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ABSTRACT

Nonalcoholic fatty liver disease (NAFLD)

describes steatosis, nonalcoholic

steatohepatitis with or without fibrosis, and

hepatocellular carcinoma, namely the entire

alcohol-like spectrum of liver disease though

observed in the nonalcoholic, dysmetabolic,

individual free of competing causes of liver

disease. NAFLD, which is a major public health

issue, exhibits intrahepatic triglyceride storage

giving rise to lipotoxicity. Nuclear receptors

(NRs) are transcriptional factors which,

activated by ligands, are master regulators of

metabolism and also have intricate connections

with circadian control accounting for cyclical

patterns in the metabolic fate of nutrients.

Several transcription factors, such as

peroxisome proliferator-activated receptors,

liver X receptors, farnesoid X receptors, and

their molecular cascades, finely regulate

energetic fluxes and metabolic pathways.

Dysregulation of such pathways is heavily

implicated in those metabolic derangements

characterizing insulin resistance and metabolic

syndrome and in the histogenesis of progressive

NAFLD forms. We review the role of selected

NRs in NAFLD pathogenesis. Secondly, we

analyze the role of NRs in the natural history

of human NAFLD. Next, we discuss the results

observed in humans following administration

of drug agonists or antagonists of the NRs

pathogenically involved in NAFLD. Finally,

general principles of treatment and lines of

research in human NAFLD are briefly examined.
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INTRODUCTION

Nonalcoholic fatty liver disease (NAFLD)

designates a heterogenous set of diseases

histologically mimicking alcoholic liver disease

though observed in insulin-resistant

nonalcoholic individuals, in the absence of

competing etiologies of liver disease [1, 2]. The

NAFLD spectrum and its natural history span

simple steatosis through nonalcoholic

steatohepatitis (NASH), fibrosis-cirrhosis, and,

in a subset of cases, hepatocellular carcinoma

(HCC), with or without cirrhosis [3, 4]. On the

basis of the epidemic prevalence of disease and

its inherent hepatic, metabolic, oncologic, and

cardiovascular disease burden, NAFLD is a major

public health issue posing heavy costs on health

systems [1, 5–7].

From a pathophysiological point of view,

intrahepatic storage of triglycerides (TGs) is an

example of an adaptive process becoming

maladaptive, given that ectopic fat gives rise

to lipotoxicity [8, 9]. Fatty changes will

primarily result from excess de novo

intrahepatic lipogenesis associated with the

liver being overwhelmed by an excess of

steatogenic substrates in the setting of insulin

resistance (IR), impaired glucose disposal/type 2

diabetes (T2D), hyperlipidemia, visceral obesity,

and other features of the metabolic syndrome

(MetS) [10]. Steatosis will also derive from the

failure of the liver to oxidize and export excess

lipids [3, 11–13]. Therefore, NAFLD can best be

conceptualized as an abnormal storage of TGs

resulting from an imbalance between

intrahepatic synthesis and catabolism/disposal

of fatty substrates [14], which is inextricably

linked to IR/T2D and atherogenic dyslipidemia

[13, 15].

Nuclear receptors (NRs) are transcriptional

factors which, activated by ligands, are master

regulators of metabolism and also have intricate

connections with circadian control accounting

for cyclical patterns in the metabolic fate of

nutrients [16]. Several transcription factors,

such as peroxisome proliferator-activated

receptors (PPARs), liver X receptors (LXRs),

and farnesoid X receptors (FXRs), finely

regulate energetic fluxes and metabolic

pathways via the molecular cascades they

trigger [17]. Dysregulation of such pathways is

heavily implicated in those metabolic

derangements typically belonging to the

domain of IR and MetS and in the histogenesis

of progressive NAFLD forms and their clinical

complications in both adults and children [3,

16, 18, 19].

On these grounds, dietary and

pharmacological manipulation of NRs has

become a major aim in the research

concerning NAFLD treatment. The present

article critically reviews the role of NRs in the

pathogenesis of NAFLD and explores how this

information may potentially be exploited in the

drug treatment of this condition. All of these

pieces of information may be put into

perspective on the basis of the analysis of the

natural history of NAFLD (Fig. 1).

This article is based on previously conducted

studies and does not involve any new studies of

human or animal subjects performed by any of

the authors.

PATHOPHYSIOLOGY OF PPARs

The PPARs are members of the NR superfamily

including PPAR-a, PPAR-b/d, and PPAR-c, which

play a key role in regulating cellular growth and
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differentiation, metabolism, and inflammation

[20–22]. PPAR-a (NR1C1) is highly expressed in

liver, kidney, and muscle, while PPAR-c

(NR1C3) is mainly present in adipose tissue

and PPAR-b/d appears to be universally

expressed. These receptors are classically

ligand activated, and the best characterized

natural ligands are fatty acids (FA) and their

derivatives. Activated PPARs form a heterodimer

with retinoid X receptor (RXR) and interact

with PPAR response elements in the target

genes, regulating their expression. In the liver

specifically, PPARs modulate a whole spectrum

of physiological processes including cholesterol

and bile acid (BA) homeostasis, glucolipidic

metabolism, inflammatory response,

regenerative mechanisms, and cell

differentiation and cycle [20–22].
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Fig. 1 Overview of the role of nuclear receptors in the
pathophysiology, natural course, and treatment of NAFLD
based on data discussed in the present review article. This
cartoon aims to summarize the specific roles played by
PPARs, FXR, and LXR in the development and progres-
sion of NAFLD. Pathophysiology PPAR-a promotes b-ox-
idation of FA in the hepatocytes and exerts lipid-lowering
activity; PPAR-c, abundantly expressed in the adipose
tissue, promotes adipocyte differentiation and storage of
triglycerides and has an insulin-sensitizing activity by
protecting non-adipose tissues against excessive fat deposi-
tion and by increasing adiponectin secretion; PPAR-b/
d stimulates glycolysis and inhibits gluconeogenesis in the
liver, promotes b-oxidation of FA in the muscle, and exerts

an anti-inflammatory role; LXR controls cholesterol
lipoprotein metabolism and modulates immune, inflamma-
tory, and fibrogenic responses; FXR regulates bile acid
homeostasis and also lipoprotein-glucose metabolism. Nat-
ural course The schematic figure recapitulates the chief role
of nuclear receptors in the natural history of NAFLD. Drug
treatment The potential role of drugs interacting with each
of the individual classes of nuclear receptors is also
illustrated. FA fatty acids, FXR farnesoid X receptor,
HDL high-density lipoprotein, LDL low-density lipopro-
tein, LXR liver X receptor, NAFLD nonalcoholic fatty liver
disease, PPAR peroxisome proliferator-activated receptor,
PUFA polyunsaturated fatty acids, TG triglycerides, VLDL
very-low-density lipoprotein
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Role of PPAR-a in Metabolism

In hepatocytes, PPAR-a acts as a nutritional

sensor, modulating the rates of FA catabolism,

lipogenesis, and ketone body synthesis in

response to feeding and starvation [22].

PPAR-a controls the expression of genes

regulating peroxisomal/mitochondrial

b-oxidation and transport of FA in humans

and mouse models. Conversely PPAR-a

regulates the glycolysis-gluconeogenesis

pathway in mice but not in humans [22].

PPAR-a activation reduces plasma TG-rich

lipoprotein by enhanced FA uptake,

conversion into acyl-CoA derivatives, and

catabolism in the b-oxidation pathways in

mouse models [22, 23]. Another mechanism

accounting for the PPAR-a lipid-lowering

activity in humans and rodents is increased

lipolysis via induction of lipoprotein lipase

(LPL), which catalyses the hydrolysis of

lipoprotein TGs into free FA and

monoacylglycerol [22].

Role of PPAR-a in NAFLD

The effect of PPAR-a system activation in

improving the NAFLD spectrum has been

studied in several animal models, which

recapitulate human disease to a partial extent

[20, 22].

Two experimental diet-induced NAFLD

mouse models have been used with different

steatogenic mechanisms. High-fat diet (HFD)

induces fatty liver by upregulation of genes

involved in de novo lipogenesis [e.g., PPAR-c

and sterol regulatory element-binding protein-1

(SREBP1)] opposed by PPAR-a upregulation

which is, however, not sufficient to efficiently

catabolize the extra load of FA [24–26].

Methionine and choline deficient (MCD) diet

causes fatty liver by downregulation of genes for

FA esterification and very-low-density

lipoprotein (VLDL) secretion without

significantly affecting PPARs expression [26,

27].

With regard to NASH, the HFD model

reproduces mild NASH together with typical

MetS traits whereas the MCD diet efficiently

induces evolution of NASH to fibrosis,

histologically similar to human disease, but

without the dysmetabolic phenotype [26, 28].

In the MCD diet NASH mouse model,

PPAR-a-deficient mice showed histologically

more severe NASH [29], and treatment with a

potent PPAR-a agonist (Wy-14,643) reversed

fibrosis and NASH in wild-type mice [30]. Mice

lacking PPAR-a expression (PPAR-a-null) fed an

HFD developed increased oxidative stress,

histological steatosis, hepatic inflammation,

and higher NAFLD Activity Score (NAS)

compared to age-matched wild-type mice fed a

standard/HFD or PPAR-a-null mice fed a

standard diet [31].

A recent study on a PPAR-a mutant mouse

model lacking its DNA-binding-dependent

activity on FA metabolism showed that PPAR-a

agonism (by Wy-14,643) inhibited hepatic

inflammatory responses and the transition

from steatosis toward NASH and fibrosis via a

direct anti-inflammatory effect [32]. Another

study, conducted on a NASH model in HFD-fed

foz/foz obese/diabetic mice, showed that PPAR-a

agonist Wy-14,643 improved metabolic indices,

steatosis, and ballooning with substantially

reduction of NAS and resolution of NASH

according to Kleiner’s criteria [33], along with

suppression of liver nuclear factor (NF)-kB and

c-Jun N-terminal kinase activation, reduced

tumor necrosis factor (TNF)-a, and monocyte

chemoattractant protein (MCP)1 expression

and decreased macrophage-neutrophil

infiltration in the liver [34]. However, hepatic

histological inflammatory score did not

294 Adv Ther (2016) 33:291–319



improve and adipose tissue inflammation

(increased inflammatory cellular infiltrate and

MCP1 expression) and hypoadiponectinemia

persisted, although adipose tissue TNF-a

expression was reduced. These findings suggest

that residual hepatic inflammatory changes

result from unsuppressed adipose tissue

inflammation via inflammatory chemokines,

thus potentially limiting the therapeutic

efficacy of PPAR-a agonists in NASH [34].

Moreover, a protective effect of PPAR-a

expression or activation by fibrates on liver

steatosis and inflammation has been shown in

the apolipoprotein-E2 knock-in (APO-E2KI)

mouse model mimicking human type III

hyperlipoproteinemia [35, 36].

In humans, a recent paired liver biopsy study

on 85 consecutive patients showed that liver

PPAR-a gene expression was negatively

correlated with IR, visceral adiposity, severity

of steatosis, presence of NASH, ballooning, NAS,

and fibrosis, and positively correlated with

adiponectin. At 1 year, histological

improvement was associated with an increased

expression of PPAR-a and its target genes. Liver

PPAR-b/d and PPAR-c expression did not

correlate with any histological feature nor

with gluco-lipidic metabolism [37]. However,

as further discussed below (see ‘‘Fibrates and

Polyunstaurated FA’’ and ‘‘Lipid-Lowering

Agents’’), PPARa agonists such as fibrates are

effective in reducing steatosis in rodents [38],

but have failed to provide convincing results in

humans [16, 39].

Diet affects development and progression of

NAFLD via PPARs system. Dietary

monounsaturated FA (MUFA), polyunsaturated

FA (PUFA), and proteins can activate PPARs

which stimulate lipid oxidation and reduce

inflammation and IR, leading to improvement

of hepatic steatosis [40]. Moreover, these

nutrients can inhibit the expression of

transcription factor SREBP-1 regulating the

expression of genes involved in hepatic de

novo lipogenesis, and thereby reduce liver fat

[40]. For example, obese individuals are prone

to the risk of developing steatosis owing to an

increased SREBP-1c/PPAR-a ratio associated

with n-3 long chain PUFA depletion and IR,

which favors lipogenesis over FA oxidation [41].

Consistently, in mice, the supplementation of

n-3 long chain PUFA abolishes HFD-induced

enhancement in hepatic SREBP-1c/PPAR-a

ratios, promoting increased FA oxidation and

steatosis attenuation [42], decreases oxidative

stress, IR [43], and has an additive effect, with

ursodeoxycholic acid (UDCA), in alleviating

histological features, in HFD-induced NASH

[44].

Finally, conflicting evidence links genetic

variants of PPAR-a with susceptibility to

human NAFLD [45, 46]. The results of MUFA

and/or PUFA supplementation in NAFLD is

discussed below (see ‘‘Fibrates and

Polyunstaurated FA’’).

Role of PPAR-c in Metabolism

PPAR-c is abundantly expressed in the adipose

tissue where it enhances the activation of genes

promoting adipocyte differentiation and

storage of TG [14, 16, 20, 21]. Moreover,

PPAR-c is a key regulator of glucose

homeostasis through its insulin-sensitizing

activity by protecting non-adipose tissues

against excessive fat deposition and by

balancing the secretion of adipocytokines [47].

Role of PPAR-c in NAFLD

PPAR-c is generally increased in fatty liver

associated with obesity both in mouse models,

except for steatosis induced by MCD diet as

previously detailed [26, 27], and in humans [20,
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21]. In accordance with this statement, studies

in mice fed an HFD have shown that

hepatocyte-specific PPAR-c-knockout protected

from hepatic steatosis and PPAR-c-knockdown

by RNA interfering-adenoviral vector injection

improved fatty liver [48, 49]. Although these

studies would suggest a deleterious effect of

PPAR-c on NAFLD, in mouse liver the net effect

of thiazolidinedione PPAR-c agonists results in

improved hepatic steatosis and protection from

NASH and hepatic fibrosis via increased insulin

sensitivity in adipose tissue and skeletal muscle,

overcoming the direct steatogenic effects in

hepatocytes [21, 50]. PPAR-c agonism also

upregulates the secretion of adiponectin and

the expression of its receptors in the liver and

adipose tissue, thus improving insulin

sensitivity and upregulating hepatic FA

oxidation [51]. Interestingly, increased PPAR-c

expression improves fibrosis in vitro and in

mice by inhibiting the activation of hepatic

stellate cells [52, 53].

In humans, the C161T, Pro12Ala PPAR-c

single nucleotide polymorphism (SNP) has

been specifically associated with the

development and histological progression of

NAFLD, although a recent meta-analysis found

this association to be valid for East Asian

populations, but not for European populations

[54].

Role of PPAR-b/d in Metabolism

PPAR-b/d regulate hepatic glucose utilization

and lipoprotein metabolism and exert an

anti-inflammatory role [55, 56]. Data on

PPAR-b/d physiopathology are mainly derived

from experimental studies in animal models.

A study has shown that the activation of

hepatic PPAR-b/d stimulates glucose utilization

and inhibits gluconeogenesis in HFD-fed mice

[57]. PPAR-b/d knockout mice show glucose

intolerance and hypertriglyceridemia [58, 59].

Conversely, PPAR-b/d agonists have a plasma

TG-lowering effect [60].

Role of PPAR-b/d in NAFLD

The effect of PPAR-b/d on liver lipid metabolism

is still controversial. Liver PPAR-b/d

upregulation through adenoviral infection has

been associated with either improved (in obese

db/db mice) [61] or increased hepatic steatosis

(in HFD-fed mice liver) [57]. However, despite

increased steatosis, HFD-fed mice showed less

liver damage because PPAR-b/d activation

increased the production of protective MUFA

and, conversely, reduced serum concentrations

of lipotoxic saturated FA [57].

Moreover, one study showed that PPAR-b/

d-deficient mice treated with an hepatotoxic

agent developed more liver necrosis,

inflammation, and enhanced expression of

profibrotic genes compared to control mice,

suggesting that PPAR-b/d protect the liver from

inflammation and fibrosis [62].

Several studies conducted in mouse models

with specific agonists of PPAR-b/d (such as

GW501516, GW0742, and L-165041) reported

a beneficial effect of this NR activation on fatty

liver by modulation of FA metabolism

(increased b-oxidation and reduced FA

synthesis) and reduced IR and inflammatory

activity [63–65]. Histological features of NASH

also improved following treatment with

PPAR-b/d agonists [66, 67].

Two clinical trials on overweight patients

have shown that PPAR-b/d agonists (GW501516

or MBX-8025) improved metabolic features (IR,

plasmatic TGs, nonesterified FA [NEFA],

apolipoprotein B-100, LDL-cholesterol), liver

enzymes, and liver fat content [68, 69].

However, it should be noted that the one

study assessing the effect of PPAR-b/d agonist
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GW501516 on steatosis was a very small pilot

study [68].

The recently discovered dual PPAR-a/d

agonist GFT505 has shown protective effects

on liver steatosis, inflammation, and fibrosis,

mediated by both PPAR-a-dependent and

-independent mechanisms, in murine models

of NAFLD/NASH and liver fibrosis [70]. GFT505

reduced hepatic and peripheral IR in obese

humans [71]. GFT505 will be further discussed

in ‘‘Dual PPAR-a/d Agonists’’ below.

PATHOPHYSIOLOGY OF FXR

AND ITS ROLE IN NAFLD

Once deemed to be simple detergents,

physicochemically facilitating the digestive

processes, BA are instead master regulators of

metabolic pathways [72]. FXR, a member of the

nuclear hormone receptor superfamily, together

with TGR5, a G protein-coupled BA receptor

(GPBAR1), acts as a BA sensor regulating their

intrahepatocyte levels and mediates the

signaling effects exerted by BA on gluco-lipidic

metabolism [73, 74]. FXR is mainly expressed in

the liver and gut. BA are the natural ligands of

FXR, and chenodeoxycholic acid (CDC) shows

the highest affinity [74]. Similar to other NRs,

activated FXR forms a heterodimer with RXR

that binds to the promoter region of the target

genes, small heterodimer partner (SHP) and

fibroblast growth factor (FGF)-19, increasing

their expression and promoting pathways

finally leading to reduced expression of genes

involved in BA synthesis (mainly CYP7A1) [74,

75]. In particular, FGF-19 is secreted from ileum

into the portal circulation and acts as

an enterohepatic signal to downregulate

CYP7A1 via FGF-4 activation [76]. Moreover,

FXR critically regulates lipid and glucose

metabolism by multiple mechanisms [77].

Interestingly, a study conducted in 2166 German

subjects reported that SNPs in the FXR-encoding

gene NR1H4 were strong determinants of fasting

glucose and free FA serum levels independent of

unhealthy body fat accumulation [78]. In the

liver, BA downregulate steatogenesis via the

FXR-SHP pathway [79]. A study conducted in 40

biopsy-proven NAFLD cases found that FXR and

SHP and BA transporters [sodium-taurocholate

cotransporting polypeptide (NTCP) and bile

salt export pump (BSEP)] were significantly

upregulated in NASH compared to simple

steatosis suggesting that FXR may play a major

role in NAFLD progression [80].

Normal BA synthesis is essential in

maintaining normal liver histology: mice with

reduced BA synthesis develop overt steatosis,

which is reversed either by BA feeding or

administration with obeticholic acid (OCA),

an FXR agonist, demonstrating that the

hepatoprotection exerted by BA is indeed

FXR-dependent [81]. Consistently, the

age-dependent decline in FXR activity is a

major factor in the development of fatty liver

observed in aging mice [82].

Analysis of animal models of alcoholic liver

disease has shown that FXR-deficient mice are

more exposed to developing steatohepatitis and

fibrosis following ethanol feeding [83].

Conversely, the FXR agonist 6ECDCA reverses

steatosis and decreases the oxidative stress

induced, in rodents, by feeding ethanol with

protein-deficient diet [84].

Similarly, once challenged with steatogenic

diets, hepatic FXR-deficient mice, or mice in

which FXR is acetylated, develop a liver

phenotype fully recapitulating human NASH

and cholestasis [85–87]. However, treatments

capable of disrupting the intestinal FXR/

ceramide axis signaling have led to a reduced

grade of steatosis [88].
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Either direct pharmacological FXR agonism

or drug interventions/surgery eventually

leading to FXR upregulation have consistently

been reported to improve NAFLD histology. For

example, deficiency in the electroneutral

Na(?)/H(?) exchanger NHE1 (Slc9a1) leads to

FXR upregulation, reduced cellular stress, and

preserved insulin signaling even upon HFD

feeding [89]. In agreement with these

observations, treatment with hepatic FXR

agonists has resulted in beneficial effects in

NAFLD animal models. Administration of the

dual FXR/TGR5 agonist (INT-767) for 6 weeks

resulted in significantly improved histological

features of NASH associated with an increase in

the proportion of intrahepatic monocytes with

the anti-inflammatory phenotype [73].

Similarly, WAY-362450, a potent synthetic and

orally active FXR agonist, attenuated fatty liver

by acting through multiple steatogenic

mechanisms [90]. Finally, OCA, a

semisynthetic BA-selective ligand for FXR, has

been shown to improve liver steatosis,

inflammation, and fibrosis in preclinical

models and in NAFLD patients (see ‘‘Drugs

Interacting with FXR’’ below) [91, 92]. As far as

surgical experimental models are concerned,

vertical sleeve gastrectomy (VSG) produces

weight loss independent of SHP status in mice;

SHP molecular ablation induces a

pro-inflammatory milieu, which is exacerbated

after VSG despite weight loss [79].

FXR systemic expression has led to novel

therapeutic strategies targeting cholesterol and

TG metabolism, fatty liver, and cholestasis [74,

93, 94]. In contrast to such a systemic therapy,

however, postprandial BA release will selectively

activate intestinal FXR. By mimicking this

tissue-selective effect, the gut-restricted FXR

agonist fexaramine significantly induces

enteric FGF-15. Fexaramine reduces obesity,

systemic low-grade inflammation, and hepatic

IR resulting from high-calorie diet by enhancing

thermogenesis and browning of white adipose

tissue, without activating hepatic FXR [95].

PATHOPHYSIOLOGY OF LXR

AND NAFLD

Cholesterol and FA play a key role not only in

lipid and energy metabolism but are also

involved in multiple and complex biological

phenomena such as the gut–liver axis [96], the

liver–brown adipose tissue interaction [97],

homeostasis of cell membranes, endoplasmic

reticulum stress, inflammation [98, 99],

atherogenesis [99, 100], T2D, obesity [101,

102], and cancer [103].

LXRs, which comprise LXR-a and LXR-b,

belong to the nuclear hormone receptor

superfamily of ligand-activated transcription

factors which, in the hepatic tissue, serve as

lipid sensors and participate in regulating the

expression of master genes which modulate the

metabolism of cholesterol and FA [104].

Orchestrated collaboration between LXR and

SREBP-1 is a main step in the molecular cascade

of events characterizing steatogenesis. Steatosis

is commonly found either in the setting of

NAFLD [105] or associated with hepatitis C virus

(HCV) infection [106]. Both these two

pathogenically interconnected diseases span

steatosis to inflammatory and fibrotic changes

in humans [107, 108]. Consistently, inverse

agonism of LXR-a and LXR-b obtained

through administration of a powerful

synthetic compound (SR9238) has been

reported to suppress hepatic lipogenesis,

inflammation, and steatosis in an

experimental NAFLD model in mice [109] and

UDCA inhibits LXR-a-mediated hepatic

lipogenesis [110].
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On these grounds, by investigating the

connections of LXR-a with other intrahepatic

lipid transporters and histological inflammatory

and fibrotic changes in 40 NAFLD patients, a

study found a positive correlation with the

intrahepatic expression of ABCG5/8, CD36, and

SREBP-1c; that the expression of NPC1L1 was

negatively correlated with intrahepatic

inflammation and LXR-a intensity and,

notably, that LXR-a expression was directly

correlated with the degree of steatosis, as well

as with inflammatory and fibrotic changes

[111]. These data identify LXR as a potential

target for NAFLD treatment.

NATURAL HISTORY OF NAFLD

AT A GLANCE AND ROLE OF NRS

Although the basic pathological steps of NAFLD

[112] and the natural history of disease [6] are

closely interconnected and largely overlap one

another, for the sake of clarity, they can be

dissected into four distinct phases: steatosis,

NASH, fibrosis-cirrhosis, and HCC.

Steatosis

Fatty changes affecting more than 5% of the

hepatocytes, usually associated with minor

‘sterile’ inflammatory changes [113], make up

70–75% of all NAFLD cases and are a common

finding in the general population in most

countries worldwide [4]. Risk factors for the

development of nonalcoholic steatosis include

age, gender, ethnicity, western-type lifestyle

habits (sedentary and hypercaloric, high-fat,

high simple sugar, low in fiber diet) which,

against a background of genetic predisposition,

lead to the development of either individual

features or the full-blown MetS [3, 5]. Gain or

reduction of as little as 2.7 kg affects the risk of

developing steatosis or its reversal [114]. A study

conducted with proton magnetic resonance

spectroscopy in 922 subjects who participated

in a population screening for NAFLD suggested

that metabolic factors increase the risk of

developing steatosis more than genetic factors

[115].

Does simple steatosis evolve into NASH? The

consistent findings that NASH individuals have

an increased mortality compared to those with

steatosis had originally led to the notion of two

different conditions with a low potential, if any,

for steatosis to progress to NASH [11, 116].

Challenging such a view, however, several

recent reports have now clearly proven the

progression from steatosis to NASH in

individual cases [117–119]. A recent report by

Singh et al. [120] reconciles these seemingly

opposite views. These authors, by conducting a

meta-analysis of 11 studies including 150

patients with simple steatosis and 261 with

NASH, all of whom had biopsy-proven disease,

were able to show that the rate of progression of

one stage of fibrosis takes place in over

14.3 years for individuals with simple steatosis

[95% confidence interval (CI) 9.1–50.0] versus

7.1 years for those with NASH (95% CI 4.8–14.3)

[120]. In other words, it would probably take as

long as 57.2 years for steatosis versus 24.4 years

for NASH to progress from early, non-fibrosis

disease to cirrhosis, which confirms that,

although they form a disease spectrum, these

two conditions follow a fairly distinct course.

Although, sometimes, simple steatosis is

alluded to as ‘nonalcoholic fatty liver’ it is,

nevertheless, a disease which is worth treating

not only to untrigger its potential progression

to NASH but also to reduce the risk of

developing T2D [121]. Further to weight loss

[122, 123], various drugs appear able to promote

the reversal of steatosis, notably including
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statins [124], pentoxifylline, vitamin E,

thiazolidinediones, and OCA [125].

Role of PPARs in Hepatic Steatogenesis

PPARs play a major role in the steatogenesis

and, probably, the progression of NAFLD.

Steatogenic drugs such as amiodarone,

valproic acid, and tetracycline affect PPAR

signaling in a mouse precision-cut liver slices

model [126]. Reduced expression of PPAR-a, a

master regulator of FA oxidation, and activation

of the Jun amino-terminal kinase (JNK)

signaling pathway promote hepatic steatosis

and hypertriglyceridemia in mice [127] and

steatogenesis in patients with type II

citrullinemia [128]. Consistently, PPAR-a

activation improves hepatic IR and steatosis in

high-fructose-diet-fed mice [129].

PPAR-c is upregulated in the liver of obese

patients [130, 131]. Conversely, dietary

short-chain FA supplementation prevented

and reversed HFD-induced metabolic

abnormalities in mice by decreasing PPAR-c

expression and activity therefore switching

metabolic pathways from the synthesis of

lipids to their utilization [132]. Interestingly,

genetic PPAR-c variants are associated with the

development and histological progression of

human NAFLD [133].

Nonalcoholic Steatohepatitis

NASH, histologically defined by concurrent

steatosis with inflammatory changes associated

with ballooning hepatocyte degeneration,

affects approximately 25–30% of those with

NAFLD [4].

The ballooned hepatocyte has lost its normal

shape as a result of a combination of

cytoskeletal injury, storage of oxidized fat

microvesicles, and dilated endoplasmic

reticulum. Ballooning is probably the best

morphological evidence of what has been

alluded to as ‘multi-organelle failure’, which

mirrors unbalanced oxidative stress in a

lipid-rich milieu and all these events

eventually conducing to activation of

immunologic pathways [11, 134].

Age, gender, and genetic and metabolic

factors are independently associated with

NASH [135–141]. At variance with vitamin E

and OCA, thiazolidinediones do not reverse

hepatocyte balloning suggesting that IR plays a

key role in the early phases of disease only

[142].

Role of LXR in Hepatic Inflammation

Once activated by elevated intracellular

cholesterol levels, LXRs induce the expression

of genes controlling the absorption, efflux,

transport, and excretion of cholesterol.

Moreover, LXRs modulate immune,

inflammatory, and fibrogenic responses and

are thus identified as integrators of metabolic

and inflammatory signaling and an ideal target

for treatment strategies [143–146].

Interestingly, LXR expression correlates with

the degree of hepatic fat deposition, as well as

with hepatic inflammation and fibrosis in

human NAFLD [111].

Fibrosis and Cirrhosis

Fibrosis (not NASH) is the strongest predictor of

hepatic mortality in NAFLD [147]. However,

NASH, together with age, gender, and genetic

and endocrine-hormonal variables, is among

the independent predictors of fibrosis

[148–158].

Cirrhosis (usually associated with

steatohepatitis and hence defined as

NASH-cirrhosis) features advanced fibrosis
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coupled with deeply distorted (nodular) liver

histological architecture [159].

Recent studies have found that features of

the MetS (body mass index [BMI], T2D, and

steatosis) together with features of

cardiovascular risk (carotid plaques and

intima-media thickness) are the independent

correlates of advanced fibrosis/cirrhosis

[160–162]. In particular, the Rotterdam study

conducted with transient elastography in 3041

participants found that the combined presence

of T2D and steatosis was strongly associated

with liver stiffness (8.0 kPa), suggestive of

clinically relevant fibrosis [161].

Role of FXR in Hepatic Fibrogenesis

CDC is the natural agonist of FXR, the nuclear

hormone receptor which regulates gluco-lipidic

metabolism, senses BA, and inhibits BA synthesis

by inducing SHP gene expression [163].

Moreover, FXR plays a major role in

experimental hepatic fibrosis and in fibrosing

kidney disorders observed in diabetic humans

[164, 165]. Interestingly, the expression of FXR is

reduced in human and mice fibrotic livers [166].

Experimental evidence supports that an

FXR-SHP regulatory cascade promotes the

reversal of hepatic fibrosis, suggesting that FXR

ligands might be effective antifibrotic agents

[163]. Consistently, a phase 2 trial has shown

that the administration of OCA, a semisynthetic

derivative of CDC, reduced surrogate markers of

liver inflammation and fibrosis in patients with

NAFLD and T2D [167]. The role of OCA is further

discussed in ‘‘Drugs Interactingwith FXR’’ below.

Hepatocellular Carcinoma

HCC is the end stage of NAFLD as well as of

other chronic liver disorders due to varying

etiology. At variance with other etiologies,

however, NAFLD-HCC is associated with a less

striking prevalence in the male gender and may

occur in the absence of cirrhosis [168–170].

Given that these NAFLD individuals escape

surveillance programs, NAFLD-HCC often

undergoes a diagnostic delay which curtails

the chances for radical treatment and accounts

for a worse prognosis compared to other

etiologies of disease, such as hepatitis B virus

(HBV)-HCC and HCV-HCC [171, 172].

Several risk modifiers, such as genetics

(PNPLA3 polymorphisms), age, features of the

MetS (BMI and T2D), dietary habits (coffee, fish

and vegetables protecting from, and alcohol

predisposing to developing HCC) and drugs

(statins and certain oral glucose-lowering agents

seem to exert a protective effect) are strongly

associated with the development of

NAFLD-HCC [155, 173–179]. Moreover,

concurrent T2D worsens the prognosis of HCC

by reducing both disease-free survival and

overall survival [180].

Role of NRs in HCC

There is paucity of data on the role, if any, of

NRs, specifically as regards the development of

NAFLD-HCC. Nevertheless, data extrapolated

from various etiologies support a role for

vitamin D receptor (VDR), PPAR-c, and FXR

pathways [181–185].

NAFLD TREATMENT BASED

ON NR-TARGETED DRUGS

On the basis of the pivotal role of NRs in hepatic

metabolic pathways and on the promising

results observed in animal models of NAFLD,

drugs which interfere with some of these NRs

are among the strongest candidates for treating

human NAFLD [14, 16]. Nevertheless, findings

Adv Ther (2016) 33:291–319 301



from experimental studies have not been

systematically replicated in humans and

several clinical trials utilizing pharmacological

manipulation of NRs have yielded conflicting

results (see Table S1 in the supplementary

material).

Fibrates and Polyunstaurated FA

Treatment with drugs interacting with PPAR-a,

such as fibrates and PUFA, has failed to improve

NAFLD histology in humans. In particular,

despite certain favorable metabolic effects,

fibrate monotherapy improves liver histology

only to a minimal extent [186–190]. Similarly,

PUFA supplementation may ameliorate some

metabolic parameters and probably reduces

liver fat content, but has no effect on liver

inflammation and fibrosis [191–196].

Paradoxically, a recent study suggested that

PUFA treatment may even worsen IR and liver

histology in diabetic patients with NASH [197].

Accordingly, despite improving dyslipidemia

[198, 199], this class of drugs has a quite

limited scope in treating NAFLD per se [125].

Thiazolidinediones

Although extensively evaluated in human

NAFLD, the thiazolidinedione PPAR-c agonists

have failed to deliver fully convincing results so

far. Overall, trials on thiazolidinediones showed

an improvement in hepatic and systemic IR

(despite a significant weight gain), and a

reduction of hepatic steatosis and

necro-inflammation [200–210]. In a phase II,

double-blind, placebo-controlled, 24-month

study, pioglitazone significantly improved

aminotransferase levels, steatosis, ballooning,

and inflammation in NASH patients with

impaired glucose tolerance or T2D [202]. The

seminal PIVENS study, a large multicenter,

96-week clinical trial, randomized 247

non-diabetic patients with biopsy-proven

NASH to pioglitazone (30 mg/day), vitamin E

(800 IU/day), or placebo for 24 months [207].

The primary endpoint was an improvement in

the composite of NAS C2 points with at least a

1-point improvement in hepatocellular

ballooning and a 1-point improvement in

either the lobular inflammation or steatosis

score, and no worsening of fibrosis. This

primary endpoint was achieved in 19% of

subjects in the placebo group compared to

34% in the pioglitazone group (P = 0.04, not

significant). Although pioglitazone did not

meet the prespecified significance level for the

primary outcome (prespecified a error of 0.025),

it was associated with significantly higher

reductions in the individual histological

features of steatosis, inflammation, and

hepatocellular ballooning, as well as with the

resolution of steatohepatitis in a significant

proportion of subjects and with improvements

in IR and liver enzymes [207]. A recent network

meta-analysis by Singh et al. [125] confirmed

that thiazolidinediones may improve steatosis,

hepatocellular ballooning, and probably lobular

inflammation in NASH patients. Nevertheless, it

should be pointed out that in NASH,

thiazolidinediones do not reverse or may even

worsen mitochondrial abnormalities [142], and

that their benefit on liver fibrosis remains

unproven [125].

Major concerns about treatment with

thiazolidinediones in NAFLD are long-term

durability of their effects and safety. Indeed,

on the one hand, treatment discontinuation

may lead to subsequent worsening of liver

histology with recurrence of steatosis and

inflammation [211], and, on the other hand,

treatment extension over time has not been

associated with additional improvement of

NASH histological features [206].
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Thiazolidinediones promote pre-adipocyte

differentiation into small, insulin-sensitive

adipocytes and induce weight gain

attributable to an increase in adipose tissue

mass through a redistribution of fat from

ectopic sites, such as the liver and muscle, to

the more physiological reservoir, the peripheral

subcutaneous adipose tissue [206, 212]. Recent

data suggest that a plateau phenomenon in the

improvement in liver steatosis and

inflammation probably occurs under PPAR-c

agonists, once the individual subcutaneous

adipose tissue expandability reaches its storage

capacity [213, 214]. Moreover,

thiazolidinediones are associated with

long-term safety issues, such as an increased

risk of congestive heart failure, bone fractures,

and bladder cancer [215, 216]. For these

reasons, the risk/benefit ratio of long-term

treatment with PPAR-c agonists should be

carefully assessed. Even though current

guidelines suggest that pioglitazone can be

used to treat biopsy-proven NASH in

non-diabetic patients, thiazolidinediones are

not specifically licensed for the treatment of

NASH implying that off-label administration

poses an additional burden of responsibilities

on the individual prescribing physician [2, 217].

Dual PPAR-a/d Agonists

Dual PPAR-a/d agonists are a novel promising

class of drugs for NAFLD treatment. In phase II

clinical trials, GFT505 (elafibranor) has been

proven able to improve insulin sensitivity, lipid

profile, and liver enzymes in patients with MetS

or prediabetic abdominal obesity [70, 71]. The

GOLDEN trial, a randomized,

placebo-controlled, three-arm (placebo,

GFT505 80 mg, and GFT505 120 mg) 1-year

phase IIb study which evaluated 274 subjects

with biopsy-proven NASH and a NAS C3, was

completed in March 2015 [218]. The primary

outcome of disappearance of NASH without

worsening of fibrosis was not achieved.

Nevertheless, after controlling for baseline

severity and center effect, patients in the

120 mg arm had a nearly twofold higher

relative risk of achieving the primary endpoint

compared to placebo. Of note, in the 120

patients with moderate-to-severe activity (NAS

[4) from centers recruiting at least one patient

for each arm, the response rate was 29% and 5%

in the 120 mg and placebo arms, respectively

(P = 0.01). GFT505 120 mg significantly

improved ballooning, inflammation, and

steatosis, compared to placebo. Moreover,

resolution of steatohepatitis was associated

with a significant regression of fibrosis, and

with improvement in markers of hepatocellular

necrosis and cardio-metabolic risk. This trial

demonstrated a favorable safety profile of

GFT505 [219]. The most common adverse

events were minor gastrointestinal complaints;

moreover, a mild dose-dependent increase in

creatinine was noted [91, 218, 219].

Drugs Interacting with FXR

BA specifically targeting FXR may be a

promising approach to treat NAFLD. UDCA

was the first BA proposed as a potential

treatment for NASH. However, most of the

clinical trials conducted with this tertiary BA

failed to demonstrate any significant benefit on

NASH histology [220–223]. The recently

discovered FXR-antagonistic properties of

UDCA may account for its limited therapeutic

efficiency [224].

Conversely, OCA, a CDC derivative, is a

potent FXR agonist which improves insulin

sensitivity and gluco-lipid metabolism and

exerts anti-inflammatory and marked

antifibrotic effects in preclinical models [91]. A
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proof-of-concept, phase 2, randomized,

placebo-controlled, 6-week study in T2D

patients with NAFLD showed that OCA

significantly increased insulin sensitivity and

reduced markers of liver inflammation and

fibrosis [167]. The recently published

randomized, placebo-controlled, 72-week

FLINT trial compared OCA 25 mg with placebo

in 282 patients with biopsy-proven NASH and

NAS C4 without cirrhosis [92]. The primary

endpoint was a decrease of at least two points in

NAS, without worsening of fibrosis. A planned

interim efficacy analysis of the histological

primary outcome showed a significant

superiority of OCA over placebo, which

supported the decision not to perform

end-of-treatment biopsies in 64 subjects. OCA

treatment was significantly associated with the

primary outcome and with improvement in

steatosis, lobular inflammation, hepatocellular

ballooning, and fibrosis, but not with NASH

resolution [92]. A recent network meta-analytic

review supported direct efficacy of OCA in

reversing hepatocyte balloning; moreover, OCA

was associatedwith significant efficacy in fibrosis

regression on direct comparison [125]. These

positive findings, however, are counterbalanced

by pruritus and increased CVR (surge in IR, total

and LDL cholesterol, and a decrease in

high-density lipoprotein cholesterol) [92].

TREATMENT OF NASH

Overview

Here we provide an overview of how NAFLD

treatment can be effected based on currently

available non-pharmacological, pharmacological,

endoscopic, or surgical intervention. This topic

has been extensively examined by our group

recently [225, 226].

In principle, NAFLD management needs to

cover various aims including amelioration of

MetS and its individual features and prevention

of extrahepatic NAFLD features such as T2D and

atherosclerosis. For example a consistent set of

data suggests that NAFLD precedes the

development of T2D [3, 227] and, consistently,

evidence supports that the reversal of NAFLD

protects from developing T2D [121]. Similarly, a

recent study suggests that the reduction in the

severity of NAFLD is associated with a reduced

progression in carotid intima-media thickness

[228]. Moreover, effective antifibrotic treatment

may potentially halt the progression of NASH to

cirrhosis and, further to standard principles of

treatment of cirrhosis of any etiology [159],

specific aims in NASH cirrhosis may include

action in preventing portal vein thrombosis

(PVT) and chemoprevention of HCC [229, 230].

The available weaponry spans from simple

lifestyle changes to drugs (licensed for

conditions other than NAFLD) to endoscopic

and surgical procedures (aimed to treat obesity

and indirectly improving NAFLD). However no

‘ideal’, ‘one-fits-all’ approach is available to

target all the aims listed above. Rather, a

highly tailored management approach should

best be implemented on the basis of age, stage

of liver disease, and systemic co-morbidity

[231].

Lifestyle Changes

Diet

A 7–10% weight loss is associated with

histologically significant rewards such as

reduced liver fat content, remission of NASH,

and fibrosis reduction [232]. Moreover, quality

of life is also improved in these patients as a

result of weight loss [233]. Further to total

ingested calories, saturated fats, carbohydrates,
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and fructose-rich beverages all need to be

restricted and, conversely, increases in MUFA,

long-chain PUFA, and caffeine should be

promoted [234].

Physical Exercise

There is clear meta-analytic evidence that

exercising reduces liver fat content irrespective

of weight loss [235]. This is of interest given the

low cost and widespread availability of this

option and that most patients fail to maintain

weight loss over time. Aerobic training is

superior to progressive resistance training

[236]. On the basis of guidelines,

cardiorespiratory exercise training should be

regularly performed [237].

Drug Treatment

Lipid-Lowering Agents

Cardiovascular disease is the leading cause of

mortality in NAFLD patients and guidelines

recommend the use of statins in these

individuals. However, statins are underutilized

in patients with NAFLD owing to implicit

concerns of hepatotoxicity [238, 239].

There is no relationship linking reduction in

LDL cholesterol values and raised transaminases,

and hypertransaminasemia is linked to statin

dosage and physicochemical properties [240,

241]. Moreover, statins improve symptom-free

survival from cardiovascular disease selectively

in those patients in whom coronary artery

disease coexists with NAFLD [242]. Recent

evidence also suggests that statin use improves

liver histology and protects from NASH, in a

dose-dependent manner, both in diabetic and

non-diabetic individuals [124, 243].

Although fibrates do not improve NAFLD

histology, they do offer a safe and effective

treatment for dyslipidemic patients with

NAFLD [226].

Antidiabetics

NAFLD is exceedingly common among those

with T2D [244]; conversely, a subset of NAFLD

individuals have T2D at baseline and a large

proportion of them will develop T2D over a 5-

year follow-up [227, 244, 245]. Principles of

treatment of T2D in NAFLD have recently been

discussed elsewhere [226]. Probably, the most

exciting novel finding in this arena is the

possibility to implement a chemopreventive

strategy of HCC with antidiabetic medications

such as discussed below.

Antihypertensives

In NAFLD patients, arterial hypertension is the

least prevalent among the individual features of

the MetS [244] and, nevertheless, it is a major

risk factor for the progression of hepatic fibrosis

in these patients [120], which raises the

possibility that, by treating high blood

pressure with sartans, hepatic fibrosis

progression may be halted. Proof-of-concept

experimental studies consistently support this

notion [246–253].

Obesity

Endoscopic Procedures

BioEnterics intragastric balloon safely induces a

sustained weight loss with diet support or for

preparing patients for bariatric surgery. Those

individuals attaining a BMI reduction greater

than 10% experience improvement in

biochemical surrogate indices of NAFLD, IR,

and NAS [254, 255].

Surgery

Bariatric surgery in NAFLD improves

transaminases, cardiometabolic risk factors (IR,

glucose and lipid metabolism, hypertension),

and histological endpoints (hepatic steatosis,

steatohepatitis, and fibrosis); however, it is not
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qualified as a treatment option for NAFLD per

se, but only for the accompanying morbid

obesity [256]. Roux-en-Y gastric bypass (RYGB)

is more effective than other types of surgery in

inducing both weight loss and NAFLD

improvement. However, additional studies

designed to evaluate liver-specific mortality,

liver transplantation, or quality of life are

eagerly awaited [256].

NASH-Cirrhosis

General principles of management of cirrhosis

are fully covered elsewhere [159, 257–259].

Here we discuss some selected topics of

specific relevance to NASH-cirrhosis.

Prevention of Cirrhosis via Antifibrotic Agents

This aim remains largely unaddressed in clinical

practice. A recent survey reporting that aspirin

use seems to exert a protection from fibrosis in

the general population paves the way for

randomized clinical trials (RCTs) in individuals

with NASH [260]. Moderate-quality network

meta-analytic evidence supports the

superiority of pentoxifylline and OCA over

placebo in improving fibrosis [125].

Prevention of Portal Vein Thrombosis

Portal vein thrombosis (PVT) is a major event

dictating the natural history of cirrhosis

irrespective of etiology and the prevention of

PVT with enoxaparin is associated with

decreased hepatic decompensation and

improved survival [261]. As regards the

relationship of the etiology of cirrhosis with

the risk of PVT, a nationwide US survey

enrolling, overall, 33,368 patients who

underwent liver transplantation reported that

NASH cirrhosis was the strongest risk factor

independently associated with PVT [229]. These

data attest that NASH is a prothrombotic state

and suggest that PVT prevention may be

particularly indicated in this population. RCTs

should assess which anticoagulants should be

used in preventing PVT effectively and safely in

this specific patient population.

Chemoprevention of HCC

The molecular bases of this topic have

extensively been examined [176, 230]. In

short, on the basis of current evidence

metformin [262, 263], statins [264, 265], or

their combination [266] may potentially be

useful in this setting. However, most data

derive from observational studies and RCTs are

warranted before chemoprevention of HCC can

be licensed for clinical practice.

CONCLUSIONS

Our understanding of the role of NRs in NAFLD

pathophysiology, natural history, and

treatment is preliminary (Fig. 1) and additional

studies are required. PPAR-c agonists seem to

improve steatosis and necro-inflammation in

NAFLD, but thiazolidinediones are not

approved for the treatment of NASH, data in

diabetic patients are scarce, and long-term

safety and efficacy in NASH patients have not

been established [91]. The dual PPAR-a/d

agonist elafibranor exhibits promising results

and favorable safety profile, but its efficacy

should be further confirmed. The FXR agonist

OCA has the potential to prevent progression to

cirrhosis by improving all the histological

features of NASH, notably including fibrosis.

However, additional research is needed to

confirm this promise and address concerns

about tolerability and side effects. Finally,

drugs interacting with several NRs, either

discussed here, such as LXR, or not discussed

in the present review, such as pregnane X

306 Adv Ther (2016) 33:291–319



receptor (PXR), constitutive androstane

receptor (CAR), liver receptor homolog-1

(LRH-1), estrogen receptor beta (ERb), thyroid

hormone receptor beta (TRb), and VDR, whose

importance has been demonstrated in NAFLD

animal models, await urgent evaluation in

humans [267–269].
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