteins related to noradrenergic 
receptors or NE synthesis or metabolism (ADRA1A, ADRA2A, 
ADRA2C, ADRB3, DBH, MAOA, and COMT), no association 
with AP-induced weight gain in patients with schizophrenia was 
identi�ed (51).

Other identi�ed articles provided evidence that genetic changes 
in NE metabolic markers, α-ARs, or other receptors that alter NE 
activity may in�uence relevant clinical characteristics of patients 
with schizophrenia. An investigation into metabolite biomarkers 
of schizophrenia revealed that levels of DA, homovanillic acid, 
NE, vanillylmandelic acid, and serotonin positively correlated 
with Full Scale Intelligence Quotient scores in patients with 
chromosome 22q11 deletion syndrome, which results in a higher 
risk of developing MDD, schizophrenia, and other psychiatric 
disorders (52). Another report discovered an interaction between 
an α2A-AR gene SNP and a speci�c methylenetetrahydrofolate 
reductase gene SNP, which encodes for an enzyme involved in 
DNA methylation, in patients with schizophrenia (53), suggest-
ing a potential role for NE in the epigenetic control relevant to the 
pathogenesis of schizophrenia.

�e overall pharmacological pro�le of a compound may play a 
role in its e�cacy that may not initially be recognized. Like many 
APs, quetiapine binds to a broad range of receptors at varying 
a�nities, including 5-HT1A/2A/2C, D2, histamine H1, and adrenergic 
α1/2 receptors (54). Quetiapine-extended release (XR) has been 
shown to also occupy NET in healthy participants, which may 
help contribute to its broad e�cacy (55). Ziprasidone, another 
AP with a�nity for NET and adrenergic α1-ARs, has also dem-
onstrated e�cacy as adjunctive treatment to SSRIs in treatment-
resistant MDD (56) and anxious depression (57), although it is not 
approved for the treatment of MDD. Ziprasidone has also been 
e�ectively used as an adjunct in depressed patients who have had 
an inadequate response to escitalopram alone (58). However, it is 
unlikely that a�nity for NET is necessary for the antidepressant 
e�ect of APs, as both olanzapine and clozapine have been shown 
to provide a greater relief of depressive symptoms in patients suf-
fering from schizophrenia, compared to quetiapine (59).

DISCUSSION

Although it is known that NE and its α-ARs play key roles in 
the pathophysiology of MDD and schizophrenia, direct evidence 
from recent clinical reports is limited. �is appears to be largely 
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due to the trial designs used in most clinical studies. Indeed, there 
is a lack of direct comparisons of ADTs and APs with di�ering 
pharmacologic pro�les that measure their impact on speci�c 
symptoms or disease outcomes. Overall, our review provided 
data illustrating that NE action at α-ARs can impact the RDoC 
negative valence systems and cognitive systems proposed to be 
involved in MDD and schizophrenia. We also identi�ed several 
studies that suggested that not only can NE activity be used as a 
biomarker of MDD and schizophrenia, but that it may also be a 
useful tool for predicting patient response and adverse reactions 
related to pharmacological intervention.

NE Effects on Negative Valence Systems
�e RDoC negative valence system domain includes fear and anxi-
ety (13), and can, along with disturbances in cognitive domain, be 
used to categorize some of the positive symptoms of schizophre-
nia, such as hallucinations (60). A biomarker study showed that 
elevated NE may be associated with cognitive disorganization, 
poor impulse control, suspiciousness, hostility, and hallucinations 
(61). Our �ndings also suggest that NE manipulation can poten-
tially a�ect the positive symptoms associated with schizophrenia 
(43, 44), with the long-term study of adjunctive mirtazapine in 
patients with schizophrenia showing it improved PANSS positive 
scores (43), although, this may also be related to modulation of 
several 5-HT receptors (62). �e e�ectiveness of mirtazapine in 
schizophrenia is supported by a preclinical study that showed 
that mirtazapine enhanced the AP activity of haloperidol in an 
apomorphine-induced climbing test in mice (63). Mirtazapine 
acts as an antagonist of α2-ARs, as well as serotonin 5-HT2 and 
5-HT3 receptors (30), so that when used in combination with a 
�rst generation AP such as the D2 receptor antagonist haloperidol, 
the overall pharmacological pro�le resembles that of clozapine 
(43), which was reported to be superior to haloperidol for treating 
positive symptoms of schizophrenia (64). �ese �ndings are also 
supported by the pharmacological properties of brexpiprazole, a 
partial agonist at serotonin 5-HT1A and DA D2 receptors, and a 
potent antagonist at serotonin 5-HT2A and NE α1B/2C receptors, 
all at similar potencies (36). Studies with brexpiprazole, recently 
approved for the treatment of schizophrenia, have demonstrated 
AP activity in rat models of the positive psychotic symptoms of 
schizophrenia (65), as well as signi�cantly improved PANSS posi-
tive scores in patients with schizophrenia (37).

NE Effects on Cognitive Systems
Compromised ability to think or concentrate is one of the diag-
nostic features of MDD. An imaging study showed that hyper-
activity of the frontal and prefrontal cortices, areas of the brain 
innervated by noradrenergic neurons, is required for depressed 
patients to complete a working memory task at a level similar 
to healthy controls (66). Several cognitive processes, including 
attention and working memory, have been shown to be linked to 
NE activity (5). Indeed, cognitive defects in chromosome 22q11 
deletion syndrome are associated with the abnormal function of 
several neurotransmitters, including NE (52). Furthermore, clo-
nidine may exert dual activity by engaging inhibitory presynaptic 
α2-ARs, and therefore suppressing NE activity, while at the same 
time directly stimulating prefrontal cortex postsynaptic α2-ARs 

(39). Our review identi�ed a study in which clonidine suppressed 
memory consolidation in patients with MDD and healthy controls 
(40). �is role of α2-ARs in learning and memory consolidation is 
supported by preclinical studies in rats (67, 68), although Ku�el 
et al. (40) found no e�ect of noradrenergic blockade on working 
memory in patients with MDD or healthy participants. �is is 
in contrast to an infusion study in which α2-AR agonists applied 
directly to the prefrontal cortex of monkeys and rats resulted 
in improved working memory performance (69). In addition, 
it is thought that the α2A-AR subtype may be the most impor-
tant for cognitive improvement (5), as the α2A selective agonist 
guanfacine is more e�ective at improving working memory 
without side e�ects than clonidine, which also acts at α2B- and 
α2C-ARs (70). High concentrations of NE have also been shown 
to reduce working memory function through actions at α1-ARs; 
indeed, stress-induced cognitive de�cits have been shown to be 
blocked by infusion of an α1-AR antagonist into the prefrontal 
cortex of rats (71). �erefore, the balance between the activation 
of α2A-ARs and reducing the activity of α1-ARs may be a factor 
for consideration when designing pharmacological agents for the 
improvement of cognitive functions in MDD.

Recent studies have indicated a role for α1- and α2-ARs in 
regulation of cognitive processes, where α2-AR stimulation 
may ameliorate working memory de�cits and α1-AR agonism 
may enhance sustained attention (72). Preclinical studies point 
to a di�erential role for subtypes of α1-ARs in cognition. While 
activation of α1A-ARs may have a positive impact on cognition 
and neurogenesis, α1B-mediated signaling may be detrimental to 
cognition and promote apoptosis (73, 74). Furthermore, while 
α2A-AR activation mediates improvement in working memory 
following guanfacine treatment (75), activity at α2C-ARs may 
also mediate stress-related psychiatric diseases such as MDD and 
anxiety disorders (76). Furthermore, α2C-AR antagonism may be 
associated with a pro-cognitive e�ect, in addition to ameliorating 
anxiety and depression (77). �us, selective modulation of α-AR 
subtypes may be advantageous in therapy of MDD. �is is indi-
rectly supported by the pharmacological pro�le of brexpiprazole, 
which has antagonist activity at both α1B- and α2C-ARs (36), and 
has been shown to be an e�cacious adjunctive treatment for 
patients with MDD (38).

In schizophrenia, defects in the early sensory �lter mechanisms 
are thought to result in cognitive fragmentation, and ultimately 
hallucinations and delusions (78). Reduced �ltering of sensory 
and sensorimotor information, demonstrated by both a reduced 
P50 suppression or reduced pre-pulse inhibition of the startle 
re�ex, was corrected by activating α2-ARs with clonidine (39, 
42). Other evidence from our search showed that mirtazapine 
increased mental speed and attention control in schizophrenia 
(44), which may be related to its activation of α2-ARs.

Glutamate has been shown to be crucial for cognitive pro-
cessing, and pharmacological agents that modulate glutamate 
transmission, such as ketamine, have demonstrated ADT-like 
properties (14). Our search results suggested that glutamate 
transporter gene expression was reduced in LC astrocytes in 
postmortem brain tissue of patients with MDD (3). LC–NE 
activity is modulated by glutamatergic input, and so changes in 
glutamate levels could also indirectly impact the NE signaling. 
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Elsewhere, increased glutamate levels have been reported in the 
occipital cortex, prefrontal cortex, and plasma of patients with 
MDD (79–81). �erefore, the bene�t of glutamate modulators 
may in part be due to indirect actions on NE activity.

Effects of NE on Other RDoC Systems
�ere was little direct evidence from our review to support a role 
of NE and α-ARs in the positive valence systems, systems for social 
processes, or arousal/regulation systems associated with MDD 
and schizophrenia. However, other studies outside the selection 
criteria for this review provided some data. Negative symptoms 
of schizophrenia, such as �at a�ect and poverty of speech, can be 
categorized into the social process RDoC system (13). Clinical 
studies have shown that mirtazapine enhanced the e�ects of 
haloperidol, risperidone, and clozapine on negative symptoms 
(82–84), which support the identi�ed study that showed adjunc-
tive mirtazapine improved PANSS negative scores (43).

Disruptions in sleep cycles and circadian rhythms are com-
mon in patients with MDD (85). Moreover, genetic studies 
have suggested that patients with MDD have both a phase shi� 
of rhythms and a disrupted regulation of circadian genes (86). 
Since NE neurons project to the hypothalamus, which contains 
the suprachiasmatic nucleus—the master pacemaker, which 
coordinates rhythms throughout the brain and body (85), it 
is possible that NE has a role in modulating these e�ects. As 
reviewed elsewhere, imaging studies provide evidence of sleep 
disruption due to excessive arousal in MDD, while biochemical 
studies point to an association between elevated NE levels and 
decreased sleep e�ciency (87). �irty-hour sampling of CSF 
samples from depressed patients has found elevated NE relative 
to healthy controls around the clock (88).

Predicting Response to Treatment
When considering individual patient needs, biomarkers which 
aid in the diagnosis of patients or predict responses to treatment 
are valuable for successful therapeutic intervention. MDD and 
schizophrenia were originally thought to be diseases located 
entirely in the CNS, although recent hypotheses and �ndings sug-
gest that the pathophysiology of these diseases can be shaped by 
peripheral endocrine, autonomic, immune, and gut-brain events 
(24, 89, 90). Several metabolic studies have attempted to identify 
potential biomarkers for MDD and schizophrenia by assessing 
changes in enzymatic activity in plasma and saliva. Baseline 
levels of MHPG in saliva were shown to positively correlate 
with a high Beck Depression Inventory score in men (19), which 
provides support to the �ndings that MHPG concentrations in 
CSF were correlated with a lifetime burden of mood swings (18). 
In addition, plasma MHPG has been shown to correlate with 
negative symptoms and cognitive impairment during early-stage 
schizophrenia (91).

A patient’s NE metabolites or genetic pro�le may also help to 
predict how well they will respond to di�erent treatments, not 
only with regards to improving symptoms, but also the emergence 
of adverse events. A study found that patients with MDD that 
responded to mirtazapine or SSRI treatment had higher baseline 
saliva MHPG concentrations, although this did not reach statisti-
cal signi�cance in patients receiving mirtazapine alone, or when 

it was used as adjunctive therapy with SSRIs (47). Similarly, 
risperidone, which acts as an antagonist of α1- and α2-ARs (as 
well as other receptors), was shown not to a�ect NE, vanillyl-
mandelic acid, or MHPG in the plasma or urine of patients with 
schizophrenia (35).

Genetic studies identi�ed here suggested that di�erences 
in the gene which codes for α1A-AR are associated with weight 
gain (50) and metabolic abnormalities (49) during AP treatment 
of schizophrenia. However, there are many factors that a�ect 
weight gain in patients with schizophrenia, and attribution of this 
adverse reaction to a single receptor type is inappropriate. For 
example, it has been shown that antagonism of the DA D2 recep-
tor has both an e�ect on eating, mediated by 5-HT2C receptors, 
and disinhibition of prolactin secretion, which has an impact on 
lipid and glucose metabolism (92).

�e atypical AP olanzapine and the SSRI �uoxetine are o�en 
used in combination in patients with treatment-resistant MDD. 
Previously, olanzapine and �uoxetine have been shown to have 
a synergistic e�ect on elevation of NE and DA levels in the rat 
prefrontal cortex (93), which may be responsible for some of the 
e�cacy of this combination therapy. �erefore, genetic variants 
in the NET identi�ed in patients with MDD who were not initially 
responsive to �uoxetine alone may be a marker to predict improve-
ments in these patients a�er switching to olanzapine–�uoxetine 
combination (45). Quetiapine was also shown to occupy NET in 
healthy patients at doses that produce antidepressive e�ects. �is 
may explain the unique broad spectrum e�cacy of quetiapine 
therapy in psychiatric disorders (55).

�e higher density of α2-ARs in both ADT-free and 
antidepressant-treated patients with depression compared with 
matched controls suggests that these receptors are resistant 
to the observed downregulation of β1-ARs by ADTs (48). In a 
preclinical study in rats, treatment with the SSRI citalopram 
did not result in any adaptive changes in LC neurons, but did 
indirectly enhance the inhibitory e�ect of NE on neurons in 
the LC (94). �e activation of inhibitory α2-ARs resulting from 
elevation of NE concentrations in the synaptic cle� may underlie 
this e�ect (94). Although, desensitization of these receptors may 
also have occurred, as previously observed in animal studies (95, 
96). Furthermore, preclinical evidence also suggests that intact 
α1-AR-mediated signaling may be necessary for SSRI induced 
5-HT elevation (97).

Both MDD and schizophrenia have been associated with 
immune abnormalities and dysfunctional in�ammatory signal-
ing (98, 99). Elevated peripheral in�ammation may precipitate 
aberrant CNS in�ammatory signaling with subsequent disrup-
tion of monoamine and glutamate transmission, in part by inap-
propriately activating brain microglia (100). Both α- and β-ARs 
have a key role in regulating macrophage and microglia activity 
(101, 102). �us, compromised NE transmission may promote 
a pro-in�ammatory phenotype consistent with depressive psy-
chopathology. Intriguingly, a recent study reported a preferential 
response to an SSRI (escitalopram) in patients with lower levels of 
an in�ammatory marker [C-reactive protein (CRP) <1 mg/mL], 
compared with depressed patients with higher in�ammation 
(CRP > 3 mg/mL) who had a robust response to a predominantly 
noradrenergic ADT (nortriptyline) (103). �erefore, one may 

http://www.frontiersin.org/Psychiatry/
http://www.frontiersin.org
http://www.frontiersin.org/Psychiatry/archive


9

Maletic et al. α-ARs: MDD and Schizophrenia

Frontiers in Psychiatry | www.frontiersin.org March 2017 | Volume 8 | Article 42

speculate that noradrenergic ADTs exert some of their therapeu-
tic e�ect by attenuating excessive in�ammatory signaling.

Limitations
�e objective of our systematic review was to determine the role 
of NE and α-ARs in the pathophysiology of MDD and schizo-
phrenia using evidence from clinical reports. In order to achieve 
this, a number of speci�c search terms were implemented, includ-
ing the use of “alpha adrenergic receptor(s)” as a limiter in the 
MeSH search-term string. �erefore, any reports that did not 
contain this term were excluded, even though they may indirectly 
support the role of NE activity at α-ARs in MDD or schizophre-
nia. It should also be noted that in order to focus this literature 
review on recent data, the scope was restricted to publications 
between 2010 and 2015, which will limit our �ndings. Finally, it is 
a daunting challenge to attempt to link receptor activity to speci�c 
therapeutic e�ect, especially as many of the drugs discussed in 
this review have clinically relevant binding a�nities for a number 
of di�erent receptors, and additionally, these diseases are pheno-
typically, genetically, and biologically heterogeneous. �e lack of 
a common pathophysiology or homogenous symptom presenta-
tion between all patients diagnosed with MDD or schizophrenia 
will impact the summary of e�ects linked to α-AR modulation. 
Moreover, it has been reported that females have a larger LC 
than males, comprising nearly 3,000 more neurons, which could 
impact their capacity for NE production and release (104). Given 
these neurobiological di�erences, we suggest that gender should 
be considered as a factor in future clinical studies.

CONCLUSION

Preclinical evidence suggests that targeting NE α-ARs is bene�-
cial for the treatment of both MDD and schizophrenia. However, 
the complex and heterogeneous nature of both of these diseases 
means that interpretation of clinical �ndings is not always 
straightforward. Using a systematic approach, we have provided 
indirect evidence from recent clinical studies and other reports in 
humans that support the concept that, in general, NE and α-ARs, 
and drugs that act through these receptors, have an important 
role in the negative valence systems and cognitive systems related 
to MDD and schizophrenia. However, there is no direct clinical 
evidence for the speci�c e�ects of α-ARs, likely due to a lack of 
agents that have proven di�erential subtype a�nity. Moreover, no 
direct clinical comparisons have been made between therapies 

that have α-AR activity. �erefore, advantages of the interac-
tions at these receptors are theoretical in the clinical situation, 
supported only by evidence from preclinical experiments. In 
addition, due to both the fact that clinical trials have not been 
designed to determine if there are di�erences in e�cacy between 
di�erent symptom domains, and the added complexity of the 
heterogeneity of these diseases across populations of patients, the 
e�ects of targeting distinct α-ARs on speci�c symptom domains 
are yet to be determined. �ese points should be considered when 
studying future medications.

It is worth noting that genetic studies may suggest that candi-
date genes could have predictive properties enabling their use as 
putative biomarkers for disease in target populations. However, 
there are multiple in�uences on MDD and schizophrenia, and 
blanket SNP studies conducted to date have not revealed any 
speci�c relationships with NE. �e limited number of studies 
identi�ed here suggests that more up-to-date clinical investiga-
tions, designed to tease apart the contribution of α-ARs and their 
subtypes to the pathophysiology of MDD and schizophrenia, are 
required.
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