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Abstract: An increasing aging population worldwide accounts for a growing share of

noncommunicable diseases (NCDs) of the overall social and economic burden. Dietary and nutritional

approaches are of paramount importance in the management of NCDs. As a result, nutrition programs

are increasingly integrated into public health policies. At present, programs aimed at reducing the

burden of NCDs have focused mostly on the excess of unhealthy nutrient intakes whereas the

importance of optimizing adequate essential and semi-essential nutrient intakes and nutrient-rich

diets has received less attention. Surveys indicate that nutrient intakes of the aging population are

insufficient to optimally support healthy aging. Vitamin and mineral deficiencies in older adults

are related to increased risk of NCDs including fatigue, cardiovascular disease, and cognitive and

neuromuscular function impairments. Reviewed literature demonstrates that improving intake for

certain nutrients may be important in reducing progress of NCDs such as musculoskeletal disorders,

dementia, loss of vision, and cardiometabolic diseases during aging. Current knowledge concerning

improving individual nutrient intakes to reduce progression of chronic disease is still emerging with

varying effect sizes and levels of evidence. Most pronounced benefits of nutrients were found in

participants who had low nutrient intake or status at baseline or who had increased genetic and

metabolic needs for that nutrient. Authorities should implement ways to optimize essential nutrient

intake as an integral part of their strategies to address NCDs.

Keywords: chronic disease; noncommunicable disease; nutrient inadequacies and deficiencies; nutrient

interventions; public health; musculoskeletal disorders; dementia; eye disorders; cardiovascular disease

1. Introduction

Globally, significant gains in human longevity have been made in the last couple of decades as

evidenced by an average 5.5-year increase in life expectancy between 2000 and 2016 [1]. In many

countries average life expectancy currently exceeds 80 years [1]. These longevity gains have come at a

cost, however, with the most obvious being an increase in age-related diseases [2]. Noncommunicable

diseases (NCDs) such as diabetes, musculoskeletal disorders, cardiovascular diseases, neurological

disorders, and cancers increase with age, and place a burden on individuals and healthcare systems [3].

Supporting healthy aging by preventing NCDs is a major priority for agencies such as the World

Health Organization (WHO) and United Nations [4,5].

The WHO estimates that NCDs contribute 1.6 billion disability-adjusted life-years (DALYs)

to the global burden of disease and identified unhealthy diets and physical inactivity are among

the main modifiable risk factors, together with excess alcohol and tobacco use [6]. Nutrition is

an important determinant of human health by providing the essential building blocks for growth,

development, and maintenance of a healthy status throughout life [7,8]. In this context, the co-existing
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burdens of undernutrition and overnutrition represent a paradigm shift for health authorities

requiring appropriate dietary management recommendations [9]. Modern lifestyles and easy access to

high-energy, low-nutrient rich foods are considered part of the problem [3,10–12]. For example, the

economic costs of unhealthy diets and low physical activity in the EU were calculated to be €1.3 billion

per year [13].

Currently, health authorities mainly target problems associated with obesity and cardiovascular

diseases by focusing on reducing excess intake of calories, sugar, salt, and saturated fats. However,

the importance of a positive message associated with promoting adequate nutrient intake as part of a

balanced diet should not be overlooked [4]. There is considerable variation in the consumption of food

items that need to be encouraged and food items which should be limited, both between and within

different countries. This was reflected in a recent study in European countries showing suboptimal

nutrient-density of diets and significant proportions of the population consuming excess amounts

of salt, sugar and saturated fat, as well as significant proportions of the population not meeting the

required or adequate intakes for various essential nutrients (Table 1) [12].

Table 1. Percentage of adults with nutrient intakes meeting the estimated average requirement (EAR)

or adequate intake (AI) or exceeding the maximum reference value (MRV) [12].

% Meeting EAR or AI EAR or AI
Denmark

n = 2025 people
Czech Republic
n = 1869 people

Italy
n = 2831 people

France
n = 2624 people

Protein, g/d 0.66 g/kg BW
 84%  88%  99%  98%

MUFA, E% 10–20 E%
 69%  92%  75%  77%

Dietary fiber, g/d 25
 19%  4%  12%  9%

Calcium, mg/d 750
 70%  31%  43%  62%

Iron, mg/d M: 6; F: 7
 92%  96%  98%  98%

Potassium, mg/d 3500
 31%  4%  19%  18%

Magnesium, mg/d M: 350; F: 300
 46%  25%  20%  23%

Zinc, mg/d M: 7.5; F: 6.2
 90%  48%  97%  91%

Vitamin A, µg RE/d M: 570; F490
 77%  38%  66%  77%

Vitamin C, mg/d M: 90; F: 80
 50%  35%  62%  44%

Vitamin E, mg/d M: 13; F: 11
 5%  44%  47%  34%

Vitamin D, µg/d 15
 3%  1%  1%  1%

Vitamin B1, mg/d 0.6
 97%  98%  47%  100%

Vitamin B2, mg/d M: 1.1; F: 0.9
 80%  35%  84%  92%

Vitamin B12, µg/d 4
 55%  36%  52%  50%

Folate, µg DFE/d 250
 59%  24%  77%  51%

% exceeding MRV MRV

SFA, E% <10 E%
 86%  80%  62%  91%

Added sugar, E% <10 E%
 32%  21%  24%

Sodium, mg/d <2400 mg/d
 80%  98%  13%  85%

RE: retinol equivalents, DFE: dietary folate equivalents, E%: energy percentage, MUFA: mono-unsaturated fatty
acids, SFA: saturated fatty acids. The red, orange, yellow, light green and dark green signals, respectively, represent
≤5%, 6–35%, 36–65%, 66–95%, and ≥96% of people meeting the EAR.

The health consequences of poor nutrition almost certainly accumulate over the lifespan of the

individual. Table 2 presents information regarding some of the more frequently reported chronic

clinical signs associated with certain vitamin and mineral deficiencies in older adults. Clinical signs

and symptoms are mostly nonspecific and difficult to diagnose. During the aging process, a number

of changes occur, such as increased medication use, reduced food intake due to lower food appeal,
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and compromised nutrient absorption. These complex changes prevent elderly persons from meeting

their nutritional requirements. This consequently leads to increased risk of malnutrition, frailty, and

reduced quality of life (QoL) [14–17].

Table 2. Critical nutrients in older adults [18].

Micronutrient Challenges, Clinical Signs, and Symptoms in Older Adults

Vitamin B12
(cobalamin)

Deficiencies common in older adults, often underdiagnosed. Role in reducing elevated
homocysteine, a cardiovascular risk factor. Absorption decreases mainly due to high

prevalence of age-related atrophic gastritis. Among the common causes of anaemia in
older adults, leading to weakness and fatigue. Low status increases the risk for

cardiovascular disease and cognitive impairment.

Folate

Deficiencies common in older adults. Role in reducing elevated homocysteine, a
cardiovascular risk factor. Closely related to vitamin B12 and B6. Among the common

causes of anaemia in older adults, leading to weakness and fatigue. Deficiencies linked to
depression and dementia.

Vitamin B6
Deficiencies common in older adults. Role in reducing elevated homocysteine, a

cardiovascular risk factor. Closely related to vitamin B12 and folate.

Thiamine
(vitamin B1)

Deficiencies common in older adults, often underdiagnosed. Risk factor for heart failure,
peripheral neuropathy, and encephalopathy.

Calcium
Deficiencies common in senior women. Mean intake decreases with age, probably related

to general change in diet. Associated with low bone mass, rapid bone loss, and high
fracture rates.

Vitamin D
Older adults are less exposed to sun and have diminished ability of the skin to synthesize

vitamin and the liver and kidney to hydrolyze vitamin D with age. Deficiency is a risk
factor low bone mass, rapid bone loss, high fracture rates, and muscle weakness.

Vitamin C
Prevalence of inadequate intake is very high among adults. May help elderly maintain

immune cells and function. Smoking increases need.

Iron
Women’s iron requirements decrease after the menopause. Deficiencies are mainly seen

among hospitalized, institutionalized, or chronically ill older adults. Among the common
causes of anaemia in older adults, leading to weakness and fatigue.

Zinc
Deficiency is common in the elderly. Risk factor for immune deficiency and susceptibility

to infection in the elderly.

Selenium
Deficiency deficiency may increase risk of diseases of aging such as cardiovascular disease,

reduced immune response, and cognitive decline.

Magnesium Often deficient in older adults. Maintains muscle integrity and function.

Health policies and interventions to improve dietary intake at the population level are essential

to reverse the global trend towards unhealthy dietary patterns and physical inactivity. However,

more individualized approaches may be needed to address persistent nutritional gaps and prevent

future morbidity in high-risk groups such as the older population [19,20]. An estimated 5% to 10%

of community-dwelling adults >70 years of age are undernourished; this proportion rises to 30% to

65% among institutionalized elderly patients. In the older adult population, nutrients of concern

include, among others, calcium, vitamin D, and vitamin B6 and B12 [15,20,21]. Vitamin D deficiency

was found not only to be a problem in the elderly, but to be a global problem common across all

age ranges [22]. Genetic variations play a role in dietary response and genetic variations also play a

role in determining nutrient status and requirements [23]. By understanding the genome that affects

the individual requirements for and response to nutrition, diseases of aging that have a nutritional

component can be addressed in a targeted way.

In general, activities endorsing lifestyles that include healthy diets have usually focused on

limiting the consumption of salt, sugar, and saturated fat. However, focus on the need to meet

adequate dietary intake of essential nutrients through a healthy diet is considered equally important.

This review focuses on the role of nutrients in the risk reduction of NCDs in disorders prevalent

in the aging population and for which the societal costs are substantial [24]. The evidence for a

connection between NCDs and inadequate intake or status of specific nutrients such as vitamins,
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carotenoids, omega-3 fatty acids, and other bioactive substances is reviewed. Furthermore, the impact

of interventions aimed at correcting these inadequacies will be discussed.

2. Musculoskeletal Health in the Older Adult

The gradual loss of bone mass and disruption of bone architecture associated with osteoporosis

results in an increased risk of bone fractures, particularly of the hip, spine, and wrist. It is an age-related

chronic, complex, multifactorial skeletal disorder which affects both men and women, particularly

postmenopausal women [25]. Osteoporosis places a huge personal and economic burden on society.

In Europe, for example, the disability caused by the disease is greater than that caused by cancers (with

the exception of lung cancer) and is comparable or greater than that caused by a variety of chronic

NCDs, such as rheumatoid arthritis, asthma and hypertension-related heart disease [26].

In a WHO report it was noted that the remaining lifetime risk of an osteoporotic fracture in women

aged 50 years in developed countries was >40% (>20% for hip fracture) [27]. At the time of this report,

osteoporotic fractures had the sixth highest disease burden in the Americas and Europe combined,

as estimated by disability-adjusted life years [27,28]. In 27 countries in the European Union, based

upon the overall epidemiology of 22 million women and 5.5 million men with osteoporosis, it was

calculated that this would result in 3.5 million new bone fractures (hip, 610,000; vertebral, 520,000;

forearm, 560,000; and others 1.8 million) [28]. The economic burden to manage these incident and

prior bone fractures was calculated to be €37 billion.

In the elderly, both micronutrient and macronutrient deficiencies appear to contribute to the

pathogenesis of skeletal fractures as a consequence of age-related bone loss and frailty [16]. Nutrients

that play a role in bone metabolism include vitamin D and vitamin K, calcium, magnesium, phosphorus,

proteins, and fatty acids.

2.1. Vitamin D in Musculoskeletal Health

Vitamin D is involved in bone homeostasis by enhancing calcium and phosphorus absorption

from the intestine and maintaining adequate levels in blood. Low vitamin D levels have been mainly

implicated in musculoskeletal disorders including bone and muscle health [29]. Serum levels of

25(OH)D have been associated with bone turnover markers levels [30].

Vitamin D comprises a group of secosteroids (calciferols), and in humans the two most important

compounds in this group are vitamin D3 (cholecalciferol) and vitamin D2 (ergocalciferol) [22]. A major

part of vitamin D comes from UV-B induced production in the skin and only about 20% from dietary

intake. Dietary sources are limited to mainly oily fish and foods fortified with the vitamin [31]. Lack

of vitamin D from the diet and increased awareness of the harmful skin effects of excessive sunlight

exposure have contributed to low vitamin D status and even deficiency globally.

Serum 25-hydroxyvitamin D is the most widely used indicator for vitamin D status in clinical

practice and, while 25–50 nmol/L is generally defined as insufficiency with regards to bone health, for

optimal calcium absorption and control of secondary hyperparathyroidism a level closer to 75 nmol/L

has been proposed [16,22,32,33]. Most researchers agree that 25-hydroxyvitamin D levels below

50 nmol/L are associated with lower bone mineral density [22]. Likewise, the effect of vitamin D

deficiency on fracture risk is difficult to quantify, but large population studies found that hip fracture

risk was higher in those with a 25-hydroxyvitamin D level below 50–62.5 nmol/L [34,35]. Based on

a serum 25-hydroxyvitamin D level of <30 nmol/L it was reported that on average 13% of 55,844

European individuals had moderate or severe vitamin D deficiency, and this increased to 40% of

individuals with mild to severe deficiency if a level of <50 nmol/L was included [36]. The authors

noted that vitamin D deficiency was present across Europe and was both a clinical and public health

concern requiring urgent action. Similar levels of vitamin D deficiency and concern have been reported

by many research groups worldwide [22,36–38]. Figure 1 highlights the variable levels of vitamin D

deficiency across Europe [39].
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Figure 1. Europe map of vitamin D deficiency in older adults (mean 25(OH)D status (nmol/L) in adults

aged ≥50 years) (based on: [39]).

The role of vitamin D and related analogues, with or without calcium, for preventing bone

fractures in post-menopausal women and older men was the subject of a Cochrane review [25].

This systematic review included 53 trials and 91,791 older women or men aged over 65 years from

community, hospital, and nursing-home settings, and assessed the impact of vitamin D for the

prevention of hip or other types of fracture. In this analysis vitamin D alone did not appear to have a

significant effect on fracture prevention, whereas vitamin D in combination with calcium significantly

reduced the likelihood of hip fractures (P = 0.01), non-vertebral fractures and any type of fracture.

Hip fracture incidence was particularly reduced in institutionalized residents with a risk reduction of

25%. In a separate systematic review (30 randomized controlled trials (RCTs) involving 5615 subjects

of mean age 61 years), vitamin D supplementation was shown to produce a small but statistically

significant improvement in global muscle strength. The most benefit was observed in individuals

who presented with a 25-hydroxyvitamin D level below 30 nmol/L (compared with those with a level

≥30 nmol/L), and in subjects aged 65 years or older [29].

The economic value of vitamin D supplementation has been the subject of several health economic

evaluations showing that increasing vitamin D status through supplementation or fortification can

prevent fractures and improve QoL in older adults and associated health care costs [40–44].

2.2. Vitamin K in Musculoskeletal Health

Two forms of vitamin K exist: vitamin K1 (phylloquinone, mainly found in green leafy vegetables)

and vitamin K2 (menaquinone, mainly found in fermented dairy and produced by lactic acid bacteria in

the intestine). Vitamin K is required for promoting osteoblast differentiation, upregulating transcription

of specific genes in osteoblasts, and activating bone-associated vitamin K dependent proteins, which



Nutrients 2019, 11, 85 6 of 24

play critical roles in extracellular bone matrix mineralization. Less is known about vitamin K and

health, but there is growing evidence suggesting a synergistic effect between vitamins K and D in

bone [40]. A number of studies reported that vitamin K is essential for optimization of bone health

with benefits in preventing bone loss [41]. Vitamin K2 supplementation combined with vitamin D

and calcium for 2 years in a randomized placebo-controlled trial resulted in a significant increase

in bone-mineral density and content in older women [42]. In another recent RCT it was found that

combined vitamin K2, vitamin D and calcium supplementation for 6 months increased the bone mineral

density of lumbar 3 spine vertebra compared to vitamin D and calcium alone in postmenopausal

Korean women [43].

Current research investigating the effect of vitamin D alone or in combination with other nutrients

on fractures, cardiovascular disease, diabetes, cognitive function, immunity, and other benefits

is ongoing in two large scale studies in older adults (DO-HEALTH in Europe, FIND in Finland).

In addition, many research groups engage in basic science to study the combined action of vitamin

K2, vitamin D, and calcium, and their function on the molecular level. More studies are required that

target vitamin D supplementation in combination with other nutrients such as calcium and vitamin K

where it is needed, in people with vitamin D deficiency or older people, who are more likely to be frail

in institutionalized residents.

3. Cognitive Disorders

Dementia is a term that describes a decline in cognitive abilities including memory, and reduction

in a person’s ability to perform everyday activities [44]. Dementia prevalence is forecast to increase

dramatically in future years [45]. At present about 50 million people have dementia worldwide, and

this is projected to reach 80 million by 2030 and 150 million by 2050 [46]. Alzheimer’s disease (AD)

is the most common form of dementia in people aged >60 years, accounting for 60–70% of the total

number of cases and is the major focus of this section [46]. Vascular dementia is the second most

common cause of dementia with at least 20% of dementia cases.

Alzheimer’s disease is a complex, progressive, multifactorial, neurodegenerative disease [24,45].

The presentation generally involves progressive memory loss, impaired thinking, disorientation, and

changes in personality and mood. As the disease advances there is a marked reduction in cognitive

and physical functioning [47,48]. Genetic factors account for about 70% of the risk contributing to AD,

while modifiable factors related to general health and lifestyle may also be involved [48]. Risk factors

for vascular dementia are predominantly modifiable and of vascular origin (including hypertension,

diabetes mellitus, dyslipidemia, and the metabolic syndrome). Managing non-genetic risk factors

effectively may provide opportunity to prevent and treat the progressive cognitive decline associated

with AD [47]. The focus of this section of the review is on nutritional status and its potential role in AD.

The Role of Nutrition in Dementia

In terms of a link between nutrient status in older adults and cognition, evidence exists for

B-vitamins, and vitamin C, D, and E, as well as the omega-3 long chain polyunsaturated fatty

acids (LCPUFAs) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), as reviewed by

Antal et al. [48] and summarized here (unless otherwise noted).

Folic acid and vitamin B6 and B12 are important in the nervous system at all ages, but particularly

in elderly people, deficiency contributes to aging brain processes [49]. Low status of folic acid and

vitamins B6 and B12 are among the risk factors for elevated homocysteine. With respect to dementia,

there is reasonable evidence linking lower levels of folic acid, vitamin B6, vitamin B12, and higher

concentrations of homocysteine with age-related cognitive decline [50]. One of the mechanisms

involved may the impaired methylation processes due to folic acid and vitamin B12 deficiency that

lead to accumulation of homocysteine affecting mood and some cognitive functions [50]. In several

RCTs supplementation with folic acid, vitamin B12, and vitamin B6 for at least 2 years has been

investigated [44]. However, the findings of a recent meta-analysis reported that B vitamins had
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little to no effect with respect to preventing cognitive decline [51]. Notably, individuals with high

homocysteine levels had significant cognitive decline and B-vitamins were found to improve memory

only in this subgroup [52]. Also, evidence exists that in elderly subjects with an increased risk of

dementia, B-vitamins can slow brain shrinkage over two years by up to 30% [53]. At present, the

evidence is insufficiently compelling to support B-vitamin supplementation to prevent cognitive

decline and dementia.

Dehydroascorbic acid, a metabolite of vitamin C, is a potent antioxidant, an essential cofactor

in many enzymatic reactions, and has a role in metabolizing cholesterol. Large dietary surveys

undertaken in Germany, the Netherlands, the UK, and the US indicated inadequate vitamin C intake in

up to half of respective populations [54]. As with vitamin E, however, studies of vitamin C in patients

with AD have been equivocal. The overall conclusion of the Team of Alzheimer Drug Discovery

Foundation is that maintaining adequate levels of vitamin C through diet may offer more benefit

than supplementation.

The metabolically active form of vitamin D, 1,25-dihydroxy vitamin D, binds to vitamin D

receptors that are present in brain regions involved in cognition. Proposed mechanisms for the

protective effects of vitamin D against cognitive decline include clearing Aβ peptide, regulating

intraneuronal calcium, anti-inflammatory activity, antioxidative activity, preventing and reducing

ischemia, and regulating choline acetyltransferase neurotrophic agents. There is strong evidence that

patients with AD have lower vitamin D status than healthy controls and that lower vitamin D status is

associated with increased risk of developing dementia. Although vitamin D supplementation alone

was insufficient to improve cognition in a study of patients with newly diagnosed AD, the Vitamin D

Council recommends that middle-aged and older adults maintain vitamin D blood levels in the higher

range of normal (175–200 nmol/L; 70–80 ng/mL).

Vitamin E possesses antioxidant properties which may prevent hyperphosphorylated tau protein

dysfunction and has been shown to reduce the rate of Aβ protein-induced death in cultures of

hippocampal and cortical cells [55]. The γ-tocopherol isomer is particularly effective in scavenging

free radicals that cause inflammation [55]. By scavenging Aβ protein-associated free radicals, vitamin

E may have a neuroprotective effect during oxidative stress. However, while promising in principle,

studies of α-tocopherol supplementation in patients with AD have not been convincing and dietary

vitamin E may provide greater protection against age-related neurodegenerative conditions.

Brain membranes are composed mainly of phospholipids, predominantly the LCPUFAs DHA and

arachidonic acid (ARA). DHA has multiple actions in maintaining neurological function. Lower plasma

DHA has been associated with cognitive decline in both healthy elderly people and AD patients [56].

Investigations to date of the therapeutic potential of supplementation or higher dietary intake of DHA

in patients with AD have produced conflicting results, although it is possible that cognitive impairment

in the study populations was already resistant to intervention. Given the essential role of DHA in the

human brain, a general recommendation to maintain an adequate dietary intake of DHA throughout

adulthood appears to be a reasonable approach to prevent cognitive decline.

Due to a high concentration of oxygen free radicals relative to antioxidative defenses in the brain,

it may be especially vulnerable to oxidative stress and consequent damage to lipids and proteins [57].

AD is also associated with lower levels of acetylcholine in the hippocampal and cortical regions,

resulting in memory impairment. Fruits, vegetables, coffee, and cereal grains contain high levels of

polyphenols. In vitro and animal studies of specific dietary flavonoids and plant extracts have shown

reduction of oxidative stress and inhibition of acetylcholinesterase, suggesting a dual protective role

for polyphenols against cognitive decline and dementia [57]. Although no conclusions can be drawn

about the relative benefits of any particular plant polyphenol over another, the findings emphasize the

importance of life-long consumption of foods with high content of these antioxidants.

Trials that have reported no effect of nutrients generally included older adults who were unlikely

to have a marked decline in cognitive function [52]. Trial design should consider including older

individuals with deficiencies that increases their risk of cognitive decline, and who may benefit from
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nutrition intervention. Sensitive assessment tools and surrogate markers are needed that examine

specific aspects of brain structure and function such as neuroimaging techniques to advance the

understanding of nutrition interventions that could reduce the risk of dementia.

4. Eye Disorders

Impairments of the essential senses of vision and hearing are the second-leading cause of years of

lived with disability [58]. The most common causes of vision loss among the elderly are age-related

macular degeneration, glaucoma, cataracts, and diabetic retinopathy [59]. Aging is the greatest risk

factor associated with the development of age-related macular degeneration, but also environmental

and lifestyle factors such as smoking, oxidative stress, and diet may significantly affect the risk [60].

Recent studies suggest that increasing exposure to blue light emitted by electronics and energy-efficient

lightbulbs over time could lead to damaged retinal cells which on the long-term can cause vision

problems like age-related macular degeneration [61]. Eye health problems in the ever-increasing aging

generation, and “exposure to blue light” may result in a new NCD.

Carotenoids have a range of functions in human health and, in particular, there is evidence that

they have beneficial effects on eye health [62]. Two dietary carotenoids, lutein and zeaxanthin are

macular pigments found in the human retina [63]. Macular pigment has local antioxidant properties

and absorbs high energy, short wavelength blue light protecting the retina from photochemical

damage [64]. Macular pigment can neutralize ROS, protect against UV-induced peroxidation, and

reduce the formation of lipofuscin and associated oxidative-stress induced damage [63]. Thus, the

carotenoids provide potential benefits for ocular function and health.

Individuals who have low macular pigment optical density levels (0.2 or lower) may benefit from

supplementation with lutein/zeaxanthin which can help increase macular pigment optical density

levels [65–72]. For retinal protection, macular pigment optical density values of 0.4 to 0.6 are desirable,

especially in older adults [73]. Dietary intake of lutein and zeaxanthin may differ with age, sex,

and ethnicity. Across all age groups the intake of lutein is higher than for zeaxanthin and this is

independent of sex and ethnicity. In addition, lower zeaxanthin to lutein ratios are reported for groups

at risk of age-related macular degeneration (e.g., the elderly and females) [74]. A number of studies,

including some in healthy subjects, have demonstrated that lutein/zeaxanthin supplementation

can improve visual performance, including contrast sensitivity, glare tolerance and photo stress

recovery [65–72,75,76].

Age-related macular degeneration is an increasing problem among the elderly and studies of the

effects of lutein/zeaxanthin supplementation have produced mixed results. However, important data

were provided by secondary analyses of the large Age-Related Eye Disease Study 2 (AREDS2) [77,78].

This randomized trial investigated the effect of adding lutein/zeaxanthin 10/2 mg, DHA (350 mg)

+ EPA (650 mg), or both to the original AREDS2 formulation (vitamin C, vitamin E, β-carotene,

zinc, and copper) or to variations of this formulation (excluding β-carotene and/or with reduced

zinc). Participants (n = 4203) were followed for a median 5 years. The primary analysis found

no additional beneficial or harmful effect for lutein/zeaxanthin and/or omega-3 fatty acids on

progression to late age-related macular degeneration compared with the original AREDS1 formula

using β-carotene instead of lutein/zeaxanthin. However, a prespecified secondary analysis found a

significant 26% risk reduction for progression to advanced age-related macular degeneration when

comparing lutein/zeaxanthin supplementation with no lutein/zeaxanthin supplementation in the

quintile with the lowest dietary intake of these two carotenoids (median 0.7 mg/day), as indicated

by a hazard ratio of 0.74 (95% confidence interval 0.59–0.94, p = 0.01). In addition, a post hoc analysis

showed that lutein/zeaxanthin (excluding β-carotene) was more effective than the original AREDS

formulation containing β-carotene but no lutein/zeaxanthin for reducing progression to advanced

age-related macular degeneration (hazard ratio 0.82, 95% CI 0.69–0.96, p = 0.02) [77].

There is also some evidence suggesting there is a relationship between lutein/zeaxanthin

status and the risk of developing nuclear cataracts [79], and in the AREDS2 trial the addition of
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lutein/zeaxanthin supplementation reduced the risk of cataract surgery in the quintile with the lowest

dietary intake of these carotenoids (hazard ratio 0.68, 95% CI 0.48–0.96, p = 0.03) [80].

If the AREDS2 complex (i.e., vitamin C and E, zinc, copper, lutein/zeaxanthin and omega-3 fatty

acids) was used by all adults aged >55 years, it has been estimated this would result in an average of

about 1 million avoided age-related macular degeneration and cataract events per year in the USA

(based on a risk reduction of 23.6% for age-related macular degeneration and 16.2% for cataracts).

This would result in a net annual cost saving of US$1.2 billion, mostly as a consequence of reduced

healthcare expenditure [81]. Establishing intake recommendations for lutein is an important step

forward to support optimal visual performance and reduce the risk of age-related macular eye disease

in the general population. This would be a relevant contribution to public health in the face of a

globally aging population.

Future studies may include additional assessments of the relationship between macular pigment

and different genotypic and phenotypic forms of age-related macular degeneration, the optimum

dosages of lutein, zeaxanthin, and the possible effects when combined with other nutrients.

5. Cardiovascular Disease

Despite the global decline in cardiovascular mortality, cardiovascular diseases remain the leading

cause of morbidity and mortality, contributing to escalating health care cost [82]. Cardiovascular aging

progresses over decades, influenced by risk factors such as tobacco use, poor physical activity and diet,

resulting in hypertension, dyslipidemia (high triglycerides and lower HDL), elevated fasting blood

glucose, and central obesity [83]. Cardiovascular disease is the major clinical problem in the older

population, with 68% of adults 60–79 years having cardiovascular disease and this increases to 85%

after the age of 80 years [84].

Good nutrition plays an important role in delaying the progression of cardiovascular

disease [85,86]. The adverse effects of excess intakes of saturated and trans fats, cholesterol, added

sugars, and salt in relation to cardiovascular disease progression has been relatively well-established

whereas the effect of addressing inadequate essential nutrients is less well-known. Older adults are

highly susceptible to undernutrition due to the various physiological and socioeconomic factors [87].

In contrast to overnutrition, the potential of addressing undernutrition to optimize cardiovascular

health in older adults has received inadequate attention [88]. Evidence for nutrition in reducing the risk

for cardiovascular aging mostly derives from epidemiological studies, whereas fewer interventions

studies have been performed. The RCTs addressing cardiovascular disease generally have included, but

not exclusively, older adults, not allowing generalizability of results to typical older adults. The authors

have therefore focused on nutrition interventions addressing cardiovascular aging progress, not

restricted to elderly.

5.1. Cardiovascular Events

5.1.1. Diets

Lifestyle changes, including dietary modifications, are recommended as part of the management

strategy to improve lipid profiles and reduce the risk of cardiovascular disease [89–91]. The primary

emphasis of dietary interventions has been on changing dietary macronutrient and salt composition.

The effect of improving micronutrient-richness of the diet in cardiovascular disease control has been

less-well studied. A diet rich in fruits, vegetables, wholegrains, legumes, nuts, fish, poultry, and low-fat

dairy products, and limited consumption of red meat, saturated fat, and added sugar is advocated,

mostly based on positive associations with cardiovascular health [89–91]. Dietary patterns that follow

these principles include the Dietary Approaches to Stop Hypertension (DASH) diet, a diet rich in fiber,

protein, magnesium, calcium, and potassium, and low in total and saturated fats, which has been

shown to reduce low-density lipoprotein (LDL)-cholesterol levels [91], and the Mediterranean diet,

which has been shown to reduce the risk for cardiovascular disease in both primary and secondary
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settings [92,93]. Regression of coronary artery atherosclerosis has been demonstrated with a program

of intensive lifestyle changes that included a vegetarian diet, exercise, and smoking cessation [94].

In addition to dietary interventions, there has been research into the effects of individual nutrients.

While the evidence for some of these is limited, several interesting findings have been published.

5.1.2. Vitamin D

Low vitamin D has been associated with cardiovascular disease in a number of studies [95].

Few studies have been targeting low vitamin D specifically in the older population. In one study with

post-menopausal women randomized to Vitamin D3 2500 IU or placebo, daily for 4 months, vitamin

D supplementation had no effect on endothelial function, arterial stiffness, or inflammation [96].

Results of a meta-analysis of RCT with older adult participants (≥60 years) suggested that vitamin D

supplementation might protect against cardiac failure but not against MI or stroke [97]. The recent

results of the VITAL trial indicate that daily supplementation of 2000 IU vitamin D did not reduce the

occurrence of cardiovascular events in adults aged ≥50 years [98].

5.1.3. B-Vitamins

B-vitamins have been the subject of substantial research because of their established effects on

normalizing homocysteine levels, an important risk factor for cardiovascular disease. Figure 2 shows

the risk factors including B-vitamin shortages and pathogenetic mechanisms for the effect of high

homocysteine on cardiovascular disease.

≥

≥
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Endothelial dysfunction
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Blood
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Figure 2. Risk factors and mechanisms for high homocysteine in cardiovascular disease. MTHFR:

methylenetetrahydrofolate reductase, CBS: cystathionine beta-synthase.

Particularly the B-vitamins have been investigated for their potential cardiovascular benefits due

to their established lowering effect on homocysteine levels, a marker for cardiovascular disease risk,
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including ischemic stroke. A meta-analysis of 19 RCTs of B vitamins (including folic acid, vitamin B6,

vitamin B12, and B-complex vitamins) found significant reductions in homocysteine levels, however,

no significant effect of vitamin B supplementation on rates of cardiovascular disease, coronary heart

disease, myocardial infarction, cardiovascular death, or all-cause mortality whereas vitamin B reduced

the risk of stroke by 12% [99]. Another meta-analysis of 26 RCTs found that folic acid supplementation

significantly reduced the risk of stroke 7% [100].

There are various reasons for elevated blood homocysteine levels; most people have mild to

moderately elevated serum homocysteine levels due to inadequate intake of folate, vitamin B6, or

vitamin B12 from the diet, which is reversible when intake of these vitamins is increased. Another

cause are genetic variants of methylenetetrahydrofolate reductase (MTHFR) and methionine synthase

reductase (MTRR) that are associated with elevated homocysteine levels. Elevated homocysteine

levels are a risk factor for developing blood clots in the vasculature and have been implicated

in the pathogenesis of atherosclerosis and deep vein thrombosis [101]. Given that vitamin B

supplementation is associated with normalization of elevated plasma homocysteine levels, many

studies have investigated whether these vitamins may decrease the risk of cardiovascular diseases.

Huang and colleagues undertook a meta-analysis (19 RCTs and 47,921 participants) evaluating the

effects of B vitamin supplementation (search terms: folic acid, folate, vitamin B6, vitamin B12, and B

vitamins) on plasma homocysteine levels and cardiovascular and all-cause mortality [99]. The overall

relative risk of a clinical outcome, versus placebo, was 0.98 for cardiovascular disease, 0.98 for CHD,

0.97 for MI, 0.97 for cardiovascular death and 0.88 for stroke; and homocysteine levels were decreased

in all RCTs. Thus, B vitamin supplementation had a significant protective effect for stroke, but not for

any other cardiovascular risk. A more recent meta-analysis of folic acid supplementation (30 RCTs,

82,334 participants) estimated a 10% lower risk of stroke and a 4% lower risk of overall cardiovascular

disease compared with controls [102]. The greatest benefit for cardiovascular disease was observed in

individuals with lower plasma folate levels at baseline and without pre-existing cardiovascular disease

(p = 0.006 for both). While patients with a cardiovascular disease history responded to B-vitamins with

normalization of homocysteine levels, those with the MTHFR 677C > T genotype were less responsive

and may have greater folate requirements than do their counterparts [103].

5.1.4. Vitamin K

Vitamin K plays an important role in anticoagulation and may overcome the detrimental side

effects associated with vitamin K antagonists such as warfarin. Vitamin K may also help to prevent

vascular calcifications, especially in patients on warfarin [104].

5.1.5. Omega-3 LCPUFA

Supplementation of omega-3 LCPUFA increased high-density lipoprotein (HDL) cholesterol

concentration, improved vascular function, and lowered heart rate and blood pressure with DHA

having a greater effect than EPA while both EPA and DHA inhibited platelet activity [105]. Dietary

supplementation with omega-3 LCPUFAs can reduce plasma triglyceride levels by up to 45% [106,107],

with the greatest effect seen in those with the highest baseline levels [106]. Omega-3 LCPUFAs also

cause a modest increase in HDL-C levels, and although they also increase LDL-C levels, this is primarily

an increase in large, less atherogenic, particles [106]. In addition to improving lipid profiles, omega-3

LCPUFAs reduce inflammation, lower blood pressure (blood pressure), and have beneficial effects

on endothelial function and platelet aggregation, all of which could contribute to cardioprotective

effects [106]. However, despite positive effects on intermediate markers, RCTs with omega-3 LCPUFAs

have produced mixed results on cardiovascular morbidity and mortality [108,109]. It must be noted

that these meta-analyses included both primary and secondary prevention studies, before and after

occurrence of events, respectively. One recent meta-analysis of RCTs performed reported a significant

reduction in cardiovascular risk only among higher risk populations, such as those with elevated

triglyceride levels (relative risk: 0.84, 95% CI 0.72–0.98) or elevated LDL-cholesterol levels (relative
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risk 0.86, 95% CI 0.76–0.98) [108]. Another recent Cochrane meta-analysis of RCTs found that omega3

LCPUFAs reduced cardiovascular events in the main analysis (relative risk: 0.93, 95% CI 0.88–0.97), but

the result was not maintained in sensitivity analyses [109]. The failure of some trials to show effects of

omega-3 LCPUFA on cardiovascular disease was explained by an insufficiently high omega-3 LCPUFA

dose and/or too high omega-3 LCPUFA baseline status to demonstrate effects [110]. RCTs evaluating

the effects of omega-3 LCPUFAs on cardiovascular morbidity and mortality generally enrolled a broad

range of ages while only few RCTs have focused specifically on older adults. The Alpha Omega Trial

that included 60–80-year-olds with previous MI and at least 50% on medication found no significant

effect of approximately 400 mg of omega-3 LCPUFA on cardiovascular events [111]. In the AREDS2

study, 1 g omega-3 LCPUFA given in addition to a standard Vitamin C, Vitamin E, beta-carotene,

zinc oxide, and cupric oxide supplement for 6 months to participants between 50 and 85 years had

no effect on cardiovascular outcomes [112]. The recent results of the VITAL trial showed that in

adults aged ≥50 y daily consuming 840 mg of omega-3 LCPUFA lowered the risk of heart attack by

28%, of fatal heart attack by 50% without significant effect on stroke or cardiovascular deaths [98].

The most pronounced benefits on major cardiovascular event reduction were found in participants

who reported low fish intake at baseline. A recent meta-analysis of RCTs found that omega-3 LCPUFA

supplementation caused a small, but significant, reduction in heart rate (−2.23 bpm, 95% CI −3.07 to

−1.40) [113], which is considered a risk factor for cardiovascular morbidity and mortality [114].

5.1.6. Antioxidants

Inflammation and oxidative stress appear to be key drivers for a number of cardiovascular

diseases and the metabolic syndrome [115,116]. Whereas observations studies suggest that antioxidant

nutrient such as β-carotene and vitamin E are associated with lower cardiovascular disease, the

data of RCTs on antioxidant supplements failed to confirm a significant benefit of antioxidants on

atherosclerotic cardiovascular disease. For instance, supplementation with the antioxidant nutrients

vitamin E, β-carotene, and vitamin C, had no significant effects on cardiovascular outcomes [117].

5.1.7. Vitamin E

A key attribute of vitamin E (a combination of 8 distinct tocopherol/tocotrienol isoforms) is its

antioxidant activity and, as a consequence, its ability to protect poly-unsaturated fatty acids (PUFAs),

lipoproteins, and cell membranes from oxidative damage [118]. Vitamin E has been extensively

investigated for its potential to prevent cardiovascular disease events. Nevertheless, RCTs with

vitamin E had mixed results on various cardiovascular disease endpoints. In the Women’s Health

Study, intake of 600 IU of vitamin E on alternate days in apparently healthy women non-significantly

reduced the risk for cardiovascular events by 7% and significantly reduced the risk for cardiovascular

death by 24% [119]. And among women ages 65 and older, vitamin E supplementation reduced the

risk of major cardiac events by 26% [119]. Data from the same Women’s Health Study suggested

that supplementation with vitamin E may reduce the risk of venous thromboembolism in women,

particularly in those with a prior history or genetic predisposition [120]. RCTs that retrospectively

analyzed the data for the effect of vitamin in E in subgroups of patients with this these genotypes

sometimes showed that these patients are more responsive to vitamin E supplementation [121,122].

5.1.8. Phenolics

Phenolic compounds are bioactive compounds found in plants, and there is evidence that some

may be helpful for reducing cardiovascular risk factors [116]. Flavonoids are polyphenolic compounds

found in fruits, vegetables, tea, and red wine [116]. Amongst the flavonoids, there is some evidence

that flavonols (specifically quercetin) may be effective at reducing blood pressure in hypertensive

patients; however, no effects on other cardiovascular disease risk markers such as endothelin, oxidative

stress, or lipid profiles were found [116]. Although an early meta-analysis found that consumption of

flavonols was associated with a lower rate of cardiovascular disease [123], a more recent meta-analysis
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and a systematic review do not support such an effect [116,124]. Amongst other phenolic compounds

which might have beneficial cardiovascular effects, resveratrol is a stilbene found in grape skin, red

wine, and peanuts [116]. A systematic review found that resveratrol was associated with reductions

in total cholesterol, LDL-C, triglycerides and apolipoprotein B in a range of patients, including those

with ischemic heart disease [116]. Resveratrol also reduced inflammatory and fibrinolytic biomarkers

in patients with ischemic heart disease [116].

Nutrients have been investigated for their effect on cardiovascular disease progress and as such,

outcomes. B-Vitamins reduced homocysteine levels, a risk factor of cardiovascular disease, without

significant effects on cardiovascular disease events except for the reduced risk for stroke, which was also

reduced by folic acid supplementation. Flavonoids and omega-3 LCPUFA also reduce cardiovascular

disease risk factors although evidence on cardiovascular outcomes is mixed. Possible explanations

include that patients enrolled in the RCTs were already at high risk of cardiovascular disease and

on concomitant medications, with little opportunity for nutrition to reverse the progress. Individual

nutrients like vitamin D, vitamin E and omega-3 LCPUFA on cardiovascular disease prevention

have shown mixed effects. Nutrition interventions have focused mostly on primary prevention of

cardiovascular aging in broad age groups and less on older adults. Recruited participants in the

RCTs were often at high risk of cardiovascular risk factors or preexisting disease, a modest effect of in

patients that already have heart disease or are at high risk of heart disease may be masked by effects

of medication.

5.2. Hypertension

Hypertension is a major public health concern given its link to serious cardiovascular events

such as stroke and ischemic heart disease, the leading causes of worldwide mortality [6]. It has been

estimated that hypertension is responsible for approximately 40% of cardiovascular deaths. By the

year 2025 almost 30% of the global population will be diagnosed with high blood pressure, with 25%

of these cases occurring in developing countries [125]. Hypertension rises dramatically with aging due

to longer exposure to age-associated alterations in vascular function and structure and cardiovascular

risk factors [126].

Hypertension is a multifactorial disease with lifestyle factors such as physical activity, smoking

and drinking habits, diet, bodyweight, and anxiety playing a predominant role. Management of

these is the first step to achieving adequate blood pressure control. Indeed, it has been reported

that two lifestyle modifications can help improve blood pressure control and decrease the number of

cardiovascular outcomes [127].

5.2.1. Diets

In the current healthcare environment, lifestyle changes involving a healthy diet and increased

physical activity are considered pivotal in the management of hypertension. Diets with a high

nutritional value, such as the traditional Mediterranean diet, DASH and the OmniHeart (a variation

of DASH with increased levels of protein) diets, can be important steps on the path to weight loss,

lowering blood pressure, and prevention of hypertension [125]. The benefits of the DASH diet on

blood pressure were reported in a RCT with all participants receiving graded amounts of sodium

(high, intermediate, low). There were dose-response decreases in systolic and diastolic blood pressures,

and age-related increases in blood pressure were blunted [128]. Both the DASH diet and low sodium

markedly decreased blood pressure, and the combined effect was even greater. Findings of the DASH

study also provided additional support that the sodium-to-potassium ratio is stronger associated

with blood pressure outcomes than either nutrient alone among prehypertensive and hypertensive

adults combined. These findings were later confirmed by a systematic review showing that the

sodium-to-potassium ratio appears to be more strongly associated with blood pressure outcomes than

either nutrient alone in hypertensive adults [129].
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In addition to dietary control there has been research into the effects of other nutrients, including

vitamins, on blood pressure and hypertension. While the evidence for some of these is limited a

number of interesting findings have been published.

5.2.2. Milk peptides

A meta-analysis of 14 RCTs involving 1306 European subjects found that the milk-derived

lactotripeptides isoleucine-proline-proline and valine-proline-proline produced small and statistically

significant reductions in mean systolic blood pressure and diastolic blood pressure [130]. The authors

noted that a similar effect had been seen in Asian populations.

5.2.3. Omega-3 LCPUFAs

The omega-3 LCPUFAs EPA and DHA found in oily fish and fish oils (including capsule

preparations) have been associated with lower blood pressure levels. In a meta-analysis of 70 RCTs,

EPA, and DHA reduced mean systolic blood pressure and mean diastolic blood pressure compared

with placebo. The largest effect was in untreated hypertensive patients [131]. Likewise, in an earlier

meta-analysis (36 trials), intake of fish oil (median dose 3.7 g/d) reduced both mean systolic and

diastolic blood pressure. The antihypertensive effects of doses <0.5 g/d remains to be established [132].

5.2.4. Vitamin C

In short-term studies, vitamin C supplementation reduced systolic and diastolic blood pressure.

Long-term trials on the effects of vitamin C supplementation on BP and clinical events are needed

longer-term trials assessing the effects of vitamin C supplementation on blood pressure and clinical

events in patients with hypertension would seem to be worthwhile [133]

5.2.5. Vitamin D

In a study involving 283 hypertensive patients, vitamin D3 (cholecalciferol) produced a modest but

statistically significant reduction in systolic blood pressure compared with placebo after 3 months [134].

There was no significant effect on diastolic blood pressure.

5.2.6. Flavonols

Flavanols have also been found to lower blood pressure, and there is some evidence suggesting

that they improve endothelial function in patients with ischemic heart disease, but additional studies

are needed [116].

The evidence for nutrients and blood pressure is convincing for lowering sodium and

sodium-to-potassium ratio. Flavanols vitamin C and D may have modest significant effects on blood

pressure lowering.

5.3. Diabetes

Type 2 diabetes has become a global health-related pandemic which is forecast to rise from 425 to

almost 630 million by 2045 [135]. In developing countries, the forecasted increase is more alarming,

particularly in regions which are more rapidly adopting a Western lifestyle. The direct financial burden

on healthcare systems and society is huge, as are the indirect costs from loss of work attendance.

Intensive lifestyle modification, e.g., personalized nutrition and physical activity programs, with

the goal of improving glycaemia and losing excess body weight should be the mainstay of initial

management in individuals with prediabetes [136].

5.3.1. Vitamin D

Observational studies have highlighted a link between vitamin D deficiency and type 2 diabetes,

as well as possible future cardiovascular events, whereas results from interventional studies have not
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been so conclusive [137]. A recent meta-analysis [137] including a total of 20 RCTs and 2703 participants,

found that vitamin D supplementation was associated with elevated serum vitamin D levels and

significantly decreased insulin resistance. Changes in other parameters such as fasting blood glucose

and hemoglobin A1c (HbA1c) were relatively small and did not achieve statistical significance [137].

In a pilot study in 60 patients with co-existing type 2 diabetes and hypovitaminosis D, vitamin D

improved vitamin D status and several parameters associated with glycemic control such as HbA1c,

mean fasting plasma glucose, and mean post-prandial plasma glucose [138]. In addition, vitamin D in

the study lowered LDL cholesterol levels, systolic blood pressure and diastolic blood pressure.

5.3.2. Vitamin E

Diabetes patients with the haptoglobin 2-2 genotype have elevated risk of cardiovascular disease

events. The haptoglobin 2-2 genotype has inferior antioxidant properties as compared with other

haptoglobin types resulting in elevated levels of oxidative stress, an atherogenic profile and an

increased risk of cardiovascular disease events compared with other Hp genotypes [139]. The RCTs

in diabetes patients that retrospectively analyzed the data for the effect of vitamin in E found

that administration of vitamin E lowered the risk of cardiovascular disease events by 34% and

cardiovascular-related mortality by 53% among patients with the haptoglobin 2-2 genotype [140].

5.3.3. Omega-3 LCPUFA

Cohort studies have shown that in countries where fish consumption is high the prevalence of type

2 diabetes tends to be lower and this has been attributed to the presence of omega-3 LCPUFAs [141].

However, the findings have not been conclusive with respect to providing dietary guidance and a

recent systematic meta-analysis sought to provide more definitive evidence by analyzing different

dosage/compositions of omega-3 LCPUFA supplementation [141]. In total, 20 RCTs recruited

1209 patients with type 2 diabetes. Overall, omega-3 LCPUFA supplementation resulted in a reduction

in triglycerides with the best response with high doses for a longer duration; however, no significant

changes in total cholesterol, fasting plasma glucose, post-prandial plasma glucose, HbA1c, insulin, or

body mass was noted with this regimen. Interestingly, products with a relatively high ratio of EPA to

DHA exhibited an increasing tendency to decrease HbA1c, insulin, total cholesterol, total triglycerides,

and body mass. These findings will be helpful for clinicians and nutritionists who manage patients

with diabetes to provide dietary guidance [141].

5.3.4. Vitamin K

To assess whether vitamin K is a risk factor for the development of type 2 diabetes mellitus,

Beulens and colleagues analyzed a cohort of 38,094 Dutch men and women over a 10-year period [142].

The study showed that both vitamin K1 and vitamin K2 intake were associated with a reduced risk

of type 2 diabetes mellitus. For vitamin K1 the risk reduction occurred at the higher levels of intake,

whereas for vitamin K2 a linear inverse association was established. In older men with diabetes

receiving vitamin K1 supplementation for 36 months, vitamin K1 significantly improved insulin

sensitivity [143].

5.3.5. Chromium

Chromium plays a role in insulin metabolism by activating oligopeptide low-molecular-weight

chromium (LMWCr)-binding substance and activating insulin-dependent kinase activity. A meta-analysis

of the efficacy of chromium supplementation suggest that there is available evidence for chromium on

glycemic control in patients with diabetes [144].

Studies in diabetes patients showed that vitamin D supplementation can improve serum vitamin

D levels and significantly decrease insulin resistance. Currently, a large multicenter RCT is ongoing in

the US (Vitamin D and Type 2 Diabetes Study; D2d), hypothesizing that vitamin D will enhance insulin

production, glucose processing and glycemic profiles. Subgroup analyses show that vitamin E may be
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promising in reducing the rate of cardiovascular events among diabetes patients with haptoglobin

2-2 genotype who are at increased risk of cardiovascular events. The evidence for omega3 LCPUFA

supplementation on fasting plasma glucose or HbA1C is less conclusive but omega-3 LCPUFA have

promising effects for reduction of triglycerides. The evidence for chromium in glycemic control

is emerging.

6. Conclusions

Inadequate or even deficient nutrient intake and status is still widely prevalent at global level

and, although generally underacknowledged, is a main risk factor for NCDs [20]. Nutrient surveys

indicate that the aging population is at particular risk for poor nutrient intake and status, which may

result in increased risk for chronic fatigue, and cardiovascular, cognitive, and neuromuscular disorders

in older adults. The present paper reviews the evidence for the role of various nutrients in modifying

the risk of development of NCDs throughout aging.

Inadequate vitamin D, calcium and vitamin K intake and status are generally reported in the

aging population and have been associated with musculoskeletal disorders, such as increased bone

fracture risks. Increased vitamin D in combination with increased calcium and possibly also vitamin K

may reduce the risk for hip fractures, thus beneficially impacting musculoskeletal health.

Inadequate B vitamins intake and status, in particular folic acid, vitamins B6 and B12, have been

associated with age-related cognitive decline, while supplementation has been reported to improve

cognitive performance. Similarly, evidence has been reported for vitamin C, D, and E, as well as

omega-3 LCPUFAs (e.g., DHA) to slow down dementia progression.

Increased intake of lutein and zeaxanthin has been demonstrated to improve macular pigment

optical density measures, a marker of age-related macular degeneration.

Various nutrients have been reported to play a role in reducing the risk for ischemic heart disease,

stroke, myocardial infarction, heart failure, hypertension, and diabetes with varying levels of effect size

and evidence. B-Vitamins reduced homocysteine levels and reduced the risk for stroke. Some but not

all studies reported that higher omega-3 LCPUFAs intakes resulted in reduced risk of cardiovascular

events; most pronounced effects being shown in subjects with low intake or status. Vitamin C and D

may reduce hypertension, omega-3 LCPUFAs may have positive effect on blood lipid profiles, and

omega-3 LCPUFAs, vitamin D, and chromium may reduce diabetes risk factors.

Most pronounced benefits of nutrient interventions were sometimes found in subgroups which

had low baseline intake or status of the nutrient. Genetic factors can affect the status of certain nutrients,

as well as contribute to increased risk for NCDs and raise the needs for certain nutrients [139,145].

Targeted supplementation with nutrients of concern to genetically predisposed subgroups has been

shown to confer benefits as shown by some examples in this review. More research is needed to unravel

the benefits of optimizing nutrition where it is needed, for instance by targeting those at increased risk

for NCDs linked to low nutrition status or genetic profile.

Due to a growing aging global population, related NCDs including musculoskeletal disorders,

dementia, loss of vision, and cardiovascular diseases will place an increasing burden on health systems

and costs. Adequate nutrient status may help to improve health and wellbeing in older populations

and slow the progression of NCDs. Implementing a long-term preventative strategy to promote healthy

aging and break down the barriers to adequate nutrition for older adults could result in significant

healthcare cost savings. Nutrition is increasingly acknowledged and integrated into public health

policies and programs to manage healthy aging. Promoting nutrient-rich diets and adequate nutrient

intakes for healthy aging should be considered part of an integral approach to address NCDs in health

policies. There is a need for public and/or private partnerships where governments, health authorities,

academics, and the food sector jointly promote the benefits of healthy nutrient-rich diets and lifestyle

to manage NCDs.

In conclusion, data indicate that inadequate nutrient intake and status is common in older

aged adults and represents a risk for the development of NCDs during aging. Studies for the aging
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population have demonstrated that optimizing nutrition can reduce the risk and progress of NCDs.

Although the scientific evidence is not conclusive for all health benefits, it should not prevent health

authorities from promoting balanced and adequate nutrient intakes as integral part of nutrition

strategies to reduce the burden of NCDs associated with inadequate nutrition.
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