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Abstract: SARS-CoV-2 virus, infecting human cells via its spike protein, causes Coronavirus disease
2019 (COVID-19). COVID-19 is characterized by shortness of breath, fever, and pneumonia and is
sometimes fatal. Unfortunately, to date, there is still no definite therapy to treat COVID-19. Therefore,
the World Health Organization (WHO) approved only supportive care. During the COVID-19
pandemic, the need to maintain a correct intake of nutrients to support very weakened patients
in overcoming disease arose. The literature available on nutrient intake for COVID-19 is mainly
focused on prevention. However, the safe intake of micro- and/or macro-nutrients can be useful
either for preventing infection and supporting the immune response during COVID-19, as well as
in the post-acute phase, i.e., “long COVID”, that is sometimes characterized by the onset of various
long lasting and disabling symptoms. The aim of this review is to focus on the role of nutrient intake
during all the different phases of the disease, including prevention, the acute phase, and finally
long COVID.

Keywords: pandemic; COVID-19; nutritional supplement; SARS-CoV-2; Long-COVID; ARDS;
inflammation; immune system

1. Introduction

The etiological agent of COVID-19 (CoronavirusDisease 19) was named SARS-CoV-2
(Severe Acute Respiratory Syndrome Coronavirus 2) on 11 February 2020, by the World
Health Organization (WHO) [1].

SARS-CoV-2 was detected for the first time in December of 2019 in in Wuhan (Hubei),
China [2]. From there, SARS-CoV-2 spread throughout the world by rapid viral person-to-
person infection [3].

The virus reached nearly all countries in the world in less than six months and on
30 January 2020, it was named “the first pandemic of the 21st century” by the World Health
Organization (WHO) [4].

SARS-CoV-2 is an envelope RNA- virus with a positive sense RNA genome (30 kb long)
encoding four structural proteins, spike (S), envelope (E), membrane (M), and nucleocapsid
(N). It has in total 11 genes, with 11 open reading frames (ORFs) [5].

The SARS-CoV-2 enters and infects nasal ciliated and lung alveolar epithelial cells,
small intestine enterocytes, arterial and venous endothelial cells, and arterial smooth
muscle cells via the interaction of its S protein with angiotensin converting enzyme 2
(ACE2) receptor [6].
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Spike is a homotrimeric glycoprotein constituted by two functional subunits: S1
subunit that binds to ACE2 receptor and S2 subunit implicated in the fusion of the viral
and host cell membranes. After the binding of the S1 subunit to ACE2 on human cells, the
transmembrane protease serine 2 (TMPRSS2), in human cell membranes, cleaves the spike
protein, activating the S2 domain. This process causes the virus to fuse with the cell and
enter it [7,8].

The infection by SARS-CoV2 of epithelial cells of the upper respiratory tract results in a
local immune response caused by interferon beta (IFN-β) and CXC motif chemokine ligand
10 (CXCL-1O), giving mild symptoms, such as cough, fever, and rhinorrhea [9]. However,
when SARS-CoV-2 enters the pulmonary alveoli, severe pneumonia can develop: the virus
can infect type II alveolar cells, destroying them and causing widespread damage to the
alveoli [10]. In very aggressive cases of COVID-19, the virus can enter the bloodstream and
infect endothelial and other target cells in the kidneys, esophagus, bladder, ileum, heart
tissues, and central nervous system. In patients in critical condition, the release of a large
number of interleukins and cytokines, such as IL-1, IL-2, IL-6, IL-8, IL-10, CCL3, IP-10, and
TNF α, causes the so-called “cytokine storm” (Figure 1) [11–13], which attracts neutrophils,
CD4 helper, and CD8 cytotoxic lymphocytes, which, acting against the infection, generate a
constant inflammatory state. This inflammatory situation causes apoptosis and necrosis of
the surrounding tissue and self-feeds, causing damage to type I and type II alveolar cells.
This promotes an increase in blood vessel permeability, leading to acute respiratory distress
syndrome (ARDS) (Figure 1) [13–15].
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Figure 1. SARS-CoV-2 pathogenesis. In more aggressive cases of COVID-19, the virus can enter the
bloodstream inducing an imbalance in the immune system, causing a cytokine storm. This can lead
to tissue damage, ARDS and multi-organ dysfunction.

In the last year, the development of vaccines has given great hope for countering the
pandemic. Unfortunately, it has been shown that, in most cases, they do not fully protect
against infection and spread of the virus. However, vaccine development has been the
most important approach to preventing severe COVID-19 and plays a pivotal role in the
control and reduction of mortality [16]. The virus uses its spike protein to enter the host
cells by interacting with a specific receptor ACE2. Thus, all vaccines available so far target
the spike protein. Vaccines induce the expression of the spike protein in the human cells,
via mRNA or an adenoviral vector. The human immune system will recognize this protein
as foreign and induce the production of neutralizing antibodies [16].
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Recent studies proposed therapies for COVID-19 patients based on the pathogenesis
of the infection and dependent on the course of the disease. In fact, they propose the use of
oxygen therapy to counteract low oxygen saturation, anti-inflammatories to prevent the
storm of cytokines and ARDS, antiviral agents to block as much as possible the entry of the
virus into host cells, antithrombotic drugs to prevent cases of intravascular coagulation dis-
seminated, and finally the use of monoclonal antibodies in the most serious patients [17,18].
Anti-SARS-CoV-2 monoclonal antibodies target the viral spike protein, preventing the virus
from binding to host cells, and represent one of the primary immune responses against
SARS-CoV-2 [18].

However, SARS-CoV-2 exerts its adaptive capacities through mutations of its protein,
which gives the virus a competitive advantage, affecting its pathogenic potential. In fact,
only a single variation of amino acid is able to influence the viral replication, transmis-
sion, or immune control evasion, making the vaccine ineffective. SARS-CoV-2, like other
RNA viruses that typically have higher mutation rates than DNA viruses, selects genetic
mutations, allowing a greater transmissibility in human cells and developing different
variants. So, variants of the virus continue to be selected, presenting a variable number of
mutations in the spike protein. The latest variant identified, Omicron, contains more than
thirty amino acid mutations in the spike protein, mostly present in the receptor binding
domain, and exhibits an increased transmissibility and escape ability from vaccines and
therapies [19,20].

The progressive selection of new mutations will compromise the efficacy of both
vaccines and monoclonal antibodies.

Given the rapid transmission, the severity of infections, and the absence of drugs
able to completely inhibit SARS-CoV-2 infection, it is urgent to discover and develop
molecules capable of improving the host’s natural defenses and further antiviral agents.
The innovation of this review is represented by the focus on the three different moments
of the infection, in particular long COVID, which has become increasingly worrying. In
fact, in the initial phase of the pandemic, not enough time had elapsed to highlight these
long-lasting symptoms, following the acute infection, which were sometimes confused
with other diseases. Moreover, last but not least, the use of micro and macronutrients is a
relatively inexpensive and easily manageable treatment, without hospitalization. If proven
effective, it has the potential to change the course of the COVID-19 pandemic.

2. Materials and Methods

An online survey on PubMed and Scopus from beginning of COVID-19 pandemic to
January 2022 of all scientific publications (case reports, letters to editors, reviews, original
research) focused on SARS-CoV-2 was carried out. Search keywords were: COVID-19,
nutrients, dietary supplements, SARS-CoV-2, long COVID, ARDS, inflammation, immune
system. The online survey was carried out by a systematic analysis and a critical evaluation
of the collected studies, considering the most valuable studies in the best journals. Only
articles reporting associations between nutrients and COVID-19 in humans were analysed.
All articles not published in English, articles with a short commentary, short notes, or
incomplete results were excluded. Search results were screened for inclusion and exclusion
criteria by all the authors. As the topic is very innovative, all the works found are very
recent and some studies could remain incomplete.

3. Results
3.1. Nutrients in COVID-19 Prevention

During the COVID-19 pandemic, people trusted web and social media guidelines on
the use of natural substances and supplements, miraculously acting in the prevention and
treatment of COVID-19.

Some of these substances are already known as immune system enhancers. Many
vitamins, including vitamins A, B6, B12, C, D, E, and folates as well as trace elements,
including zinc, iron, selenium, magnesium, and copper, are very useful in supporting both
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innate and adaptive immune immunity. Deficiencies in these substances negatively affect
the activation of the immune system in infections [21–23].

For example, vitamin C has a role in immune response, regulating several cellular
functions of innate and adaptive immunity. Vitamin C influences neutrophil chemotaxis,
phagocytosis, and the generation of reactive oxygen species. Furthermore, vitamin C
promotes the differentiation and proliferation of B and T cells. It is known that vitamin C
deficiency negatively regulates the immune response, making the body more sensitive to
infections [21].

Vitamin D plays a role in the defense against viral infections as it is able to modulate
both the adaptive and the innate immune systems [24–26]. It protects against respiratory
pathogens by various mechanisms. Moreover, 25-hydroxyvitamin, the main circulating
metabolite of vitamin D, responds to both viral and bacterial stimuli by inducing the
expression of antimicrobial peptides [27–29]. In fact, various studies describe a correlation
between low serum concentrations of 25-hydroxyvitamin D and an increased chance
of contracting acute infections of the respiratory tract [30,31]. Moreover, the vitamin D
metabolites induce autophagy and the synthesis of reactive intermediates of both nitrogen
and oxygen, reducing acute respiratory infections and pneumonia [32–34].

Furthermore, vitamin B6 activates innate and adaptive immunity by influencing the
proliferation of immune cells [35], Zn influences the development and activity of both
neutrophils and NK cells [36], Fe regulates the differentiation and proliferation of T lym-
phocytes and, through the production of reactive oxygen species, plays a role in the removal
of infectious agents [37]. Finally, selenium supports the activity of the immune system, as
the deficiency of Se compromises both innate and acquired immunity [38]. Other nutrients
such as omega-3 fatty acids (N-3 PUFAs) also participate in the effectiveness of the immune
response, playing a role in reducing inflammation: they inhibit leukocyte chemotaxis,
production of inflammatory cytokines, and T lymphocyte reactivity. Moreover, they give
rise to resolvins and protectins that participate in the resolution of inflammation [39].

Most of these micronutrients are included in the European Union Register on Nutrition
and Health Claims, as they play a role in the functioning of the immune system [40].

Therefore, various authors recommend the early use of substances, such as zinc,
selenium, and vitamin D [41], as well as other micronutrients, to increase resistance to
COVID-19 [42]. This should be done especially in areas at highest risk of developing
COVID-19 and as early as possible in the case of suspected infections [43].

The World Health Organization reiterated during the pandemic the indications for
proper nutrition based on the guidelines already known, which recommend a Mediter-
ranean diet, with a prevalent consumption of fresh and unprocessed foods, vegetables,
and in which the use of sugars and saturated fats and an excessive amount of salt are not
recommended [44]. In the literature, there are several studies that highlight the important
role of nutrition in the correct functioning of the immune response (Figure 2). Sometimes a
correct diet can be sufficient to guarantee the correct intake of the micro and macro nutrients
suggested in the study. However, for some of them, such as vitamin D, diet alone cannot
increase serum 25 (OH) D concentrations to provide optimal protection from SARS-CoV-2.
In addition, further randomized trials with an early administration of high doses of vitamin
D after the onset of COVID-19 should be conducted in order to identify the right time to
start vitamin D administration to achieve a significant effectiveness [45].

3.2. Nutrients in COVID-19 Treatment

Since SARS-CoV-2 infection became a pandemic, affecting millions of people, an
urgent need has arisen for effective treatments against this disease.

COVID-19 patients, especially hospitalized ones, show strong consequences, such as
hypermetabolism and muscle catabolism, due to a marked systemic inflammation, with a
reduction in food intake and therefore malnutrition. Some studies show that the outcome
of COVID-19 patients is correlated with their nutritional status [46,47].
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Some data have shown that the lack of some minerals and vitamins has a negative
effect on the patient’s recovery during the treatment of COVID-19 [48]. In fact, some
micronutrients influence the production of inflammatory mediators during the disease and
act as immunostimulants, so they are recommended for COVID-19 patients [48,49].

For this reason, many studies have focused on the role of micronutrients in supporting
the treatment of COVID [41,48,50] (Figure 2).

3.2.1. Vitamin C

During infections, vitamin C levels decrease because metabolism requires a great
amount of this vitamin due to increasing inflammation. Vitamin C supplementation is
used in the prevention and therapy of respiratory and systemic infections. For prevention,
plasma levels of vitamin C of at least 100–200 mg/day are required. However, for the
treatment of infection, higher doses of vitamin C are needed to balance the increased
demand due to the inflammatory response [51].

Vitamin C in COVID-19 pathology inhibits inflammation and activates the immune
response by acting on various mechanisms: it regulates the production of cytokines, the
amount of released histamines, mitigates oxidative stress, and acts on the differentiation
and proliferation of T and B lymphocytes [51,52].

However, the data on the effect of Vitamin C administration in the treatment of
COVID-19 need further and larger prospective randomized studies [53].

3.2.2. Vitamin D

The importance of vitamin D in COVID 19 prophylaxis has been previously described,
and its role in modulating both the adaptive and innate immune systems has been high-
lighted [25,26].

The idea that low vitamin D levels may be linked to the severity of the disease has
stimulated many studies. In a study carried out in India, severe COVID-19 patients
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presented with vitamin D deficiency with lower serum levels of 25-hydroxyvitamin D and
with higher levels of inflammatory markers compared to asymptomatic patients [54].

In addition, other observational studies show that low levels of 25-hydroxyvitamin
are associated with the severity of COVID-19 [55–58].

There are several data, albeit not definitive, that attribute a therapeutic function to
vitamin D in COVID-19. In a first study, patients treated with a high-dose cholecalciferol
supplementation showed greater SARS- CoV-2 negativization than those who do not have
supplementation. [59]. Another one, highlights that the early use of calcifediol or cholecal-
ciferol correlates with increased survival among COVID-19 hospitalized patients [60].

Other groups showed that a good vitamin D status reduces the use of intensive care
and leads to a reduction in mortality [61,62]. In particular, some of these showed an
association between the treatment of hospitalized COVID-19 patients with cholecalciferol
and reduced mortality, regardless of initial 25-hydroxyvitamin D levels [63,64].

Another Spanish study has shown that early administration of high-dose calcifediol
in combination with hydroxychloroquine and azithromycin greatly reduces the disease
severity and access to intensive care compared to treatment with hydroxychloroquine or
azithromycin alone [65].

However, although a sure correlation between vitamin D and recovery from COVID-19
has not yet been demonstrated, new guidelines have been provided in many countries
recommending vitamin D supplementation in case of SARS-CoV-2 positivity.

3.2.3. Zinc

Upper respiratory system virus infections are prevented by the presence of mucus and
vibrating cilia [66]. SARS-CoV-2 infection causes damage to the ciliated epithelium and
ciliary dyskinesia [67]. Zinc is essential in keeping tissue barriers intact and functioning.
In fact, it is known that zinc promotes ciliary beating and, in rats with a Zn deficiency,
its integration caused an improvement in both the number and length of the bronchial
vibratory cilia [68,69]. Zinc is known to act on viral replication in several types of viruses,
including Coronaviridiae [70]. It prevents fusion with the host cell membranes, inhibits
viral polymerase activity, interferes with viral protein synthesis, inhibits the release of
viral particles, and makes unstable the viral envelope [71]. COVID-19 is characterized
by an imbalance of the immune response [72]. The most severe forms are characterized
by systemic inflammation, due to cytokine storm, and organ failure. Moreover, some
patients develop acute respiratory distress syndrome (ARDS) [73]. Zinc plays an important
role in the immune response by normalizing excessive immune reactions, balancing the
interactions among the various cell types of the immune system. Hence, zinc at high
concentrations of inflammatory mediators prevents the destruction of host tissue [11].

However, further studies are needed to show that zinc can be used as a therapy for
COVID-19. Despite several studies that have focused on using zinc supplementation alone
or in combination with other drugs including hydroxychloroquine, results are not yet
known and the effectiveness of zinc is still uncertain [74].

3.2.4. N-3 PUFAs

It has been shown that N-3 PUFAs, commonly called omega-3 fatty acids, have excel-
lent effects in fighting viral infections [74] and that their deficiency can cause a delayed
resolution of inflammations [75,76].

Indeed, N-3 PUFAs play a valuable role in the therapy of inflammation associated dis-
eases. Physiologically, the inflammation resolves quickly in the final phase of the immune
response when negative feedback mechanisms are activated. Among these processes is the
enzymatic conversion of omega-3 eicosapentaenoic acid (EPA) and docosahexaenoic acid
(DHA) into specialized pro-resolution mediators (SPM) known as resolvins, protectins, and
maresins, at the site of inflammation. SPMs participate, together with other molecules, in
the resolution of inflammation, also in the respiratory tract [77,78]. Therefore, a plausible
hypothesis could be that SPMs can help solve the cytokine storm and COVID-19 associated
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lung inflammation [79,80]. Before the COVID pandemic, N-3 PUFAs had been attributed a
role in countering ARDS and sepsis [81–83] and since ARDS and sepsis characterize severe
COVID patients [83], it is possible that N-3 PUFAs could represent a valid treatment in se-
vere patients. This could be very important in the context of severe COVID-19 manifesting
an uncontrolled inflammation, the so-called cytokine storm and ARDS [84].

Another mechanism by which N-3 PUFAs reduce inflammation levels is inhibiting
leukocyte chemotaxis, the expression of adhesion molecules, and interaction between
leucocytes and endothelium [39,85,86]. Moreover, N-3 PUFAs affect the adaptive immune
response [85] by regulating antigen presentation and CD4+ Th1 cell production [87].

However, preliminary data on the correlation between omega-3 fatty acid intake and
recovery from COVID-19 are still controversial. In a pilot study, blood omega-3 concentra-
tion from 100 COVID-19 patients was inversely related to the risk of death [88]. Therefore,
although there are strong indications that N-3 PUFAs may play a role in regulating the
immune system in COVID-19, existing data from randomized controlled trials (RCTs) are
not always significant, so further studies are needed.

Finally, another positive effect of N-3 PUFAs in COVID-19 patients could be ascribed
to their antithrombotic properties [89–91]. As some COVID-19 patients, particularly those
with comorbidities, may develop complications, such as arterial and venous thrombosis [92],
N-3 fatty acids may play an important role in the therapy of thrombotic complications from
COVID-19.

3.2.5. Lactoferrin

Lactoferrin, a milk-derived 80-kDa glycoprotein [93,94], synthesized by neutrophils,
is involved in innate immunity and plays a role in host defense [95–97]. It is able to bind
free iron [98] and is capable of modulating the tissue inflammatory process by inducing a
decrease in the production of proinflammatory cytokines and by regulating the expression
of some proteins involved in inflammatory and iron homeostasis (including ferroportin,
membrane-bound ceruloplasmin, cytosolic ferritin, transferrin receptor 1) [99].

In COVID-19 patients, the release of proinflammatory cytokines such as interleukin (IL)
-6 could both induce coagulopathy and affect iron homeostasis [100–103]. So Lactoferrin
(Lf) could counteract SARS-CoV-2 infection, inflammation, and dysregulation of iron home-
ostasis simultaneously and could be important in the treatment of COVID-19 [102–105].

In fact, several studies have been conducted to evaluate the antiviral effect of Lactofer-
rin. It has been shown that asymptomatic, pauci-symptomatic, and moderate COVID-19
lactoferrin-treated patients show faster virus negativization and more rapid clinical recov-
ery than untreated patients. Furthermore, Lactoferrin treatment is safe and well tolerated
in all treated patients [106,107].

3.2.6. Hesperidin

Hesperidin is a flavonic glycoside with antioxidant and anti-inflammatory [108] prop-
erties. It is commonly found in lemon and sweet oranges and acts against the influenza
virusb, by inhibiting viral replication [109,110]. Combined with Quercetin, it has been
recently proposed as a treatment to block the replication of SARS-CoV-2 by interfering
with its interaction with the angiotensin 2 receptor converting enzyme [111–115]. Fur-
thermore, it has been shown that Quercetin and vitamin C act synergistically against
SARS-CoV-2 [116]. In a very recent paper, an early therapy with Hesperidin and quercetin,
administered together with a non-steroidal anti-inflammatory drug with antiviral proper-
ties (indomethacin) and with an anti-aggregating drug (low-dose aspirin), was proposed
to be carried out within 3 days from the beginning of the symptoms of SARS-CoV-2. This
therapy showed a reduction in the severity of COVID-19 and rate of hospitalization [117].

In conclusion, regardless of the therapeutic activity of each micro or macronutrient, the
nutritional status of COVID-19 patients should be carefully evaluated using standardized
methods. In fact, all COVID-19 patients, especially those hospitalized or admitted to
intensive care, should be considered at risk of malnutrition. Through a careful analysis
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of the real deficiencies and severity of COVID-19 disease, a correct integration should be
administered without incurring the risk of refeeding syndrome [118].

The importance of performing a close community nutritional surveillance is high-
lighted by the nutritional support recommendations for COVID-19 patients provided by a
professional clinical nutrition [119].

3.3. Nutrients Post COVID-19

At the end of acute phase of SARS-CoV-2 disease, so-called “long COVID” can develop,
characterized by a series of persistent symptoms that last more than 12 weeks from the
beginning of the infection [120].

Cognitive dysfunction and fatigue are main symptoms accompanied by sleep dis-
turbances, lack of concentration, depression, and pain. Changes in taste and smell,
headache, dizziness, coordination difficulties, memory loss, anxiety, and insomnia are
also found. [121,122].

A clear explanation for these neurological symptoms has not yet been proposed. One
possibility is that the virus can cross or damage the blood–brain barrier (BBB). In addition,
the virus could enter the nose, and, via the olfactory nerve, arrive at the brain [123].

Fatigue appears to be independent of the severity of symptoms that characterize the
acute phase of the disease [124]. In fact, long COVID also affects many healthy young
people who have not been hospitalized [125–127].

It has been shown that the nutritional status of patients is important in determining
the outcome of many diseases. This is the also case of COVID-19 [126,127].

COVID-19 patients, particularly those hospitalized and admitted to intensive care,
who have developed metabolic disorders, have a poor nutritional status [128] due to
malnutrition and weight loss. Simultaneously they suffer dyspnoea, nausea, vomiting,
anorexia, dysphagia, diarrhea, and frailty as well as, sometimes, other comorbidities and
prolonged hospitalization in intensive care [129–131].

To date, no guidelines for post-COVID patients have been yet provided. However, as
it is known that dietary imbalances can adversely affect cognitive functions, causing wors-
ening in reasoning, attention, and memory skills and promoting dementia and depression,
it would be necessary to define them as soon as possible [132–135].

Nutrients, including vitamins B1, B6, B9, B12, C, D, and E,ω-3 fatty acids, and minerals,
such as iron, zinc, and selenium, are known to play an important role in protecting against
neuroinflammation and oxidative stress. Therefore, they have a very positive effect on
cognitive functions [136–147].

Frequently, long COVID patients report the typical sensation of “brain fog”. The
pathogenesis of brain fog is not yet fully understood. It could be induced by neuroin-
flammation caused by infectious agents, including SARS-CoV-2, stimulating mast cells to
release microglia-activating mediators that in turn inflame the hypothalamus [148–151].
Therefore, inhibition of mast cells could be useful in treatment of brain fog. Natural
flavonoids, including luteolin and quercetin, could be used as mast cell inhibitors: they
inhibit neuroinflammation and decrease cognitive decline. In particular, luteolin is able to
better penetrate the brain and inhibits both microglia and mast cells [152–155] (Figure 2).

4. Discussion

As mentioned above, the development of new variants of SARS-CoV-2 had a negative
impact on the efficacy of vaccines and monoclonal antibodies therapy.

Thus, due to the extensive spreading of SARS-CoV-2 and the severity of the disease in
some patients, it is essential to identify molecules capable of fighting against SARS-CoV-2
infection and treating COVID-19 disease. In particular, it is also worth noting that patients
with mild symptoms may develop severe consequences, due to the onset of a series of
long-lasting symptoms, constituting the so called long COVID.
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In this review we have discussed a number of studies showing that nutrition may play
an important role in influencing both the susceptibility and the clinical course of COVID-19
and long COVID, as is already known for other viral diseases.

We have shown that nutritional status plays a pivotal role in the function of the im-
mune system, supporting both innate and adaptive immunity, influencing the proliferation
and activity of immune cells. Furthermore, we highlighted that nutrients play a role in
reducing inflammation. They inhibit leukocyte chemotaxis, inflammatory cytokine produc-
tion, and T lymphocyte reactivity [24–26,35,37,38]. Moreover, they give rise to resolvins and
protectins, which participate in the resolution of inflammation by normalizing excessive im-
mune reactions [39]. In addition, they are essential for keeping intact and functioning tissue
barriers. Finally, some of them seem to influence viral replication and they have even been
shown to have a neuroprotective effect in long COVID, by decreasing cognitive decline.

Considering that the literature is often contradictory and that the reference to isolated
studies could lead to false conclusions on COVID-19 prevention and treatment, at the
moment, we can only suggest the introduction of micro and/or macronutrients into a
balanced diet.

Indeed, up to now, no solid evidence supports the adoption of specific nutritional
therapies, so it is necessary to await the results of the ongoing clinical trials.

Of course, since all forms of malnutrition negatively affect the functioning of the
immune system, malnutrition will also impact the susceptibility to COVID-19. Of note,
it has been shown that patients with obesity, heart disease, hypertension, or diabetes, if
affected by COVID-19, have more severe infections with higher rates of hospitalization and
mortality [156,157]

On the other hand, it should be considered that micronutrient amount is not routinely
measured upon admission to hospital. Thus, public health strategies aimed at preventing
micronutrient deficiencies, malnutrition, and over-nutrition remain of basic importance.

It should also be considered that, up to now, data on the recommended daily allowance
(RDA) and adequate intake (AI) of dietary supplements to prevent or treat COVID-19 are
not sufficient. They are usually customized for women, men, age groups, and for specific
conditions. For instance, the effects of dietary supplement may be dependent on gender.
Louca et al. observed a significant correlation between diet supplement intake and SARS-
CoV-2 positivity in women, but no clear benefit was shown in men [158,159]. Moreover,
many nutrients in very high doses can be dangerous.

Unfortunately, there are not conclusive data in this field, but many studies are ongoing.
Mainly, studies on the use of micro and macronutrients in COVID-19 patients should
be improved. If effective, nutrients could have the potential to change the course of the
COVID-19 pandemic.

Last but not least, the use of micro and macronutrients is a relatively inexpensive and
easy to manage treatment, needing no hospitalization.

In conclusion, large randomized controlled studies are needed to establish the real
role of micro- and/or macronutrients in the different phases of COVID-19 and to test
their positive and/or adverse effects, before the approval of their therapeutic use in this
pathology.
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Abbreviations

COVID-19 Coronavirus Disease-2019
SARS-CoV-2 severe acute respiratory syndrome Coronavirus 2
WHO World Health Organization
ACE2 angiotensin converting enzyme 2 receptor
S protein Spike protein
TMPRSS2 transmembrane protease serine 2
IFN-β interferon beta
CXCL-1O CXC motif chemokine ligand 10
ARDS acute respiratory distress syndrome
Se selenium
Fe iron
Zn zinc
N-3 PUFAs omega-3 fatty acids
EPA enzymatic conversion of omega-3 eicosapentaenoic acid
DHA docosahexaenoic acid
SPM pro-resolution mediators
Lf Lactoferrin
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